JPH02301983A - Heater device and power source closing method - Google Patents

Heater device and power source closing method

Info

Publication number
JPH02301983A
JPH02301983A JP12249889A JP12249889A JPH02301983A JP H02301983 A JPH02301983 A JP H02301983A JP 12249889 A JP12249889 A JP 12249889A JP 12249889 A JP12249889 A JP 12249889A JP H02301983 A JPH02301983 A JP H02301983A
Authority
JP
Japan
Prior art keywords
unit
power
temperature
current
heater device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12249889A
Other languages
Japanese (ja)
Inventor
Hidenori Otaka
大高 秀紀
Yuichi Hayashi
祐一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP12249889A priority Critical patent/JPH02301983A/en
Publication of JPH02301983A publication Critical patent/JPH02301983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To reduce consumed electric power at the time of starting current application by providing such a constitution as dividing a PTC heater into a plurality of units and varying the time of power input to each unit to successively start current application to each unit. CONSTITUTION:A PTC heater is divided into six units, and each unit 201, 202, 203, 204, 205, 206 is connected in parallel to a power source. A push button switch 231 for starting the closing magnet 221 of the first unit simultaneously starts the timer control devices 232, 233 of the second and third units, and the time counting is started with the time of starting the current application to the first unit 201 as a standard point. After 3 minutes from the start of current application to the first unit, the timer control device 232 is operated to start current application to the second unit. Similarly, current applications to the third to sixth units are successively started at intervals of 3 minutes.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、PTCヒーターすなわち正の抵抗温度係数を
有し、温度が高くなると共に電気低置及び該ヒーター装
置への電源投入方法に係り、例えば屋根融雪装置、床暖
房装置、道路ヒーティング等の比較的広い面積を加熱、
加温する電気ヒーターとして特に有用なものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a PTC heater, that is, a heater having a positive temperature coefficient of resistance, and relates to an electric low-mounting device and a method for turning on power to the heater device as the temperature increases. For example, heating relatively large areas such as roof snow melting equipment, floor heating equipment, road heating, etc.
It is particularly useful as an electric heater for heating.

(従来の技術) 従来の屋根融雪装置、床暖房装置、道路ヒーティング等
においては、図1に示す通り加熱、加温する面積1の全
体tこわたりPTCヒーターとして機能する発熱体20
所要長をすたれ状等に屈曲する等して布設し、加熱加温
するに当っては、ヌイフチ3を閉じて発熱体1の布設全
長を電源4に接続し、発熱体の全長に対し同時に電流を
流すという構成のものであった。発熱体の布設施工の都
合から発熱体を複数のユニットに分割することがあって
も、電源に対し直列或は並列に接続された複数ユニット
の全部に対して同時に電源が投入され、同時に通電が開
始される構成とされていた。
(Prior Art) In conventional roof snow melting equipment, floor heating equipment, road heating, etc., as shown in FIG.
When laying the required length by bending it into a sagging shape, etc., and heating it, close the cloth 3 and connect the entire length of the heating element 1 to the power source 4, and apply current to the entire length of the heating element at the same time. It was designed to stream. Even if the heating element is divided into multiple units due to the installation of the heating element, all of the units connected in series or parallel to the power source will be powered on at the same time and will not be energized at the same time. It was configured to be started.

(発明が解決しようとする課題) PTCヒーターは温度が高くなると電気抵抗が著しく増
大するので、PTCヒーターへの通電開始時には大きな
電流が流れるが、通電開始後はジュール熱によってヒー
タ一温度が上昇し、電気抵抗が増大するので、通電々流
は急速に減少する。すなわちPTCヒーターにおいては
通w!、開始時には大きな電流が流れ、消費電力が大き
いが、定常通電時には通電電流、従って消費電力は著し
く減少し、通電開始時と定常通電時とでI−i消費電力
に著しい差が生じる。特に屋根融雪装置等を使用する場
合のように周囲温度が低く、通電開始時のヒーターの温
度が低い場合に、この消費電力の差はより大きくなる。
(Problem to be solved by the invention) The electrical resistance of a PTC heater increases significantly as the temperature rises, so a large current flows when the PTC heater starts to be energized, but after the energization starts, the temperature of the heater rises due to Joule heat. , the current carrying current decreases rapidly as the electrical resistance increases. In other words, when it comes to PTC heaters, it's a good idea! , At the start, a large current flows and the power consumption is large, but during steady energization, the current flowing, and hence the power consumption, decreases significantly, and there is a significant difference in I-i power consumption between the start of energization and the steady energization. This difference in power consumption becomes particularly large when the ambient temperature is low and the temperature of the heater at the start of energization is low, such as when using a roof snow melting device or the like.

この様な通電開始時と定常通電時とにおける消費電力の
大きな差のために、従来の屋根融雪装置、床暖房装置、
道路ヒーティング等においては電源機器の容量を定常通
電時に必要とされる容量よりも著しい大きい容量のもの
とすることを余儀なくされ、電源機器類の設備費が高価
Vこなるという不利益があった。また、契約電力も定常
通電時に必要とする電力よりも著しく大きい電力となり
、契約電気料金が高くなる不都合があった。
Due to this large difference in power consumption between the start of power supply and steady power supply, conventional roof snow melting equipment, floor heating equipment,
In road heating, etc., the capacity of power equipment has to be significantly larger than that required for steady energization, which has the disadvantage of increasing equipment costs for power equipment. . In addition, the contracted power is significantly larger than the power required during steady energization, resulting in an inconvenience that the contracted electricity bill becomes high.

本発明は、従来のPTCヒーター装置におけるこのよう
な難点を解消することを目的として、簡易な手段により
PTCヒーター装置の通電開始時の消費電力を低減させ
ることンこより通電開始時と定常通電時における消費電
力の差を減少させ、これによって電源機器類の設備費及
び契約電気料金を軽減しようとするものである。
The present invention aims to solve such difficulties in conventional PTC heater devices by reducing the power consumption of the PTC heater device at the time of starting energization by a simple means. The aim is to reduce the difference in power consumption, thereby reducing equipment costs for power supply equipment and contract electricity charges.

(課題を解決するための手段) 上記目的を達成するため1こ、本発明においてはPTC
ヒーターを複数個のユニットに分割し、各ユニット毎に
個別に電流を流し得るように電源に接続すると共に、各
ユニットへの電源投入の時期を各ユニット毎に夫々異々
らせて、各ユ= −/ トに順次に通電を開始する。
(Means for Solving the Problems) In order to achieve the above object, 1. In the present invention, PTC
Divide the heater into multiple units, connect each unit to a power source so that current can flow individually, and turn on power to each unit at different times. = −/ Start applying current to the points in sequence.

これを更に詳細に説明すると、一番目のユニットに電源
が投入されてから例えば3分後、すなわち一番目のユニ
ットのPTCヒーターの温度が上昇し、当該ユニットに
流れる電流が充分に減少した後に、次ぎの二番目のユニ
ットに電源が投入される。二番目のユニットに電源が投
入されてから例えば3分後、二番目のユニットのPTC
ヒーターの温度が上昇し当該ユニットに流れる電流が充
分に減少した後に、次ぎの三番目のユニットに電源が投
入される。以下同様にして順次に他の各ユニットに電源
が投入される。
To explain this in more detail, for example, 3 minutes after the power is turned on to the first unit, that is, after the temperature of the PTC heater of the first unit has risen and the current flowing through the unit has decreased sufficiently, Power is then applied to the second unit. For example, 3 minutes after the second unit is powered on, the second unit's PTC
After the temperature of the heater rises and the current flowing through the unit is sufficiently reduced, power is turned on to the next third unit. Thereafter, power is sequentially applied to each of the other units in the same manner.

このように各ユニットに電源投入する時期を各ユニット
毎に夫々異ならせて各ユニットに順次に通電を開始させ
ることにより、後記の実施例にも示す通り、通電電流の
最大値を、従って消費電力の最大値を著しく低減させる
ことができる。
In this way, by changing the timing for turning on power to each unit and starting energizing each unit in sequence, the maximum value of the energized current and, therefore, the power consumption can be adjusted as shown in the example below. The maximum value of can be significantly reduced.

ユニット分割数及び各ユニットへの電源投入の時間間隔
は、PTCヒーターをとりまく周囲条件、屋根の融雪装
置の場合で言えば、気温、風速、雪の温度及び量、雪と
PTCヒーターとの接触状態、PTCヒーターの取付場
所等により適宜選定する必要があるが、PTCヒーター
をとりまく周囲条件が厳しくヒーターの温度上昇が遅い
場合には電源投入の時間間隔を長くすればよく、逆の条
件の場合は電源投入の時間間隔を短縮すればよい。PT
Cヒーターのユニット分割数も周囲状況によって変わり
、条件の厳しい場所では分割数を多く、その逆の場所で
は分割数を少なくすればよい。通常、ユニットの分割数
は2〜10、より好ましくは4〜6、電源投入の時間間
隔は0.5〜30分の範囲に選ぶ。
The number of divided units and the time interval between turning on the power to each unit are determined by the ambient conditions surrounding the PTC heater, in the case of a snow melting device on a roof, the air temperature, wind speed, snow temperature and amount, and the state of contact between the snow and the PTC heater. , it is necessary to make an appropriate selection depending on the installation location of the PTC heater, etc., but if the ambient conditions surrounding the PTC heater are severe and the temperature rise of the heater is slow, it is sufficient to lengthen the time interval between power-on, and in the opposite case, What is necessary is to shorten the time interval between power-on. P.T.
The number of unit divisions of the C heater also changes depending on the surrounding conditions, and in places with severe conditions, the number of divisions can be increased, and in the opposite place, the number of divisions can be decreased. Usually, the number of divided units is selected to be 2 to 10, more preferably 4 to 6, and the power-on time interval is selected to be in the range of 0.5 to 30 minutes.

次ユニットに通電を開始する時期を、上記したように、
時間を基準にして定める場合には、手動により電源投入
をしてもよく、また次ユニヮトと電源を接続するスイッ
チの閉成をタイマーで制御し自動的に行うようにしても
よい。
As mentioned above, when to start energizing the next unit,
If the time is determined based on time, the power may be turned on manually, or a timer may be used to control the closing of the switch that connects the next unit to the power source.

次ユニットに電源投入をする時期の制御は先ユニットの
PTCヒーターの温度或はこれに流れる電流の大きさを
検出して行うこともてきる。
The timing for turning on the power to the next unit can also be controlled by detecting the temperature of the PTC heater of the previous unit or the magnitude of the current flowing through it.

すなわち各ユニットのPTCヒーターに温度センサを取
付け、電源を投入し通電を開始したユニットのPTCヒ
ーターの温度が所定温度(例えば10〜30℃の範囲に
選ふ)に達したことを温度センサが検出したときに、次
ユニットに電源を投入する。又は、各ユニットのPTC
ヒーターに電流センサを取付け、電源を投入し通電ヲ開
始したユニットのPTCヒーターの通電電流が所定の電
流値(例えば、通電開始時の電流値の90〜60%の電
流値の範囲に選ぶ)に減少したことを電流センサが検出
したときに、次ユニットに電源を投入し通電を開始する
In other words, a temperature sensor is attached to the PTC heater of each unit, and the temperature sensor detects when the temperature of the PTC heater of the unit whose power is turned on and electricity has started reaches a predetermined temperature (for example, selected in the range of 10 to 30 degrees Celsius). When this happens, turn on the power to the next unit. Or PTC of each unit
Attach a current sensor to the heater, turn on the power, and make sure that the energizing current of the PTC heater of the unit that starts energizing reaches a predetermined current value (for example, choose a current value in the range of 90 to 60% of the current value when energizing starts). When the current sensor detects that the current has decreased, it turns on the power to the next unit and starts energizing it.

(実施例) 以下この発明の実施例を図面を参照しながら説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

(第1実施例) この実施例は、屋根融雪装置を対象としたもので、図2
において201.202.203.204.205及び
206は屋根(図示せず)上に布設されたPTCヒータ
ーのユニットで電源に対して並列に接続されている。図
では図を簡単にするため第1〜第3ユニツトについてだ
け詳しく示し、第4〜6ユニツトについては詳細を省略
している。211.212.213は夫々第1ユニット
201.第2ユニーt ) 202、第3ユニツト20
3を電圧100vの電源24に接続するスイッチで、こ
れらスイツ翫、夫々。
(First Example) This example is aimed at a roof snow melting device, and is shown in Figure 2.
201, 202, 203, 204, 205 and 206 are PTC heater units installed on the roof (not shown) and connected in parallel to the power supply. In the figure, in order to simplify the drawing, only the first to third units are shown in detail, and the details of the fourth to sixth units are omitted. 211.212.213 are the first unit 201.213, respectively. 2nd unit t) 202, 3rd unit 20
3 to a power supply 24 with a voltage of 100V, respectively.

マグネッ)221,222及び223の作動により閉成
されるようになされている。231は第1ユニツトの閉
成用マグネット221を起動させる押はたんスイッチで
あるが、これは同時に第2ユニツト及び第3ユニツトの
タイマー制御装置232及び233を起動させ、第1ユ
ニブト201に通電が開始された時刻を基準点として時
間のカウントを開始させる。はたんスイッチ231が押
され、スイッチ211が閉じられて第1ユニツトに通電
が開始されてから3分後にタイマー制御装置232が作
動してマグネット222を作動させ、スイッチ212を
閉じ、第2ユニツトに通電が開始される。更に、第1ユ
ニツトtこ通電が開始されてから6分後(すなわち第2
ユニツトに通電が開始されてから3分後)にタイマー制
御装置233が作動し、マグネット223を作動させ、
スイッチ213を閉じて@3ユニットに通電が開始され
る。以下同様にして3分間の時間間隔て第4、第5、第
6ユニツトに順次通電が開始される。各ユニットばPT
Cヒーターとして機能する発熱体を図示のようにすだれ
状に屈曲して配設して成り、該発熱体は導体断面積AW
G18(0,82簡2)の平行2芯すずめつき銅N、極
間に照射架橋導電性ポリマー(ヒーター素子)を配し更
にその外周に熱可ン性プラスチック内部ジャケット金属
編組、熱可ソ性プラスチックエラストマ外部ジャケット
を設けたもので、周囲温度を0℃で単位長(1m)当り
20Wの出力(1源電圧100Vの場合)を有している
。この発熱体がユニット、従って屋根の単位面積当り約
10m配設されるように、すたれ状に屈曲布設されてい
る。
The opening is closed by the operation of magnets 221, 222 and 223. 231 is a push-button switch that activates the closing magnet 221 of the first unit, but this also activates the timer control devices 232 and 233 of the second and third units, and the first unit 201 is energized. Start counting time using the start time as a reference point. Three minutes after the button switch 231 is pressed and the switch 211 is closed to start energizing the first unit, the timer control device 232 is activated to activate the magnet 222, close the switch 212, and turn on the second unit. Power supply starts. Furthermore, 6 minutes after energization of the first unit (i.e., the second
3 minutes after the unit is energized), the timer control device 233 is activated and the magnet 223 is activated.
The switch 213 is closed and power supply to the @3 unit is started. Thereafter, energization is sequentially started to the fourth, fifth, and sixth units at a time interval of 3 minutes in the same manner. Each unit PT
A heating element functioning as a C heater is arranged bent in a blind shape as shown in the figure, and the heating element has a conductor cross-sectional area AW.
G18 (0,82 simple 2) parallel 2-core tinned copper N, irradiated cross-linked conductive polymer (heater element) arranged between the poles, thermoplastic inner jacket metal braided around the outer periphery, thermoplastic It is equipped with a plastic elastomer outer jacket and has an output of 20 W per unit length (1 m) at an ambient temperature of 0° C. (when one source voltage is 100 V). This heating element is bent and laid in a slanted manner so that it is disposed about 10 m per unit area, that is, per unit area of the roof.

従ってユニットの単位面積当りの消費電力は周囲温度が
0℃の場合1こ200W(電源電圧100Vの場合)と
なる。
Therefore, the power consumption per unit area of the unit is 1 to 200 W when the ambient temperature is 0° C. (when the power supply voltage is 100 V).

PTCヒーターが6ユニツトに分割され、各ユニットに
3分の時間間隔て順次に電源が投入され通電が開始され
る本実施例においては、第6ユニツトに通電が開始され
たときPこ、全電流すなわち電源室fifLは最大とな
る。実験結果から計算すると、この最大電流は6ユニツ
トに同時に電源を投入し、通電を開始したときの全電流
の58%に過ぎず、本発明による最大電流の低減効果は
極めて顕著である。なお、この実施例で第6ユニツトに
通電を開始したときの全電流(最大電流)と定常通電時
の全電流との比は118倍に過きす、これに対して6ユ
ニツト全部に同時に電源を投入したときの全電流と定常
通電時の全電流との比は約2倍にも達する。
In this embodiment, the PTC heater is divided into 6 units, and each unit is turned on and energized in sequence at a time interval of 3 minutes. That is, the power supply room fifL becomes maximum. Calculating from the experimental results, this maximum current is only 58% of the total current when power is turned on to six units at the same time and power supply starts, and the effect of reducing the maximum current by the present invention is extremely remarkable. In addition, in this example, the ratio of the total current (maximum current) when power is started to the sixth unit and the total current during steady power supply is 118 times, whereas when power is supplied to all six units at the same time. The ratio of the total current when turned on and the total current during steady energization reaches about twice.

この実施例において各ユニットへの通電開始の時間間隔
を2分間に短縮すると第6ユニツトに電源を投入したと
きの全電流(最大電流)は定常通電時の全電流の125
倍となり、6ユニツト全部に同時に通電開始したときの
全電流の63%となる。逆に、各ユニットへの通電開始
時間を4分以上に延長しても、上記の時間間隔3分間の
場合に較べてあまり変りがなかった。
In this example, if the time interval for starting energization to each unit is shortened to 2 minutes, the total current (maximum current) when power is applied to the 6th unit is 125% of the total current during steady energization.
This is doubled and becomes 63% of the total current when all six units start energizing at the same time. On the other hand, even if the time to start energizing each unit was extended to 4 minutes or more, there was not much difference compared to the case where the time interval was 3 minutes.

なお、これらの実験は気温−5〜−1℃、風速0〜4m
/秒、積雪30cmの状況下で行ったものである。
These experiments were carried out at a temperature of -5 to -1℃ and a wind speed of 0 to 4m.
/second under conditions of 30 cm of snow.

(第2実施例) PTCヒーターを4ユニツトに分割したことだけが第1
実施例と異なる。各ユニットへの通電開始の時間間隔を
3分間にした場合、第4ユニツトに通電を開始したとき
の全電流は定常通電時の全電流の132倍となり、4ユ
ニ・リド全部に同時に通電開始したときの全電流の66
%となった。
(Second example) The first advantage is that the PTC heater is divided into four units.
This is different from the example. When the time interval between the start of energization to each unit was set to 3 minutes, the total current when energization started to the 4th unit was 132 times the total current during steady energization, and energization started to be applied to all 4 units at the same time. 66 of the total current when
%.

(第3実施例) この実施例の対象は、床暖房装置であり、PTCヒータ
ーを4二二・ソトに分割シタ。次ユニットへの通電開始
時期の制御は第1実施例及び第2実施例と異り、各ユニ
ットのPTCヒーターに取付けた温度センサが検出した
温度により行なった。この制御はこの実施例でVi温度
センサが所定温度30℃を検出したときに、同センサが
次ユニットのスイ・ソチを閉成するマグネットを作動さ
せる制御装置に向けて信号を発するように構成したが、
この代りに温度センサが検出する温度信号を上記制御装
置に送り、同制御装置が所定温度を検出したときにマグ
ネットを作動させるようにしてもよい。
(Third Embodiment) The object of this embodiment is a floor heating system, in which a PTC heater is divided into 422 parts. Unlike the first and second embodiments, the timing to start energizing the next unit was controlled based on the temperature detected by a temperature sensor attached to the PTC heater of each unit. In this embodiment, this control is configured such that when the Vi temperature sensor detects a predetermined temperature of 30°C, the sensor issues a signal to the control device that activates the magnet that closes the sui-sochi of the next unit. but,
Alternatively, the temperature signal detected by the temperature sensor may be sent to the control device, and the magnet may be activated when the control device detects a predetermined temperature.

この実施例の場合も第4ユニツトに通電が開始されたと
きが最大電流となるが、この711流の値は定常通電時
における全電流の1.27倍であり、4ユニット全部に
同時に通電を開始したときの全電流の79係であった。
In the case of this example as well, the maximum current occurs when the 4th unit starts to be energized, but the value of this 711 current is 1.27 times the total current during steady energization, and all 4 units are energized at the same time. The total current when I started was 79.

なお、この実施例における実験は室温が10℃(床面温
度も同じ)のときに通電を開始したものである。
Note that in the experiment in this example, electricity supply was started when the room temperature was 10° C. (the floor surface temperature was also the same).

(効果) 上記の実施例の説明から明らかな通り、本発明によれば
PTCヒーター装置の通電開始時の電流、従って消費電
力を著しく低減でき、定常通電時における消費電力との
差を著しく低減できる。従って電源機器の容量を低減で
き、設備費用を軽減することができ、また契約電気料金
も安くすることができる。
(Effects) As is clear from the description of the above embodiments, according to the present invention, the current at the start of energization of the PTC heater device, and therefore the power consumption, can be significantly reduced, and the difference from the power consumption during steady energization can be significantly reduced. . Therefore, the capacity of power supply equipment can be reduced, equipment costs can be reduced, and contract electricity charges can also be reduced.

なお、電源電圧を100vから200Vに変えた場合、
この効果は更に著しくなる。
In addition, when changing the power supply voltage from 100V to 200V,
This effect becomes even more pronounced.

【図面の簡単な説明】[Brief explanation of drawings]

図1は従来のPTCヒーター装置の説明図であり、図2
は本発明によるPTCヒーター装置(屋根融雪装置)の
説明図である。 図1において 1:加熱面積、2:PTCヒーターとして機能する発熱
体、3:スイッチ、4:電源図2において 201.202.203.204.205及び206:
PTCヒーターのユニット211.212及び213:
スイッチ、221.222及び223:マグネッ)、2
31:押はたんスイッチ、232及び233:タイマー
制御装置24°電源 図1および2は線状発熱体の図であるが、面状発熱体に
関しても同様に適用できる。
Figure 1 is an explanatory diagram of a conventional PTC heater device, and Figure 2
1 is an explanatory diagram of a PTC heater device (roof snow melting device) according to the present invention. In Figure 1, 1: heating area, 2: heating element that functions as a PTC heater, 3: switch, 4: power supply In diagram 2, 201.202.203.204.205 and 206:
PTC heater units 211, 212 and 213:
Switch, 221.222 and 223: magnet), 2
31: Push-button switch, 232 and 233: Timer control device 24° power supply Although Figures 1 and 2 are diagrams of linear heating elements, the same applies to sheet heating elements.

Claims (8)

【特許請求の範囲】[Claims] (1)PTCヒーターを複数のユニットに分割し、各ユ
ニット毎に電源投入時期を異ならせてユニット毎に順次
に電源を投入することを特徴とするヒーター装置の電源
投入方法
(1) A power-on method for a heater device characterized by dividing the PTC heater into multiple units, changing the power-on timing for each unit, and sequentially turning on the power to each unit.
(2)PTCヒーターが複数のユニットに分割され、各
ユニット毎に電源投入時期を異ならせてユニット毎に順
次に電源を投入する電源投入装置を備えていることを特
徴とするヒーター装置
(2) A heater device characterized in that the PTC heater is divided into a plurality of units and is equipped with a power-on device that sequentially turns on the power to each unit with different power-on times for each unit.
(3)ユニットに電源が投入された時から所定時間経過
後に次ぎのユニットの電源が投入されることを特徴とす
る請求範囲1記載のヒーター装置の電源投入方法
(3) A method for powering on a heater device according to claim 1, characterized in that the power to the next unit is turned on after a predetermined period of time has elapsed since the power was turned on to the unit.
(4)ユニットの電源投入時期を制御するタイマー装置
を備えていることを特徴とする請求範囲2記載のヒータ
ー装置
(4) The heater device according to claim 2, further comprising a timer device that controls when the unit is powered on.
(5)電源が投入されたユニットの温度が所定の温度以
上に上昇したときに次ぎのユニットの電源が投入される
ことを特徴とする請求範囲1記載のヒーター装置の電源
投入方法
(5) A method for powering on a heater device according to claim 1, characterized in that when the temperature of the unit to which power is turned on rises above a predetermined temperature, the power to the next unit is turned on.
(6)ユニット毎に設けられ、当該ユニットの温度を検
知する温度センサーと、該温度センサーの温度検出信号
に基づき次ぎのユニットへの電源投入時期を制御する制
御手段とを備え、該センサーにより検出されたユニット
の温度が所定温度になつたときに次ぎのユニットの電源
が投入されるようになされていることを特徴とする請求
範囲2記載のヒーター装置
(6) Each unit is provided with a temperature sensor that detects the temperature of the unit, and a control means that controls when to turn on the power to the next unit based on the temperature detection signal of the temperature sensor, and the temperature is detected by the sensor. 3. The heater device according to claim 2, wherein when the temperature of the heated unit reaches a predetermined temperature, the power of the next unit is turned on.
(7)電源が投入されたユニットの通電電流が所定の通
電電流以下に下つたときに次ぎのユニットの電源が投入
される請求範囲1記載のヒーター装置の電源投入方法
(7) The method for powering on a heater device according to claim 1, wherein the power to the next unit is turned on when the current flowing through the unit that has been powered on falls below a predetermined current flowing current.
(8)ユニット毎に設けられ、当該ユニットの通電電流
の大きさを測定する通電電流測定手段と、該通電電流測
定手段の電流値検出信号により次ぎのユニットの電源投
入時期を制御する制御手段とを備え、該通電電流測定手
段により検出されるユニットの通電電流が所定値以下に
下つたときに次ぎのユニットの電源が投入するようにな
されていることを特徴とする請求範囲2記載のヒーター
装置
(8) An energizing current measuring means provided for each unit and measuring the magnitude of the energizing current of the unit, and a control means controlling the timing of powering on the next unit based on the current value detection signal of the energizing current measuring means. The heater device according to claim 2, wherein the heater device is configured such that when the current flowing through the unit detected by the current measuring means falls below a predetermined value, the power to the next unit is turned on.
JP12249889A 1989-05-16 1989-05-16 Heater device and power source closing method Pending JPH02301983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12249889A JPH02301983A (en) 1989-05-16 1989-05-16 Heater device and power source closing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12249889A JPH02301983A (en) 1989-05-16 1989-05-16 Heater device and power source closing method

Publications (1)

Publication Number Publication Date
JPH02301983A true JPH02301983A (en) 1990-12-14

Family

ID=14837333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12249889A Pending JPH02301983A (en) 1989-05-16 1989-05-16 Heater device and power source closing method

Country Status (1)

Country Link
JP (1) JPH02301983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018918A1 (en) * 2011-08-04 2013-02-07 三菱重工業株式会社 Heater control device, control method, and control program
US10500921B2 (en) 2011-08-16 2019-12-10 Hanon Systems Electric heater apparatus for electric vehicle and method of controlling same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638615A (en) * 1979-09-05 1981-04-13 Toshiba Corp Control unit for hot-water heater for car
JPS609084A (en) * 1983-06-27 1985-01-18 松下電器産業株式会社 Room heater of electric carpet or like
JPS6217090B2 (en) * 1979-07-19 1987-04-16 Honda Motor Co Ltd
JPS62285386A (en) * 1986-06-03 1987-12-11 コ−ア株式会社 Current application of p.t.c. heating unit heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217090B2 (en) * 1979-07-19 1987-04-16 Honda Motor Co Ltd
JPS5638615A (en) * 1979-09-05 1981-04-13 Toshiba Corp Control unit for hot-water heater for car
JPS609084A (en) * 1983-06-27 1985-01-18 松下電器産業株式会社 Room heater of electric carpet or like
JPS62285386A (en) * 1986-06-03 1987-12-11 コ−ア株式会社 Current application of p.t.c. heating unit heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018918A1 (en) * 2011-08-04 2013-02-07 三菱重工業株式会社 Heater control device, control method, and control program
JP2013037812A (en) * 2011-08-04 2013-02-21 Mitsubishi Heavy Ind Ltd Heater control device, its controlling method, and its control program
CN103493583A (en) * 2011-08-04 2014-01-01 三菱重工汽车空调系统株式会社 Heater control device, control method, and control program
US9351343B2 (en) 2011-08-04 2016-05-24 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Heater control device, and control method and control program for heater control device
US10500921B2 (en) 2011-08-16 2019-12-10 Hanon Systems Electric heater apparatus for electric vehicle and method of controlling same

Similar Documents

Publication Publication Date Title
US5692676A (en) Method and apparatus for saving energy in circulating hot water heating systems
US4378486A (en) Temperature controlled timer
US4423765A (en) Apparatus for reducing heater and air conditioning energy consumption
JPH02301983A (en) Heater device and power source closing method
FI92961C (en) Device for room temperature control
JP2688628B2 (en) Heating equipment
US5162700A (en) Controllable ballast and operating system utilizing same
JP4344656B2 (en) Method for supplying power to heater for floor heating and current control device for carrying out the method
GB2048525A (en) Timed control circuit for electric heater
JP3273147B2 (en) Snow melting system
JPH0127591Y2 (en)
JPS63231894A (en) Divided heat-sensitive panel heater
JPH09148048A (en) Sheet-form electric heater
JPS6222103A (en) Temperature control circuit for heater
JP3529166B2 (en) Heater load connection switching device
JP3456097B2 (en) Electronics
JPH0837994A (en) Temperature controller for aquarium fish
KR940002509Y1 (en) Thermister controlling circuit of microwave oven
JPS5578311A (en) Temperature control unit
JP3505933B2 (en) Electronics
JPH0514137Y2 (en)
JP2003059623A (en) Current control method, and current control device for practicing current control method
CN114510093A (en) Electric heating device integrating thermoelectromotive force and electric heating function and control method
JPH04555Y2 (en)
JP2862652B2 (en) Electrical equipment