JPH02302563A - Ultra-cryo freezer - Google Patents

Ultra-cryo freezer

Info

Publication number
JPH02302563A
JPH02302563A JP12285189A JP12285189A JPH02302563A JP H02302563 A JPH02302563 A JP H02302563A JP 12285189 A JP12285189 A JP 12285189A JP 12285189 A JP12285189 A JP 12285189A JP H02302563 A JPH02302563 A JP H02302563A
Authority
JP
Japan
Prior art keywords
temperature
displacer
operating frequency
low
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12285189A
Other languages
Japanese (ja)
Other versions
JPH0678857B2 (en
Inventor
Toru Kuriyama
透 栗山
Ryuichi Hakamata
袴田 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1122851A priority Critical patent/JPH0678857B2/en
Publication of JPH02302563A publication Critical patent/JPH02302563A/en
Publication of JPH0678857B2 publication Critical patent/JPH0678857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a minimum temperature of a freezer and realize an increased freezing power at a low temperature by a method wherein a temperature sensor for use in sensing a temperature at the lower temperature part is provided and a controlling means for use in controlling, basing upon the detected temperature change, an operating frequency of a displacer of the freezer is provided. CONSTITUTION:A temperature sensor 41, a controller 42 and an inverter are provided in a GM freezer, for example. The temperature sensor 41 is arranged near a second stage 17 acting as a low temperature part to detect a temperature at this location and then its detected signal is sent to a controller (a controlling means) 42. The controller 42 may control the number of revolution of a motor 13 through the inverter 43 arranged at an intermediate part between a power supply 44 and a motor 13 in response to a variation of temperature. Accordingly, an operating frequency of the displacer acting as a refrigerant compressing member for the freezer cooperating with the motor. As the operating frequency is delayed, the minimum temperature is decreased and an amount of freezing at a low temperature is high. However, as the temperature is increased, the frequency is delayed and then a freezing amount is low. Accordingly, the operating frequency at each of the temperature levels is varied to cause the temperature to be decreased to a low value and thus it is possible to realize a freezer having a high freezing capability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は極低温冷凍機に係り、特に、蓄冷式冷凍機に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a cryogenic refrigerator, and particularly to a regenerator refrigerator.

(従来の技術) 極低温冷凍機のうち、蓄冷器を有する蓄冷式冷凍機には
ギフオード・マクマホン(G M )冷凍機、スターリ
ン冷凍機等の種々のタイプがあり、超電導マグネットの
冷却や赤外線センサの冷却、あるいは、クライオポンプ
の冷IA源として使用されている。これらの中で、GM
冷凍別の構成を第4図に示す。このGM冷凍機は大ぎく
分(プてコールドヘッド1と冷媒ガス導排出系2とで構
成され、コールドヘッド1に設けられ、二定速度で運転
するディスプレーサ12が、冷媒ガス導排出系2と連動
して冷媒ガスの膨脹冷却を繰返し極低温に到る冷凍機で
ある。
(Prior art) Among cryogenic refrigerators, there are various types of regenerator refrigerators with regenerators, such as Gifford-McMahon (GM) refrigerators and Stalin refrigerators, which are used for cooling superconducting magnets and infrared sensors. or as a cold IA source for cryopumps. Among these, G.M.
Figure 4 shows the configuration for each type of refrigeration. This GM refrigerator consists of a cold head 1 and a refrigerant gas guide/discharge system 2. A displacer 12, which is installed in the cold head 1 and operates at two constant speeds, is connected to the refrigerant gas guide/discharge system 2. This is a refrigerator that repeatedly expands and cools refrigerant gas in conjunction with each other to reach extremely low temperatures.

即ち、コールドヘッド1は閉じられたシリンダ11とこ
のシリンダ内に往復動自在に収容されたディスプレーサ
12とシリンダ11に通じる部屋内に配置されて上記デ
ィスプレーサ12に往復動に必要な動力を与えるモータ
13とで構成されている。
That is, the cold head 1 includes a closed cylinder 11, a displacer 12 housed in the cylinder so as to be able to reciprocate, and a motor 13 that is disposed in a room communicating with the cylinder 11 and provides the displacer 12 with the power necessary for the reciprocating motion. It is made up of.

シリンダ11は大径の第1シリンダ14とこの第1シリ
ンダ14に同軸的に接続された小径の第2シリンダ15
とで構成されている。そして、第1シリンダ14と第2
シリンダ15との境界壁部分で冷却面としての第1ステ
ージ16を構成し、またシリンダ15の先端壁部分で第
1ステージ16より低温の第2ステージ17を構成して
いる。
The cylinder 11 includes a large-diameter first cylinder 14 and a small-diameter second cylinder 15 coaxially connected to the first cylinder 14.
It is made up of. Then, the first cylinder 14 and the second cylinder
The boundary wall portion with the cylinder 15 constitutes a first stage 16 as a cooling surface, and the tip wall portion of the cylinder 15 constitutes a second stage 17 having a lower temperature than the first stage 16.

ディスプレーサ12は、第1シリンダ14内を往復動す
る第1デイスプレーサ18と第2シリンダ15内を往復
動する第2デイスプレーサ19とで構成されている。第
1デイスプレーサ18と第2デイスプレーサ19とは、
連結部材20によって軸方向に連結されている。第1デ
イスプレーサ18の内側には、軸方向に延びる流体通路
21が形成されて第1蓄冷器35を構成しており、第1
蓄冷器35内には銅メツシユ等で形成された蓄冷材22
が収容されている。同様に、第2デイスプレーサ19の
内側にも軸方向に延びる流体通路23が形成されており
、第2蓄冷器36を構成している。第2蓄冷器36内に
は鉛やその他の金属、金属間化合物等の球あるいは粉等
で構成された蓄冷材24が収容されている。第1デイス
プレーサ18の外周面と第1シリンダ14の内周面との
間および第2デイスプレーサ19の外周面と第2シリン
ダ15の内周面との間には、それぞれシール機構25.
26が装着されている。
The displacer 12 includes a first displacer 18 that reciprocates within the first cylinder 14 and a second displacer 19 that reciprocates within the second cylinder 15. The first displacer 18 and the second displacer 19 are
They are connected in the axial direction by a connecting member 20. A fluid passage 21 extending in the axial direction is formed inside the first displacer 18 to constitute a first regenerator 35.
Inside the regenerator 35 is a regenerator material 22 made of copper mesh or the like.
is accommodated. Similarly, a fluid passage 23 extending in the axial direction is also formed inside the second displacer 19, and constitutes a second regenerator 36. The second regenerator 36 houses a regenerator material 24 made of balls or powder of lead, other metals, intermetallic compounds, or the like. Seal mechanisms 25 are provided between the outer circumferential surface of the first displacer 18 and the inner circumferential surface of the first cylinder 14 and between the outer circumferential surface of the second displacer 19 and the inner circumferential surface of the second cylinder 15, respectively. ..
26 is installed.

第1デイスブレーナ18の図中上端は、連結ロッド27
、スコッチョークあるいはクランク軸28を介してモー
タ13の回転軸に連結されている。
The upper end of the first disk brainer 18 in the figure is connected to a connecting rod 27.
, is connected to the rotating shaft of the motor 13 via a Scotch choke or crankshaft 28.

従って、モータ13の回転軸が回転するとこの回転に同
期してディスプレーサ12が図中実線矢印29で示すよ
うに往復UJする。
Therefore, when the rotating shaft of the motor 13 rotates, the displacer 12 reciprocates in synchronization with this rotation as shown by the solid line arrow 29 in the figure.

第1シリンダ14の側壁上部には冷媒ガスの導入口30
と排出口31とが設けてあり、これら導入口30と排出
口31は冷媒ガス導排出系2に接続されている。
A refrigerant gas inlet 30 is provided at the upper side wall of the first cylinder 14.
and a discharge port 31 are provided, and these inlet port 30 and discharge port 31 are connected to the refrigerant gas introduction and discharge system 2.

冷媒ガス導排出系2は、シリンダ11を経由したヘリウ
ムガス循環系を構成するもので、排出口31を低圧弁3
2、コンプレッサ33、高圧弁34を介して導入口30
に接続したものとなっている。叩も、この冷媒ガス導排
出系2は、低圧(約5atm)ヘリウムガスをコンプレ
ッサ33で高圧(約18atm)に圧縮してシリンダ1
1内に送りこむものである。そして、低圧弁32、高圧
弁34の開閉はディスプレーサ12の往復動との関連に
おいて後述する関係に制御される。
The refrigerant gas introduction and discharge system 2 constitutes a helium gas circulation system via the cylinder 11, and the discharge port 31 is connected to the low pressure valve 3.
2. Inlet 30 via compressor 33 and high pressure valve 34
It is connected to. Also, this refrigerant gas introduction and discharge system 2 compresses low pressure (approximately 5 atm) helium gas to high pressure (approximately 18 atm) with a compressor 33 and supplies it to the cylinder 1.
1. The opening and closing of the low-pressure valve 32 and the high-pressure valve 34 are controlled according to the relationship described later in relation to the reciprocating movement of the displacer 12.

このように構成された冷凍機の動作を簡単に説明すると
以下の通りである。この冷凍機では寒冷の発生する部分
、つまり冷却面に供される部分は第1ステージ16と第
2ステージ17とである。
A brief explanation of the operation of the refrigerator configured as described above is as follows. In this refrigerator, the first stage 16 and the second stage 17 are the parts where cold occurs, that is, the parts that serve as cooling surfaces.

これらは熱負荷のない場合にそれぞれ30にと8に1度
まで冷える。このため、第1蓄冷器35の上下端間には
常温(300K)から30Kまでの温度勾配がつき、ま
た第2蓄冷器36の図中上下端間には30Kから8Kま
での温度勾配がつく。
They cool down to 1 in 30 and 8 degrees Celsius, respectively, in the absence of a heat load. Therefore, there is a temperature gradient from room temperature (300K) to 30K between the upper and lower ends of the first regenerator 35, and a temperature gradient from 30K to 8K between the upper and lower ends of the second regenerator 36 in the figure. .

ただし、この温度は各段の熱負荷によって変化し、通常
第1ステージ16では30〜80に1第2ステージ17
では8〜20に程度となる。
However, this temperature changes depending on the heat load of each stage, and normally the temperature ranges from 30 to 80 in the first stage 16.
So it's about 8-20.

モータ13が回転を開始すると、ディスプレーサ12は
死点と下死点の間を往復動する。ディスプレーサ12が
下死点にあるとき、高圧弁34が開いて高圧のヘリウム
ガスがコールドヘッド1内に流入する。次に、ディスプ
レーサ12が上死点へと移動する。前述の如く、第1デ
イスプレーサ18の外周面と第1シリンダ14の内周面
との間および第2デイスプレーサ19の外周面と第2シ
リンダ15の内周面との間にそれぞれシール機構25.
26が装着されている。このため、ディスブレーナ12
が上死点へと向かうと、高圧ヘリウムガスは第1蓄冷器
35および第2蓄冷器36を通って、第1デイスプレー
サ18と第2デイスプレーサ19との間に形成された第
1膨脹室3・9および第2デイスプレーサ19と第2シ
リンダ15の先端壁との間に形成された第2膨脹室40
へと流れる。この流れに伴って、高圧ヘリウムは蓄冷材
22.24によって冷却され、結局、1段膨脹室39に
流れ込んだ高圧ヘリウムガスは30に程度に、また第2
膨脹室40に流れ込んだ高圧ヘリウムガスは80に程度
に冷却される。ここで、高圧弁34が閉じ、低圧弁32
が開く。このように低圧弁32が聞くと、第1膨脹室3
つ内および第2膨脹室40内の高圧ヘリウムガスが膨脹
して寒冷を発生する。この寒冷によって第1ステージ1
6および第2スデージ17が冷却され。そして、ディス
プレーサ12が再び下死点へと移動し、これに伴って第
1膨脹室39内および第2膨脹室40内のヘリウムガス
が排除される。8脹したヘリウムガスは蓄冷器35.3
6を通る間に蓄冷材22.24によって暖められ、常温
となって排出口31を経て排出される。以下、上)ホし
た量ナイクルが繰返されて冷凍運転が行われる。
When the motor 13 starts rotating, the displacer 12 reciprocates between the dead center and the bottom dead center. When the displacer 12 is at the bottom dead center, the high pressure valve 34 opens and high pressure helium gas flows into the cold head 1. Next, the displacer 12 moves to top dead center. As described above, seals are provided between the outer circumferential surface of the first displacer 18 and the inner circumferential surface of the first cylinder 14 and between the outer circumferential surface of the second displacer 19 and the inner circumferential surface of the second cylinder 15, respectively. Mechanism 25.
26 is installed. For this reason, the distributor 12
When the gas heads toward the top dead center, the high-pressure helium gas passes through the first regenerator 35 and the second regenerator 36 and enters the first regenerator formed between the first displacer 18 and the second displacer 19. A second expansion chamber 40 formed between the expansion chambers 3 and 9 and the second displacer 19 and the tip wall of the second cylinder 15
flows to. Along with this flow, the high-pressure helium is cooled by the cold storage material 22, 24, and eventually the high-pressure helium gas that has flowed into the first-stage expansion chamber 39 is reduced to about 30%.
The high pressure helium gas that has flowed into the expansion chamber 40 is cooled to about 80 ℃. Here, the high pressure valve 34 is closed and the low pressure valve 32
opens. When the low pressure valve 32 listens in this way, the first expansion chamber 3
High-pressure helium gas within the chamber and the second expansion chamber 40 expands to generate cold. Due to this cold, the first stage 1
6 and the second stage 17 are cooled. Then, the displacer 12 moves to the bottom dead center again, and along with this, the helium gas in the first expansion chamber 39 and the second expansion chamber 40 is removed. 8 Helium gas is stored in a regenerator 35.3
6, it is warmed by the cold storage materials 22 and 24, reaches room temperature, and is discharged through the discharge port 31. Hereinafter, the refrigeration operation is performed by repeating the amount shown in (a) above.

なお、これらの冷凍様において運転時のディスプレーサ
運転周波数は常に一定であり、冷凍機によって作り出さ
れる最低温度は約8に程度である。
In addition, in these types of refrigeration, the displacer operating frequency during operation is always constant, and the lowest temperature produced by the refrigerator is about 8.

また、冷凍機として冷凍能力を期待できるのは10に程
度以上であった。これは、第2蓄冷器36に用いられて
いる蓄冷材24の熱容量が温度の低下と共に下ってくる
ため、熱を蓄える能力が衰え、蓄冷器としての熱交換効
率が大幅に下がるためである。
In addition, the number of units that can be expected to have good refrigerating capacity as a refrigerator was about 10 or more. This is because the heat capacity of the regenerator material 24 used in the second regenerator 36 decreases as the temperature decreases, so the ability to store heat declines and the heat exchange efficiency as a regenerator decreases significantly.

一方、最低温度を下げ、低温での冷凍能力向上のために
、第2冷凍機36内の蓄冷材24に比熱の大きい磁性体
等の材料を用いたり、2段の膨脹ステージを更に多段に
する等のことが行われているが、10に以下で高い冷凍
能力が得られていない。
On the other hand, in order to lower the minimum temperature and improve the refrigerating capacity at low temperatures, a material such as a magnetic material with a high specific heat may be used for the cold storage material 24 in the second refrigerator 36, or the second expansion stage may be further multistaged. However, high refrigerating capacity has not been achieved at temperatures below 10%.

(発明が解決しようとする課題) −り述の如く、従来の晶冷式捗低温冷凍機にあっては、
温度レベルによらずディスプレーサの運転周波数は一定
であり、極低温での冷凍能力の向」二は望めなかった。
(Problem to be solved by the invention) -As mentioned above, in the conventional crystal cooling type low temperature refrigerator,
The operating frequency of the displacer remains constant regardless of the temperature level, and no improvement in refrigerating capacity at extremely low temperatures could be expected.

そこで本発明は、ディスプレー!犬の運転周波数を温度
レベルによって変化させ、冷凍能力増加と最低温度の低
い極低温冷凍機を提供することを目的としている。
Therefore, the present invention is a display! The purpose is to provide a cryogenic refrigerator with increased cooling capacity and a low minimum temperature by changing the operating frequency of the dog depending on the temperature level.

[発明の構成] (課題を解決するための手段) 前記の目的を達成するため、この発明は、圧縮した冷媒
ガスを蓄冷器を用いて冷却した後、低温部で膨脹させる
ことによって寒冷を発生させる極低温冷凍機において、
前記低温部の温度を検知する温度センナを設け、検知し
た温度変化に基づいて、冷凍能力が向上するよう冷凍機
のディスプレーサの運転周波数を制御する制御手段を設
けた。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention generates cold by cooling compressed refrigerant gas using a regenerator and then expanding it in a low temperature section. In the cryogenic refrigerator that
A temperature sensor is provided to detect the temperature of the low-temperature section, and a control means is provided to control the operating frequency of the displacer of the refrigerator based on the detected temperature change so as to improve the refrigerating capacity.

(作用) 温度センサは、低温部の温度変化を検知し、ぞの結果に
基づき、冷凍機の圧縮部材の運転周波数を制御する。
(Function) The temperature sensor detects temperature changes in the low temperature section, and controls the operating frequency of the compression member of the refrigerator based on the results.

(実施例) 以下、この発明の実施例を図面を用いて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail using the drawings.

第1図は、この発明の実施例であって、GM冷凍別に、
温度センサ41.コントローラ42及びインバータを設
けた例である。従って、第4図のものど同一構成要素に
は同符号をイqして説明は省略する。
FIG. 1 shows an embodiment of this invention, in which GM refrigeration is
Temperature sensor 41. This is an example in which a controller 42 and an inverter are provided. Therefore, the same components as those in FIG. 4 are designated by the same reference numerals and their explanations will be omitted.

温度センサ41は、低温部である第2ステージ17に隣
接して設け、この個所の温度を検知し、コントローラ(
制御手段)42へその検出信号を送る。コントローラ4
2は、電源とモータとの中間に設けたインバータ43を
介して、温度の変化に応じてモータ13の回転数を制御
する。従って、これと連動する冷凍様の冷媒圧縮部材で
あるディスプレーサ12の運転周波数を検知温度に応じ
変化させることができるようにした。
The temperature sensor 41 is provided adjacent to the second stage 17, which is a low-temperature part, and detects the temperature of this part.
The detection signal is sent to the control means) 42. controller 4
2 controls the rotation speed of the motor 13 according to changes in temperature via an inverter 43 provided between the power source and the motor. Therefore, the operating frequency of the displacer 12, which is a refrigeration-like refrigerant compression member that operates in conjunction with the displacer, can be changed in accordance with the detected temperature.

第3図には運転周波数を変化させた時の冷凍機の冷凍能
力曲線を示す。代表的な運転周波数として6Qrpm 
、 36rpm 、 18rpmを示す。通常の冷凍機
では60 r11ffl程度の運転周波数である。第3
図かられかるように、運転周波数を遅くする程、最低温
度(冷凍*+ Ific5 wの時の温度)が低くなり
、低温での冷凍量も大きい。しかしながら、温度が高く
なると周波数が遅い程冷凍励は小さい。従って、各温度
レベルで運転周波数を変化させることによって、低温ま
で下がり、冷凍能力の大ぎな冷凍機を実現できる。第2
図は、本発明実施例による冷凍能力を示している。8.
5に以上では60rpm 、6.3K 〜8.5にでは
36rpn+ 、 6.3以下では18rpmで運転さ
せた結果である。破線は従来の冷凍機の冷凍能力で60
 rpmのみの運転である。本発明実施例により、従来
に比べより低温までFがり、低温での冷凍能力が大ぎい
冷凍機が実現されていることがわかる。
Fig. 3 shows the refrigerating capacity curve of the refrigerator when the operating frequency is changed. 6Qrpm as a typical operating frequency
, 36 rpm, and 18 rpm. A normal refrigerator has an operating frequency of about 60 r11ffl. Third
As can be seen from the figure, the slower the operating frequency is, the lower the minimum temperature (temperature when freezing *+ Ific5 w) is, and the amount of refrigeration at low temperatures is also large. However, as the temperature increases, the lower the frequency, the smaller the freezing excitation. Therefore, by changing the operating frequency at each temperature level, it is possible to realize a refrigerator with a low temperature and a large refrigerating capacity. Second
The figure shows the refrigeration capacity according to an embodiment of the invention. 8.
5 and above, 60 rpm, 6.3K to 8.5, 36 rpm, and 6.3 and below, 18 rpm. The broken line is the refrigeration capacity of a conventional refrigerator, which is 60
It is an rpm only operation. It can be seen that according to the embodiments of the present invention, a refrigerator has been realized which can be heated to a lower temperature than the conventional one and has a large refrigerating capacity at low temperatures.

なお、上述した実施例では、GM冷凍機にて本発明を構
成したが、スターリングサイクル、ビルミャサイクル等
の蓄冷式冷凍機に構成することができる。また、詳述し
た実施例ではディスプレーサの運転周波数を変化させる
ためにインバータを使用していたが、他の方法によって
運転周波数を変化させても良い。また、上述した実施例
では、運転周波数を60rpm 、 36rpm 、 
18rpmに限っており、その温度範囲も8.5に、6
.3Kに限っていたが、他の周波数・温度レベルでも良
い。
In the embodiments described above, the present invention is configured with a GM refrigerator, but it can be configured with a regenerator type refrigerator such as a Stirling cycle or a Birmya cycle. Further, in the detailed embodiment, an inverter is used to change the operating frequency of the displacer, but the operating frequency may be changed by other methods. Further, in the above-mentioned embodiment, the operating frequency is 60 rpm, 36 rpm,
It is limited to 18 rpm, and its temperature range is 8.5 and 6.
.. Although it was limited to 3K, other frequencies and temperature levels may be used.

[発明の効果1 以上述べたように本発明によれば、温度の低下と共に冷
凍機の冷媒圧縮部材の運転周波数を遅くすることができ
、冷凍機の最低温度を下げ、低温での冷凍能力の増加を
実現できる。
[Effect of the invention 1] As described above, according to the present invention, it is possible to slow down the operating frequency of the refrigerant compression member of the refrigerator as the temperature decreases, lower the minimum temperature of the refrigerator, and increase the refrigerating capacity at low temperatures. increase can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る冷凍機を一部切欠構成
図、第2図は本発明実施例に係る冷凍機の特性を従来の
冷凍機のそれと比較して示す図、第3図はディスプレー
サの運転周波数を変化させ □た時の冷凍機の冷凍能力
を示す図、第4図は従来の冷凍機の概略構成図である。 19・・・第2デイスプレーす(冷媒圧縮部材)41・
・・温度センサ 42・・・コントローラ(制御手段) 43・・・インバータ
FIG. 1 is a partially cutaway configuration diagram of a refrigerator according to an embodiment of the present invention, FIG. 2 is a diagram showing the characteristics of the refrigerator according to an embodiment of the present invention in comparison with that of a conventional refrigerator, and FIG. The figure shows the refrigerating capacity of the refrigerator when the operating frequency of the displacer is changed, and FIG. 4 is a schematic diagram of the conventional refrigerator. 19...Second display (refrigerant compression member) 41.
... Temperature sensor 42 ... Controller (control means) 43 ... Inverter

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮した冷媒ガスを蓄冷器を用いて冷却した後、
低温部で膨脹させることよって寒冷を発生させる極低温
冷凍機において、前記低温部の温度を検知する温度セン
サと、この温度センサにより検知した温度変化に基づい
て、冷凍能力が向上するよう冷凍機のディスプレーサの
運転周波数を制御する制御手段とを設けたことを特徴と
する極低温冷凍機。
(1) After cooling the compressed refrigerant gas using a regenerator,
A cryogenic refrigerator that generates cold by expanding in a low-temperature section includes a temperature sensor that detects the temperature of the low-temperature section, and a system that improves the refrigerating capacity based on the temperature change detected by this temperature sensor. A cryogenic refrigerator characterized by comprising: control means for controlling the operating frequency of a displacer.
(2)前記制御手段は温度が極低温下において下がるに
従って冷凍機のディスプレーサの運転周波数を下げるよ
うに制御することを特徴とする請求項1記載の極低温冷
凍機。
(2) The cryogenic refrigerator according to claim 1, wherein the control means controls the operating frequency of the displacer of the refrigerator to be lowered as the temperature decreases at a cryogenic temperature.
JP1122851A 1989-05-18 1989-05-18 Cryogenic refrigerator Expired - Lifetime JPH0678857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1122851A JPH0678857B2 (en) 1989-05-18 1989-05-18 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1122851A JPH0678857B2 (en) 1989-05-18 1989-05-18 Cryogenic refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5239896A Division JP2567196B2 (en) 1993-09-27 1993-09-27 How to operate a cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH02302563A true JPH02302563A (en) 1990-12-14
JPH0678857B2 JPH0678857B2 (en) 1994-10-05

Family

ID=14846212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1122851A Expired - Lifetime JPH0678857B2 (en) 1989-05-18 1989-05-18 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH0678857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345770A (en) * 1992-01-29 1994-09-13 Mitsubishi Denki Kabushiki Kaisha Low-temperature regenerative type refrigerator
US6532749B2 (en) 1999-09-22 2003-03-18 The Coca-Cola Company Stirling-based heating and cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171359A (en) * 1984-02-16 1985-09-04 ダイキン工業株式会社 Cryogenic refrigerator
JPS63306361A (en) * 1987-06-05 1988-12-14 株式会社日立製作所 Cold accumulator type refrigerator
JPH01114673A (en) * 1987-10-27 1989-05-08 Mitsubishi Electric Corp Cooling machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171359A (en) * 1984-02-16 1985-09-04 ダイキン工業株式会社 Cryogenic refrigerator
JPS63306361A (en) * 1987-06-05 1988-12-14 株式会社日立製作所 Cold accumulator type refrigerator
JPH01114673A (en) * 1987-10-27 1989-05-08 Mitsubishi Electric Corp Cooling machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345770A (en) * 1992-01-29 1994-09-13 Mitsubishi Denki Kabushiki Kaisha Low-temperature regenerative type refrigerator
US5417071A (en) * 1992-01-29 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Low-temperature regenerative type refrigerator
US5471841A (en) * 1992-01-29 1995-12-05 Mitsubishi Denki Kabushiki Kaisha Low-temperature regenerative type refrigerator
US6532749B2 (en) 1999-09-22 2003-03-18 The Coca-Cola Company Stirling-based heating and cooling device

Also Published As

Publication number Publication date
JPH0678857B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US5642623A (en) Gas cycle refrigerator
JP2783112B2 (en) Cryogenic refrigerator
JP2650437B2 (en) Cold storage cryogenic refrigerator
JP2609327B2 (en) refrigerator
JP2831809B2 (en) Cryogenic refrigeration equipment
US4281517A (en) Single stage twin piston cryogenic refrigerator
JPH02302563A (en) Ultra-cryo freezer
JP2567196B2 (en) How to operate a cryogenic refrigerator
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
JP2766341B2 (en) Cryogenic refrigerator
JPH10132405A (en) Cold storage freezer and its operating method
JPH0399162A (en) Cryogenic refrigerator
JP2001330330A (en) Cold-storage freezer utilizing phase difference between pressure fluctuation and position fluctuation and method for controlling the same
JPH08313095A (en) Cold storage type refrigerating machine
JP3284484B2 (en) Refrigeration liquefaction method and apparatus by regenerative refrigerator
JPH11108479A (en) Cold heat storage type refrigerator and its operating method
JP2732686B2 (en) refrigerator
JPH08313094A (en) Cold storage type refrigerator
JP2980461B2 (en) Cryogenic refrigerator
JP2698477B2 (en) Cryogenic refrigerator
JP2549861Y2 (en) Regenerator for cryogenic refrigerator
JPH11257769A (en) Cold storage refrigerating machine
JP2780934B2 (en) Pulse tube refrigerator
JPH11257773A (en) Method of operating regenerative refrigerator and regenerative refrigerator