JPH02301809A - Picture processor for mobile work machine - Google Patents

Picture processor for mobile work machine

Info

Publication number
JPH02301809A
JPH02301809A JP1123546A JP12354689A JPH02301809A JP H02301809 A JPH02301809 A JP H02301809A JP 1123546 A JP1123546 A JP 1123546A JP 12354689 A JP12354689 A JP 12354689A JP H02301809 A JPH02301809 A JP H02301809A
Authority
JP
Japan
Prior art keywords
edge
edge line
approximate
point
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1123546A
Other languages
Japanese (ja)
Other versions
JP2855339B2 (en
Inventor
Tetsuya Inada
稲田 哲哉
Wataru Nakagawa
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP1123546A priority Critical patent/JP2855339B2/en
Publication of JPH02301809A publication Critical patent/JPH02301809A/en
Application granted granted Critical
Publication of JP2855339B2 publication Critical patent/JP2855339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the processing time of the processor by establishing the specific range of one edge line based on converted values of candidate points of the corner of one side edge and specific values of another approximate edge line and detecting the specific value of the edge line. CONSTITUTION:During the course of Hough transformation process, specific values rho1 and theta1 of one approximate edge line A1 are detected based on the candidate points xn and yn of one side having high sharpness. Then, by establishing the specific range of another edge line A2 based on the converted value S of a corner candidate point xc and yc of the one side edge and the specific values rho1 and theta1, the specific values rho2 and theta2 of the edge line A2 are detected. Therefore, specification of an approximate edge line by performing Hough transformation on each edge candidate point can be performed surely at a high speed, resulting in the improvement in throughput.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は圃場を撮像するカメラ及びこの画像を処理する
画像処理装置を搭載して機体を無人自動走行させるコン
バインなど移動作業機の画像処理装置に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to an image processing device for a mobile work machine such as a combine harvester, which is equipped with a camera that images a field and an image processing device that processes this image, and which allows the machine to travel unmanned and automatically. Regarding.

「従来の技術」 進行方向に対し第5図に示すような画像情報がカメラよ
り得られた場合、稲の栽培領域と非栽培領域との境界エ
ツジラインの検出時にあっては、垂直エツジラインも水
平エツジラインの場合も例えば2値化後の画面の濃淡の
変化状況の大きいところを走査検索することによってそ
の検出を行っている。
``Prior art'' When image information as shown in Fig. 5 is obtained from a camera in the direction of movement, when detecting the boundary edge line between the rice cultivation area and the non-cultivation area, the vertical edge line also becomes the horizontal edge line. In the case of , for example, detection is performed by scanning and searching for a portion of the screen after binarization where the change in shading is large.

「発明が解決しようとする問題点」 しかし乍ら、この場合垂直エツジラインは境界部での濃
淡が明確に投影されて比較的このラインの検出も容易に
行われるが、水平エツジラインは左右稲列の隔たりなど
もあって稲の一つ一つが画像データとして得られる状態
となって、水平エツジラインの検出を困難なものとさせ
ていた。
"Problem to be Solved by the Invention" However, in this case, the vertical edge lines are clearly projected with shading at the boundary, and detection of these lines is relatively easy, but the horizontal edge lines are between the left and right rice rows. Due to such factors as gaps, each individual rice plant was obtained as image data, making it difficult to detect horizontal edge lines.

[問題点を解決するための手段」 したがって本発明は、撮像された圃場画面を走査して作
物領域と非作物領域との境界エツジ候補点を検出すると
共に、これら候補点をハウ変換することにより交差する
2本の近似エツジラインを特定するようにした作物領域
エツジ検出手段にあって、前記ハウ変換処理時において
鮮鋭度の高い一例のエツジ候補点に基づき一方の近似エ
ツジラインの特定値を検出すると共に、この一側端のコ
ーナ候補点の変換値及び前記特定値に基づき他方のエツ
ジラインの特定範囲を制定し、その特定値の検出を行う
ように構成したものである。
[Means for Solving the Problems] Accordingly, the present invention scans an imaged field screen to detect boundary edge candidate points between crop areas and non-crop areas, and also performs Howe transformation on these candidate points. The crop area edge detection means is configured to identify two intersecting approximate edge lines, which detects a specific value of one of the approximate edge lines based on an example edge candidate point having a high degree of sharpness during the Howe transformation process; , a specific range of the other edge line is established based on the converted value of the corner candidate point at one side edge and the specific value, and the specific value is detected.

「作 用」 而して本発明によれば、ハウ変換での極座標のp−θ平
面上での処理時にあっては、鮮鋭度の高い一方のエツジ
ラインが特定されることによって、ρ−θ平面上で1本
の正弦曲線で表わされるコーナ候補点と、交差する2本
のエツジラインのコーナ角度とからコーナ点を通るもう
一方のエツジライン(ρ−θ平面では曲線の交点)の大
まかな特定を可能にできて、このエツジ候補点をハウ変
換させてエツジラインを特定する実際の処理作業を犬1
]に簡単なものとさせてこの処理時間で短縮化な図るこ
とができるものである。
"Function" According to the present invention, when processing polar coordinates on the p-θ plane in Howe transformation, one edge line with high sharpness is identified, so that the polar coordinates are processed on the p-θ plane. From the corner candidate point represented by one sine curve above and the corner angle of the two intersecting edge lines, it is possible to roughly identify the other edge line (the intersection of the curves on the ρ-θ plane) that passes through the corner point. The actual processing work of performing Howe transformation on these edge candidate points and identifying edge lines is performed by Dog 1.
] The processing time can be shortened by simplifying the process.

「実施例」 以下、本発明の実施例を図面に基づいて詳述する。第1
図は制御回路図、第2図はコンバインの全体側面図、第
3図は同平面図であり、図中(1)は走行うローラ(2
)をトラックフレーム(3)に装備する機台、(4)は
軸流式のスクリュ形扱胴(5)及び選別機構(6)を備
えていて前記機台(11に搭載する脱穀部、(7)は揚
穀筒(8)を介して取出す脱穀部(4)の穀粒を溜める
穀物タンク、(9)は前記脱穀部(4)の下部前方に油
圧シリンダ(10)を介して昇降可能に装設する刈取部
、(11)は運転席(12)及び運転操作部(13)を
備えていて前記穀物タンク(7)の前方に固設させる運
転台、(14)は前記穀物タンク(7)の後方に備えて
いてエンジン(15)を内設するエンジン室、(16)
は前記穀物タンク(7)内の穀粒を取出す穀粒搬出オー
ガである。
"Example" Hereinafter, an example of the present invention will be described in detail based on the drawings. 1st
The figure is a control circuit diagram, Figure 2 is an overall side view of the combine harvester, and Figure 3 is a plan view of the same.
) is mounted on the truck frame (3), (4) is equipped with an axial flow type screw-type handling barrel (5) and a sorting mechanism (6), and a threshing unit (11) is mounted on the machine base (11). 7) is a grain tank that stores the grains of the threshing section (4) which are taken out via the grain lifting cylinder (8); and (9) is a grain tank that can be raised and lowered via a hydraulic cylinder (10) located in front of the lower part of the threshing section (4). (11) is a driver's seat that is equipped with a driver's seat (12) and a driving operation part (13) and is fixed in front of the grain tank (7); (14) is a driver's seat that is installed in the grain tank (7); an engine room (16) provided at the rear of 7) in which the engine (15) is installed;
is a grain delivery auger that takes out grains from the grain tank (7).

そして前記刈取部(9)は、未刈り穀稈を取入れる穀物
刈取ヘッダー(]7)と、該ヘッダー(17)の後部略
中夫に連結させて刈取殻稈を脱穀部(4)に送給するフ
ィーダハウスである供給室(18)によって構成すると
共に、未刈り穀稈掻込み用リール(19)と、往復駆動
型筒1及び第2刈刃(201F21)と、殻稈掻込オー
ガ(22)と、穀稈強制引起装置(23)とを前記穀物
ヘッダー(17)に備え、前記ヘッダー(17)に取込
まれる刈取殻稈を供給室(18)に内設する供給チェン
コンベア(24)を介し脱穀部(4)に送り込んで脱穀
処理するように構成している。
The reaping section (9) is connected to a grain reaping header (7) for receiving uncut grain culms, and to a substantially rear shaft of the header (17) to send the reaped husks to the threshing section (4). It is composed of a supply chamber (18) which is a feeder house for supplying grain, and also includes a reel (19) for scraping in uncut grain culms, a reciprocating drive type cylinder 1 and a second cutting blade (201F21), and a culm scraping auger ( 22) and a forced grain culm pulling device (23) in the grain header (17), and a supply chain conveyor (24) in which the reaped husk culm taken into the header (17) is installed in the supply chamber (18). ) to the threshing section (4) for threshing.

また前記運転操作部(13)の左側位置にカメラ支柱(
25)を立設させ、該支柱(25)上端に走行方向前方
の圃場を撮像するCCD (固体撮像素子)カラーカメ
ラ(26)を設けて、x−y平面のような撮像画面に圃
場の画像情報を得るように構成している。
Additionally, a camera support (
25), and a CCD (solid-state image sensor) color camera (26) for capturing an image of the field in front of the travel direction is installed at the upper end of the support column (25) to display an image of the field on an imaging screen such as an x-y plane. It is configured to obtain information.

さらに、第1図に示す如く前記カメラ(26)で撮像さ
れるカラー画像よりRGB信号(赤色(R)、緑色(G
)、青色(B))により苗を圃場面より分離抽出する2
値化回路(27)と、この2値化されたx−y平面上の
画像に表わされる稲栽培領域(N)と非栽培領域(M)
との境界線である垂直及び水平エツジライン(a、)(
C2)をハウ(Hough)変換し、極座標のρ−θ平
面の正弦曲線(ρ= xcosθ+ysinθ)に変換
してこのエツジライン(a、) (C2)の直線近似エ
ツジライン[All (A2)を求めると共に、これら
ライン(A、HA21の交点(C2)を算出する画像処
理回路(28)と、該回路(28)で検出されるライン
(A、)(A2)及び交点(C2)の出力信号に基づい
て左右サイドクラッチの大切を行うサイドクラッチソレ
ノイド(291(301を操作し機体の自動操向を行わ
しめる中央演算装置である制御回路(31)と、機体の
操向量を検出する操向量センサ(32)と、機体の走行
停止及び走行速度の変速を行う走行変速機構(33)と
を備える。
Furthermore, as shown in FIG. 1, RGB signals (red (R), green (G)
) and blue (B)) to separate and extract seedlings from the field scene 2
A digitization circuit (27) and a rice cultivation area (N) and a non-cultivation area (M) represented in this binarized image on the x-y plane.
Vertical and horizontal edge lines (a, ) (
C2) is transformed into a sine curve (ρ = x cos θ + y sin θ) on the ρ-θ plane of polar coordinates, and the linear approximation edge line [All (A2) of this edge line (a,) (C2) is obtained, Based on the image processing circuit (28) that calculates the intersection (C2) of these lines (A, HA21) and the output signals of the line (A, ) (A2) and the intersection (C2) detected by the circuit (28), A control circuit (31), which is a central processing unit that operates the side clutch solenoid (291 (301) and performs automatic steering of the aircraft, which controls the left and right side clutches, and a steering amount sensor (32) that detects the amount of steering of the aircraft. and a traveling transmission mechanism (33) that stops the aircraft from traveling and changes the traveling speed.

本実施例は上記の如く構成するものにして、第5図乃至
第6図に示す如く圃場内にあって該コンバイン機体を無
人自動走行させる場合、平面視略90度で交差する稲栽
培領域[N)のコーナ(りを正確に検出して機体の方向
姿勢を変換させ、この領域のエツジラインに適正に沿わ
せての走行を行わしめるもので、以下第4図のフローチ
ャートを参照してこのコーナ(C,)を画像処理によっ
て検出する手段を説明する。
This embodiment is configured as described above, and when the combine harvester is operated automatically in a field as shown in FIGS. 5 and 6, the rice cultivation area [ This method accurately detects the corner (N), changes the direction and attitude of the aircraft, and allows the aircraft to travel appropriately along the edge line in this area. A means for detecting (C,) by image processing will be explained.

今ディジタル化された画像が取込まれるとRGB信号レ
ベルのそれぞれの稲抽出条件を満たすときを「1」それ
以外のときを「0」とする2値化処理が行われ、次に第
7図に示す如く画面の上方よりy軸と平行に右側の非栽
培領域(M)より左側の栽培領域(N)に向は実線矢印
の如(走査が行われ、連続したrOJから連続した[I
Jに変化する微分点となる変化点を検索する。つまりこ
の変化点が領域+M+ (N)の境界点となるもので、
画面上を上から下方向に一定の定められた順序に従って
なぞることにより領域(Ml [N)との境界垂直エツ
ジライン(a、)には多数の変化点である垂直エツジ候
補点(xn、yn)が抽出される。そして栽培領域(N
lのコーナ(CI)である垂直エツジライン(a、)の
最下端のコーナ候補点(xc、yj を抽出するとき、
画面の左側よりy軸と平行に下側の領域(Ml より上
側の領域(N)に向は破線矢印の如く走査し、何冊が「
0」から「1」に変わる変化点を前述同様に検索し、領
域(Ml (Nlとの境界水平エツジライン(a2)上
に多数の水平エツジ候補点(Xm、ymlを抽出する。
When the digitized image is now captured, a binarization process is performed in which the RGB signal level satisfies each rice extraction condition as "1" and otherwise as "0", and then as shown in Figure 7. As shown in , the direction from the top of the screen parallel to the y-axis from the non-cultivated area (M) on the right side to the cultivated area (N) on the left side is as shown by the solid arrow (scanning is performed, and continuous [I
Search for a change point that is a differential point that changes to J. In other words, this point of change becomes the boundary point of area +M+ (N),
By tracing the screen from top to bottom in a fixed order, a large number of vertical edge candidate points (xn, yn), which are changing points, are found on the boundary vertical edge line (a,) with the area (Ml[N). is extracted. and the cultivation area (N
When extracting the lowest corner candidate point (xc, yj) of the vertical edge line (a,) which is the corner (CI) of l,
From the left side of the screen, scan the lower area parallel to the y-axis (the area (N) above Ml) as shown by the dashed arrow, and see how many books are displayed.
The point of change from "0" to "1" is searched for in the same manner as described above, and a large number of horizontal edge candidate points (Xm, yml are extracted on the boundary horizontal edge line (a2) with the area (Ml (Nl)).

またこのような走査時にあっては稲の存在する領域は予
め分っているため、稲の存在しない画面の端から走査を
開始し変化点を抽出するとき、その時点で次の列の走査
に移り、これら処理動作を繰り返すことによってこの検
索時での高速化を可能にできるものである。またこの場
合、何冊が連続した「0」から連続した「1」に変化し
てこの「1」が一定数連続するような、この「1」に変
化がないことが確認されたとき次の列の走査に移るもの
であって、非栽培領域(M1走査中に例え刈残し稈や異
物など抽出して「1」に一時的に変化することがあって
もこれらの影響を受けることがないように設けたもので
ある。
In addition, when scanning in this way, the area where rice is present is known in advance, so when scanning starts from the edge of the screen where rice does not exist and extracting a change point, at that point the next column of scanning is started. By repeating these processing operations, it is possible to speed up the search. In this case, how many books change from consecutive "0" to consecutive "1" and when it is confirmed that there is no change in this "1" such as a certain number of consecutive "1"s, the next It moves to row scanning, and is not affected by non-cultivation areas (even if uncut culms or foreign objects are extracted during M1 scanning and the value changes temporarily to "1"). It was set up like this.

そしてこれら各候補点(xn、yn)、 (xc、yj
、(Xm、 ym)が抽出されると、各エツジライン(
a、)(a2)の直線近似を求める如くハウ変換処理が
行われるもので、各候補点(xn、 y、) 、 (X
c、y、)、(x。、ym) i第8図に示す如(、ρ
−θ平面上にρ= xcosθ+ysinθの正弦曲線
で表わされる極座標の幾何学的パラメータに変換する。
And each of these candidate points (xn, yn), (xc, yj
, (Xm, ym) are extracted, each edge line (
Howe transform processing is performed to obtain a linear approximation of (a,) (a2), and each candidate point (xn, y,), (X
c, y, ), (x., ym) i (, ρ
It is converted into a geometric parameter of polar coordinates expressed by a sine curve of ρ=xcosθ+ysinθ on the −θ plane.

即ち、x−y平面とp−e平面との間にあっては、x−
y平面上における直線」二の1点(x+、y+)はρ−
θ平面上で正弦曲線ρ=X + CO8θ+y、sin
θに変換され、x−y平面上における直線ρl :XC
O3θ、 +ysinθ1ばρ−O平面上で1点(ρ1
、θ1)に変換されるもので、したがってx−y平面上
で同一直線上に多数の点がある場合、p−θ平面上でこ
れら点に対応して多数描かれる正弦曲線の一つの交点を
見い出すことによってx−y平面上での直線が求められ
るものである。そしてこの場合x−y平面上での同一直
線上に多数の点がある程、p−〇平面上にあっては多数
の曲線により交点が形成されるもので、該実施例の場合
第6図に示す如く画面に対し垂直なエツジライン(a、
)は比較的に鮮鋭に検出できるが、水平なエツジライン
(a2)は左右稲列の隔たりなどもあって稲殻稈の一つ
一つが画像データとして得られる状態となって鮮鋭さに
欠け、したがって1本の直線上にあるエツジ候補点(X
n、、Yn)、(x、、、、y、、、)をみた場合垂直
エツジライン+aj側の候補点[xn、yn)の数が通
常上回り、p−θ平面上にあっては最も多く曲線が交差
するところの交点(ρ3、θ1)を特定値として見出す
ことにより垂直の近似エツジライン(A1)が求められ
るものである。
That is, between the x-y plane and the p-e plane,
One point (x+, y+) on the straight line "2" on the y plane is ρ-
On the θ plane, the sine curve ρ=X + CO8θ+y, sin
Converted to θ, straight line ρl on the x-y plane :XC
O3θ, +ysinθ1 is one point on the ρ-O plane (ρ1
, θ1). Therefore, if there are many points on the same straight line on the x-y plane, one intersection point of many sinusoids drawn corresponding to these points on the p-θ plane is By finding this, a straight line on the xy plane can be found. In this case, the more points there are on the same straight line on the x-y plane, the more intersections will be formed by a larger number of curves on the p-〇 plane. As shown in the figure, the edge line (a,
) can be detected relatively sharply, but the horizontal edge line (a2) lacks sharpness as each rice husk is obtained as image data due to the distance between the left and right rice rows. Edge candidate points (X
n, , Yn), (x, , , y, ,), the number of candidate points [xn, yn) on the vertical edge line + aj side usually exceeds the number of candidate points [xn, yn), and on the p-θ plane, the number of candidate points [xn, yn) is the highest. An approximate vertical edge line (A1) can be obtained by finding the intersection point (ρ3, θ1) where the two intersect as a specific value.

而してρ−θ平面上には各候補点(xn、ynl、(x
m、y。1. (xc、yjの数に応じただけの曲線群
が得られ、次にこの曲線群のうち最も多く曲線が交差す
る座標点つまり交点(ρ1、θ1)を検索するもので、
△θ1の幅で区切った交点検索用の窓(W、)を−π/
2からπ/2までの間を順次移動させて、上記交点(ρ
1、θ、)を検索する。そしてコーナ候補点fxe、y
jがρ−θ平面上で1本の正弦曲線(S)で表わされる
とき、該曲線(Sl も交点 (p+、θ1)近傍を通
る状態にあるため(点(Xc、yjが近似エツジライン
(A1)上にあるときには曲線(S)は交点(ρ1、θ
1)を通る)、水平の近似エツジライン(A2)を求め
るに際しては、その特定値である交点(ρ2、θ2)は
前記交点 (p+、θ1)に対し略90度(π/2)の
コーナ角度分離された位置の正弦曲線(Sl上かその近
傍部にあると推測され、ρ−θ平面上でのこの交点 (
ρ2、C2)検索時にあっては、θ位置がθ、+−rr
、/2近傍でp位置が曲線fs)に沿う近傍の区域(Z
)内に特定される状態となって、該区域(Z)で最も多
数の曲線が多(交差するところを見つけ出すことによっ
てx−y平面上での水平近似エツジライン(A2)に対
応する交点 (p2、C2)を容易に求めることができ
るものである。したがってこの交点 (ρ2、C2)検
索時にあっては前記Δθ1の幅より小のΔθ2 (Δθ
2〈Δθ暑の幅で区切った交点検索用窓(W2)を区域
(Z)の03内で移動させて、交点 (p2、C2)の
検索幅を一定範囲内に絞っての効率的にして確実な交点
 (ρ2、C2)の検索を可能にできるものである。
Therefore, on the ρ-θ plane, each candidate point (xn, ynl, (x
m,y. 1. (A group of curves corresponding to the number of xc, yj is obtained, and then the coordinate point where the most curves intersect, that is, the intersection point (ρ1, θ1) among this group of curves is searched.
The intersection search window (W,) separated by a width of △θ1 is −π/
2 to π/2, and find the above intersection (ρ
1, θ,). And corner candidate point fxe,y
When j is represented by a single sinusoidal curve (S) on the ρ-θ plane, this curve (Sl also passes near the intersection (p+, θ1), so the point (Xc, yj is the approximate edge line (A1 ), the curve (S) is on the intersection (ρ1, θ
1), and when determining the horizontal approximate edge line (A2), the specific value of the intersection point (ρ2, θ2) is a corner angle of approximately 90 degrees (π/2) with respect to the intersection point (p+, θ1). The sinusoidal curve of the separated position (presumed to be on or near Sl, and this intersection on the ρ-θ plane (
ρ2, C2) At the time of search, the θ position is θ, +-rr
, /2 and the p position follows the curve fs) (Z
), the intersection (p2) corresponding to the horizontal approximate edge line (A2) on the , C2) can be easily found. Therefore, when searching for this intersection (ρ2, C2), Δθ2 (Δθ
2. Move the intersection search window (W2) divided by the width of Δθ heat within zone (Z) 03 to efficiently narrow down the search width for the intersection (p2, C2) within a certain range. This makes it possible to reliably search for the intersection (ρ2, C2).

そして第8図に示す如(、これら交点(pl、θI)、
(ρ2、C2)が検索されると、ρ+ ”XCO3θ、
+ysinθ8、p 2=xcosθ2+ysinθ2
の関係式よりx−y平面において2本の近似エツジライ
ン(A1)(A2)が特定され、これらライン(AI)
(A2)から求められる交点が栽培領域(Nl での近
似エツジラインコーナ点(C2)となり、該コーナ点(
C2)の検出後にあってはこの検出値に基づいて前記ク
ラッチソレノイド(29) (30)が適宜操作され、
機体の操向制御が行われるものである。
And as shown in Fig. 8 (, these intersections (pl, θI),
When (ρ2, C2) is searched, ρ+”XCO3θ,
+ysinθ8, p2=xcosθ2+ysinθ2
Two approximate edge lines (A1) (A2) are specified in the x-y plane from the relational expression, and these lines (AI)
The intersection obtained from (A2) becomes the approximate edge line corner point (C2) in the cultivation area (Nl), and the corner point (
After detection of C2), the clutch solenoid (29) (30) is operated as appropriate based on this detected value,
This controls the steering of the aircraft.

「発明の効果」 以上実施例からも明らかなように本発明は、撮像された
圃場画面を走査して作物領域(Nl と非作物領域FM
)との境界エツジ候補点(xn、yN)、(Xm、 y
m)を検出すると共に、これら候補点(Xn、3’n)
、(xm、ym)をハウ変換することにより交差する2
本の近似エツジライン(A、l (A21を特定するよ
うにした作物領域エツジ検出手段にあって、前記ハウ変
換処理時において鮮鋭度の高い一側のエツジ候補点(X
n、yn)に基づき一方の近似エツジライン(A1)の
特定値(pl、θI)を検出すると共に、この一側端の
コーナ候補点(xc、yelの変換値fsl及び前記特
定値(ρ1、pl)に基づき他方のエツジライン(A2
)の特定範囲を制定し、その特定値 (ρ2、C2)の
検出を行うものであるから、各エツジ候補点をハウ変換
させての近似エツジラインの特定が高速且つ確実に行え
て処理能力を向上させることができるなど顕著な効果を
奏する。
"Effects of the Invention" As is clear from the above embodiments, the present invention scans an imaged field screen to
), boundary edge candidate points (xn, yN), (Xm, y
m) and detect these candidate points (Xn, 3'n)
, (xm, ym) intersect by Howe transform 2
In the crop area edge detecting means configured to identify the approximate edge line (A, l (A21) of the book, one edge candidate point (X
A specific value (pl, θI) of one approximate edge line (A1) is detected based on the approximate edge line (A1), and a converted value fsl of the corner candidate point (xc, yel) of this one side edge and the specific value (ρ1, pl ) based on the other edge line (A2
), and its specific value (ρ2, C2) is detected. Therefore, the approximate edge line can be identified quickly and reliably by Howe-transforming each edge candidate point, improving processing capacity. It has remarkable effects, such as being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は制御回路図、第2図はコンバインの全体側面図
、第3図は同平面図、第4図はフローチャート、第5図
は作業説明図、第6図は撮像画面の説明図、第7図はエ
ツジ候補点の説明図、第8図はハウ変換座標における説
明図、第9図は近似エツジラインの説明図である。 (A、) (A2)・・・ 近似エツジライン(M)・
・・ 非作物領域
Fig. 1 is a control circuit diagram, Fig. 2 is an overall side view of the combine, Fig. 3 is a plan view thereof, Fig. 4 is a flowchart, Fig. 5 is an explanatory diagram of work, Fig. 6 is an explanatory diagram of an imaging screen, FIG. 7 is an explanatory diagram of edge candidate points, FIG. 8 is an explanatory diagram of Howe transform coordinates, and FIG. 9 is an explanatory diagram of approximate edge lines. (A,) (A2)... Approximate edge line (M)
・・・ Non-crop area

Claims (1)

【特許請求の範囲】[Claims] 撮像された圃場画面を走査して作物領域と非作物領域と
の境界エッジ候補点を検出すると共に、これら候補点を
ハウ変換することにより交差する2本の近似エッジライ
ンを特定するようにした作物領域エッジ検出手段にあっ
て、前記ハウ変換処理時において鮮鋭度の高い一側のエ
ッジ候補点に基づき一方の近似エッジラインの特定値を
検出すると共に、この一側端のコーナ候補点の変換値及
び前記特定値に基づき他方のエッジラインの特定範囲を
制定し、その特定値の検出を行うように構成したことを
特徴とする移動作業機の画像処理装置。
A crop that scans the imaged field screen to detect boundary edge candidate points between crop areas and non-crop areas, and also identifies two intersecting approximate edge lines by performing Howe transformation on these candidate points. The area edge detection means detects a specific value of one approximate edge line based on the edge candidate point on one side having a high degree of sharpness during the Howe transformation process, and also detects a converted value of the corner candidate point at the edge of the one side. An image processing device for a mobile work machine, characterized in that the specific range of the other edge line is established based on the specific value and the specific value is detected.
JP1123546A 1989-05-17 1989-05-17 Combine Expired - Fee Related JP2855339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123546A JP2855339B2 (en) 1989-05-17 1989-05-17 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123546A JP2855339B2 (en) 1989-05-17 1989-05-17 Combine

Publications (2)

Publication Number Publication Date
JPH02301809A true JPH02301809A (en) 1990-12-13
JP2855339B2 JP2855339B2 (en) 1999-02-10

Family

ID=14863275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123546A Expired - Fee Related JP2855339B2 (en) 1989-05-17 1989-05-17 Combine

Country Status (1)

Country Link
JP (1) JP2855339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043919A (en) * 2005-08-08 2007-02-22 Kubota Corp Image processor for working vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043919A (en) * 2005-08-08 2007-02-22 Kubota Corp Image processor for working vehicle
JP4624884B2 (en) * 2005-08-08 2011-02-02 株式会社クボタ Image processing device for work vehicles

Also Published As

Publication number Publication date
JP2855339B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
EP2301318B1 (en) A control system of an agricultural vehicle with a goods carrier, an agricultural vehicle and a method of controlling a goods carrier of the agricultural vehicle
US10582185B2 (en) Agricultural working machine
CA2788913C (en) Method and apparatus for the optical evaluation of harvested crop in a harvesting machine
RU2361381C2 (en) Method and automatic control system of agricultural machinery, harvester and machine for tilling
US11470776B2 (en) Agricultural work machine
US11641804B2 (en) Bale detection and classification using stereo cameras
CN103646249A (en) Greenhouse intelligent mobile robot vision navigation path identification method
CN108133471B (en) Robot navigation path extraction method and device based on artificial bee colony algorithm
CN109859212A (en) A kind of unmanned plane image soybean crops row dividing method
EP3316218B1 (en) Control arrangement and method for controlling a position of a transfer device of a harvesting machine
JPH02301809A (en) Picture processor for mobile work machine
JP4292334B2 (en) Fruit harvesting robot for upland cultivation
CN104867146B (en) Slice positioning method for corn breeding slice characteristic zone
JPH02301810A (en) Picture processor for mobile work machine
CN108734054A (en) Unobstructed citrusfruit image-recognizing method
EP3315006A1 (en) Control arrangement and method for controlling a position of a transfer device of a harvesting machine
CN113065501A (en) Seedling line identification method and device and agricultural machine
US5694315A (en) Method for scanning multiple images in one scanning process
CN109461150B (en) Yarn tube color sorting method based on machine vision
CN106485200A (en) The water surface object identifying system of environmental protection unmanned plane and its recognition methods
JP3316871B2 (en) Vegetable harvester
JP2003052251A (en) Seedling sorter
JP2520104B2 (en) Boundary detection device for autonomous vehicles
US20240065160A1 (en) System for determining a crop edge and self-propelled harvester
JP2740265B2 (en) Image processing method for harvester steering control

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees