JPH02301691A - Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger - Google Patents

Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger

Info

Publication number
JPH02301691A
JPH02301691A JP1120544A JP12054489A JPH02301691A JP H02301691 A JPH02301691 A JP H02301691A JP 1120544 A JP1120544 A JP 1120544A JP 12054489 A JP12054489 A JP 12054489A JP H02301691 A JPH02301691 A JP H02301691A
Authority
JP
Japan
Prior art keywords
piston
supercharger
pressure
discharge port
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120544A
Other languages
Japanese (ja)
Inventor
Kazuyuki Watanabe
和志 渡辺
Kenichi Kumasaka
健一 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1120544A priority Critical patent/JPH02301691A/en
Publication of JPH02301691A publication Critical patent/JPH02301691A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/20Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the form of the inner or outer contour of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To reduce the drive power of a supercharger during low load of an engine by forming at least part of the wall face of a discharging port and providing a piston with free movement back and forth for a screw rotor. CONSTITUTION:During unsupercharged operation, e.g. a suction-side static pressure conductive pipe 12 from an inlet pipe 61 on the downstream side of a suction port 6 is led through an operation room 10 on the back pressure side of pistons 8, 9 via a conductive pipe 15 to set the pistons 8, 9 apart from rotors 4, 5 by the use of a difference from a total of pressure on the discharge side which the face on screw rotors 4, 5 side of the pistons 8, 9 experiences. In this case, as distances between the pistons 8, 9 and the end faces of the rotors 4, 5, respectively, get bigger, air which is enclosed in the tooth space portions of the rotors 4, 5 is reflected to the side of the suction port 6 through non- meshing tooth space portions, as shown by arrow marks F5, F6, without being discharged as compression air, and it is only stirred without being raised in pressure and not discharged out of a discharge port 7 as high-pressure air so that the supercharged operation is not performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吐出口の形状を可変とする機械駆動式リショ
ルム型過給機の吐出口形状制′4’BN横に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a mechanically driven Lysholm type supercharger having a variable discharge port shape.

〔従来技術〕[Prior art]

従来、エンジンの高出力化及び高トルク化を図るために
、エンジンの出力軸に連結されて駆動される機械駆動式
過給機を用いて燃焼用空気の過給を行っているが、この
ような機械駆動式過給機においては、エンジンの負荷と
は関係無く、エンジンの回転速度に比例した燃焼用空気
量をエンジンに送気しているため、低負荷時におけるエ
ンジンの燃料消費率を悪化させるという問題があった。
Conventionally, in order to increase engine output and torque, combustion air has been supercharged using a mechanically driven supercharger that is connected to the output shaft of the engine. In a mechanically driven supercharger, the amount of combustion air is supplied to the engine in proportion to the engine speed, regardless of the engine load, which worsens the engine's fuel consumption rate at low loads. There was a problem with letting them do it.

上記低負荷時におけるエンジンの燃料消費率の悪化を防
ぐ方法として、クラッチを有する機械駆動式リショルム
型過給機が知られており(第1図参照)、機械駆動式リ
シュルム型過給機aは、エンジンbの出力軸に設けられ
たプーリdにベルトで連結されて駆動されるプーリeと
電磁クラッチCを介して連結され、エンジン低負荷時に
は電磁クラッチCを切り離して過給機aを非駆動状態と
し、別に設けた給気用バイパス配管(図示せず)を通し
て燃焼用空気の供給を行っている。
A mechanically driven Lysholm supercharger equipped with a clutch is known as a method of preventing the deterioration of the engine's fuel consumption rate at low loads (see Figure 1). , is connected via an electromagnetic clutch C to a pulley e which is connected by a belt to a pulley d provided on the output shaft of engine b and is driven, and when the engine load is low, the electromagnetic clutch C is disconnected and the supercharger a is not driven. combustion air is supplied through a separately provided air supply bypass pipe (not shown).

ここで、リショルム型過給機aは、ケーシング内に軸方
向に並列で、側面で相互に一部が和文わる円柱状空間か
ら成る一対のロータ室が形成されており、該ロータ室内
に互いに噛み合う一対のスクリュウロータが配置され、
ロータ室の壁面に吸込口と吐出口とがそれぞれ設けられ
ており、スクリュウロータの回転により、吸込口から吸
い込んだ空気を歯溝部に閉じ込め、両スクリュウロータ
の噛合部が吐出口側に移動することによって圧縮し、該
歯溝部を吐出口に開口させて圧縮空気を吐出口に吐出す
るものである。
Here, in the Lysholm type supercharger a, a pair of rotor chambers are formed in the casing, which are parallel in the axial direction and are made up of cylindrical spaces with Japanese characters partially different from each other on the side surfaces, and the rotor chambers mesh with each other in the rotor chambers. A pair of screw rotors are arranged,
A suction port and a discharge port are provided on the wall of the rotor chamber, and as the screw rotor rotates, the air sucked in from the suction port is trapped in the tooth groove, and the meshing portion of both screw rotors moves toward the discharge port side. The tooth groove portion is opened to a discharge port, and the compressed air is discharged to the discharge port.

〔発明が解決する課題〕[Problems solved by the invention]

上記公知の電磁クラッチを有する機械駆動式リシゴルム
型過給機は、通常の運転状態において、電磁フランチの
嵌脱の頻度が高いために、電磁クラッチの信転性、嵌脱
時の騒音及び耐久性等の問題があった。
In the above-mentioned mechanically driven Lysigorm type supercharger having a known electromagnetic clutch, the electromagnetic flange is frequently engaged and disengaged under normal operating conditions, so the reliability of the electromagnetic clutch, noise during engagement and disassembly, and durability are affected. There were other problems.

本発明の目的は、上記問題点を解決し、機械駆動式リシ
ョルム型過給機付自動車用エンジンにおいて、エンジン
低負荷時に過給機の駆動動力を低減させ、エンジン高負
荷時にのみ過給を行うことのできる機械駆動式リシゴル
ム型過給機を提供することである。
An object of the present invention is to solve the above-mentioned problems and, in a mechanically driven Lysholm type supercharged automobile engine, reduce the driving power of the supercharger when the engine is under low load, and perform supercharging only when the engine is under high load. It is an object of the present invention to provide a mechanically driven Lysigolum type supercharger that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明の機械駆動式リショル
ム型過給機の吐出口形状制御機構は、自動車用エンジン
の出力軸に連結され、一対のスクリュウロータを有する
機械駆動式リシッルム型過給機(以下、過給機という)
において、吐出口の壁面の少なくとも一部を形成し、且
つスクリュウコータに対して進退自在にピストンを設け
、該ピストンを進退させることにより、過給不要時には
圧縮を行わないようにするものである。
In order to achieve the above object, a mechanically driven Lysholm type supercharger discharge port shape control mechanism of the present invention is connected to an output shaft of an automobile engine, and has a pair of screw rotors. (hereinafter referred to as supercharger)
In this method, a piston is provided which forms at least a part of the wall surface of the discharge port and is movable forward and backward relative to the screw coater, and by moving the piston forward and backward, compression is not performed when supercharging is not required.

吸入口の上流側から静圧導出管を分岐させるとともに吐
出口の下流側から吐出圧力の全圧導出管を分岐させ、吸
込側静圧導出管と吐出側全圧導出管とを三方弁を介して
上記ピストンの背圧側に切替自在に連通させることによ
り、上記ピストンを進退させると良い。
A static pressure derivation pipe is branched from the upstream side of the suction port, and a total pressure derivation pipe for the discharge pressure is branched from the downstream side of the discharge port, and the suction side static pressure derivation pipe and the discharge side total pressure derivation pipe are connected via a three-way valve. It is preferable that the piston is moved back and forth by being switchably communicated with the back pressure side of the piston.

また、上記ピストンを進退させる手段としてソレノイド
を用いても良い。
Further, a solenoid may be used as a means for moving the piston forward and backward.

さらに、電気モータ等の回転を歯車或いはウオーム歯車
を介して上記ピストンに伝達し、ピストンを進退させて
も良いものである。
Furthermore, the rotation of an electric motor or the like may be transmitted to the piston via a gear or a worm gear to move the piston forward or backward.

〔作用〕[Effect]

上記のように構成された本発明の機械駆動式リシ町ルム
型過給機の吐出口形状制御機構は、エンジン低負荷時或
いは冷却水温度が低い時等の過給を行わないと設定され
た条件下においては、ピストンがスクリュウロータから
遠ざかり、ピストンとスクリュウロータとの間に空間を
形成することにより、空威を放出し、噛み合っていない
歯溝部を通って吸込口側に還流して、空気は攪拌される
だけで昇圧されることがない状態となる。
The discharge port shape control mechanism of the mechanically driven Rishichorum type supercharger of the present invention configured as described above is set such that supercharging is not performed when the engine is under low load or when the cooling water temperature is low. Under these conditions, the piston moves away from the screw rotor, creating a space between the piston and the screw rotor, which releases air, which returns to the suction port through the tooth grooves that do not mesh, and air is in a state where it is only stirred and the pressure is not increased.

また、過給を行う場合には、ピストンをスクリュウロー
タに近づけて所定の距離を保つことにより、正常な圧縮
機としての機能を果たすものである。
Furthermore, when performing supercharging, the piston is brought close to the screw rotor and maintained at a predetermined distance to function as a normal compressor.

ピストンの駆動手段として吸込側静圧と吐出側全圧を利
用する場合において、非過給時には三方弁の切替操作に
より、吸込口の上流側からの吸込側静圧導出管をピスト
ンの背圧側に連通させて吸込側静圧をピストンの背圧側
に導き、ピストンのスクリュウコータ側の面に受ける吐
出圧力との差によってピストンがスクリュウロータから
遠ざかり、空気を循環させて吐出圧力を低下させるもの
である。
When using static pressure on the suction side and total pressure on the discharge side as a means of driving the piston, when not supercharging, switch the three-way valve to connect the suction side static pressure lead-out pipe from the upstream side of the suction port to the back pressure side of the piston. Through communication, static pressure on the suction side is guided to the back pressure side of the piston, and due to the difference between the discharge pressure and the discharge pressure applied to the surface of the piston on the screw coater side, the piston moves away from the screw rotor, circulating air and lowering the discharge pressure. .

次に、過給を行う場合は、吐出口の下流側からの吐出側
全圧導出管をピストンの背圧側に連通させて吐出側全圧
をピストンの背圧側に導き、該ピストンの背圧側の吐出
側全圧とピストンがスクリュウロータから遠ざかった状
態でピストンのスクリュウロータ側の面に受ける圧力と
の差により、ピストンがスクリュウロータに近づき、ス
クリュウロータとの間に所定の間隙を形成する。
Next, when performing supercharging, connect the discharge side total pressure lead-out pipe from the downstream side of the discharge port to the back pressure side of the piston to guide the discharge side total pressure to the back pressure side of the piston. Due to the difference between the total pressure on the discharge side and the pressure applied to the surface of the piston on the screw rotor side when the piston is away from the screw rotor, the piston approaches the screw rotor and forms a predetermined gap therebetween.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第2図は本発明を適用した過給機の断面図であり、ケー
シング1内に軸方向に並列で、側面で相互に一部が相変
わる円柱状空間から成る一対のロータ室2.3が形成さ
れており、該ロータ室2.3内に互いに噛み合って回転
する一対のスクリュウロータ4.5が配置され、ロータ
室2.3の端面に吸込口6が、反対側端の側壁に吐出ロ
アがそれぞれ設けられ、スクリュウロータ4.5の回転
により、吸込口6から吸い込んだ空気を歯溝部に閉じ込
め、両スクリュウロータ4.5の噛合部が吐出ロア側に
移動することによって圧縮し、該歯溝部を吐出ロアに開
口させて圧縮空気を吐出ロアに吐出するものである。
FIG. 2 is a cross-sectional view of a supercharger to which the present invention is applied, in which a pair of rotor chambers 2.3 are arranged in parallel in the axial direction in the casing 1, and are made up of cylindrical spaces that partially change from side to side. A pair of screw rotors 4.5 are arranged in the rotor chamber 2.3 to rotate while meshing with each other, and a suction port 6 is provided on an end surface of the rotor chamber 2.3, and a discharge lower is provided on the side wall of the opposite end. are provided respectively, and as the screw rotor 4.5 rotates, the air sucked in from the suction port 6 is trapped in the tooth groove, and the meshing portion of both screw rotors 4.5 moves toward the discharge lower side, compressing the air and compressing the air. Compressed air is discharged to the discharge lower by opening the groove to the discharge lower.

吐出ロアの在る側のロータ室2.3の端面にピストン8
.9をそれぞれ進退自在に設け、ピストン8.9の背圧
側に作動室lOを形成する。
A piston 8 is mounted on the end face of the rotor chamber 2.3 on the side where the discharge lower is located.
.. 9 are provided to be movable forward and backward, respectively, and an operating chamber 1O is formed on the back pressure side of the piston 8.9.

スクリュウロータ4.5の駆動軸41.51は、歯車4
2.52により互いに連結され、駆動軸41の延長され
た端部にブー1月1が設け、ベルトを介してエンジンの
出力軸に設けられたプーリ(図示せず)により駆動され
る。
The drive shaft 41.51 of the screw rotor 4.5 is connected to the gear 4
2.52, a boot 1 is provided at the extended end of the drive shaft 41 and is driven by a pulley (not shown) provided on the output shaft of the engine via a belt.

第3図に示す過給時のピストン8.9がスクリュウロー
タ4.5に近づいた状態において、スクリュウロータ4
.5が互いに噛み合いながら、矢印F、、 P、で示す
ように、反対方向に回転して吸込口6がら空気を吸い込
み(矢印F、)、スクリュウロータ4.5の歯溝部に閉
し込め、両スクリュウロータ4.5の噛合部が吐出ロア
側に移動することによって圧縮し、該歯溝部を吐出ロア
に開口させて圧縮空気をロータ室2.3側壁の吐出ロア
に吐出する(矢印F4)。
When the piston 8.9 approaches the screw rotor 4.5 during supercharging as shown in FIG.
.. 5 mesh with each other, rotate in the opposite direction as shown by arrows F, P, suck air through the suction port 6 (arrow F,), and trap it in the tooth groove of the screw rotor 4.5. The meshing portion of the screw rotor 4.5 is compressed by moving toward the discharge lower side, and the tooth groove portion is opened to the discharge lower to discharge compressed air to the discharge lower on the side wall of the rotor chamber 2.3 (arrow F4).

この時の過給機の駆動動力L1は、次式で与えられる。The driving power L1 of the supercharger at this time is given by the following equation.

P、:吸い込み圧力 ■ :吸い込み体積 P2:吐出圧力 k :圧縮性気体の比熱比 第4図に示す過給不要時のピストン8.9がスクリュウ
ロータ4.5から遠ざかった状態においては、スクリュ
ウロータ4.5の歯溝部に閉じ込められた空気は、ピス
トン8.9とスクリュウロータ4.5端面との距離が大
きくなっているため、圧縮空気として吐出されることな
く、矢印F3、F。
P, : Suction pressure ■ : Suction volume P2 : Discharge pressure k : Specific heat ratio of compressible gas When the piston 8.9 is away from the screw rotor 4.5 when supercharging is not required as shown in Fig. 4, the screw rotor Since the distance between the piston 8.9 and the end face of the screw rotor 4.5 is large, the air trapped in the tooth groove portion of 4.5 is not discharged as compressed air, as shown by arrows F3 and F.

で示すように、噛み合っていない歯溝部を通って吸込口
6側に還流し、攪拌されるだけで昇圧されることがなく
、吐出ロアから高圧空気が吐出されず、過給が行われな
い。
As shown in the figure, the air flows back to the suction port 6 side through the tooth grooves that are not engaged, is only stirred, and is not pressurized, so that high-pressure air is not discharged from the discharge lower and supercharging is not performed.

この時の過給機の駆動動力り、は上述の式において、P
、=P、となるから、LL=0となるが、実際には攪拌
に要する僅かな駆動動力を必要とするが無視できる程度
である。
The driving power of the supercharger at this time is P in the above equation.
, =P, so LL=0.Actually, a small amount of driving power is required for stirring, but it is negligible.

第5図に示す実測値の一例において、曲線Iは過給時の
回転数に対する駆動動力Ltであり、曲線■は過給不要
時の回転数に対する駆動動力り。
In an example of the measured values shown in FIG. 5, the curve I is the driving power Lt relative to the rotational speed during supercharging, and the curve ■ is the driving power Lt relative to the rotational speed when supercharging is not required.

であ、る。So, there it is.

上述のとおり、電磁クラッチを用いることなく非過給時
の駆動動力を低減させることができ、エンジン出力軸と
過給機との伝動機構が簡略化されて設置自由度が大きく
なるとともに、過給機内部で空気を循環させるため、低
負荷時のバイパス配管を不要として、エンジンルーム内
の設置スペースに余裕ができるものである。
As mentioned above, the driving power during non-supercharging can be reduced without using an electromagnetic clutch, and the transmission mechanism between the engine output shaft and the supercharger is simplified, increasing the degree of freedom in installation. Since air is circulated inside the aircraft, there is no need for bypass piping during low loads, freeing up installation space in the engine room.

さらに、ピストンの位置をリニアに調節することができ
るから、スクリュウロータとピストンの距離を適当な値
に制御することにより、吐出圧力をリニアに制御するこ
とができるものである。
Furthermore, since the position of the piston can be adjusted linearly, the discharge pressure can be linearly controlled by controlling the distance between the screw rotor and the piston to an appropriate value.

次に、第6図及び第7図においてピストンの駆動手段と
して吸込側静圧と吐出側全圧を利用するものについて説
明する。
Next, referring to FIGS. 6 and 7, an explanation will be given of a piston driving means that uses static pressure on the suction side and total pressure on the discharge side.

過給機の吸込口6の上流に接続された吸気管61の側壁
に吸込側静圧導出管12の一端を開口させ、吐出ロアの
下流に接続された吐出管71内に吐出側全圧導出管13
を開口させ、吸込側静圧導出管12及び吐出側全圧導出
管13の他端をそれぞれ三方弁I4に接続するとともに
、三方弁14を導管15を介してピストン8.9の背圧
側の作動室10に接続する。
One end of the suction side static pressure derivation pipe 12 is opened in the side wall of the intake pipe 61 connected upstream of the suction port 6 of the supercharger, and the discharge side total pressure is led out into the discharge pipe 71 connected downstream of the discharge lower. tube 13
is opened, and the other ends of the suction side static pressure outlet pipe 12 and the discharge side total pressure outlet pipe 13 are respectively connected to the three-way valve I4, and the three-way valve 14 is connected to the back pressure side of the piston 8.9 through the conduit 15. Connect to chamber 10.

非過給時には、第6図に示す如く、三方弁14の切替操
作により、吸込口6の上流側の吸気管61からの吸込側
静圧導出管12をピストン8.9の背圧側の作動室lO
に導管15を介して連通させて、吸込側静圧をピストン
8.9の背圧側の作動室IOに導き、ピストン8.9の
スクリュウロータ4.5側の面に受ける吐出側全圧との
差によってピストン8.9がスクリュウロータ4.5か
ら遠ざかり、空気を循環させて吐出圧力を低下させるも
のである。
When not supercharging, as shown in FIG. 6, by switching the three-way valve 14, the suction side static pressure outlet pipe 12 from the intake pipe 61 on the upstream side of the suction port 6 is connected to the working chamber on the back pressure side of the piston 8.9. lO
through the conduit 15, the suction side static pressure is guided to the working chamber IO on the back pressure side of the piston 8.9, and the discharge side total pressure received by the surface of the piston 8.9 on the screw rotor 4.5 side is The difference causes the piston 8.9 to move away from the screw rotor 4.5, allowing air to circulate and reducing the discharge pressure.

次に、過給を行う場合(第7図参照)、吐出口の下流側
の吐出管7Iからの吐出側全圧導出管I3をピストン8
.9の背圧側の作動室10に連通させて吐出側全圧をピ
ストン8.9の背圧側の作動室10に導き、ピストン8
.9の背圧側の吐出側全圧とピストン8.9がスクリュ
ウロータ4.5から遠ざかった状態でピストン8.9の
スクリュウロータ4.5側の面に受ける圧力との差によ
り、ピストン8.9がスクリュウロータ4.5に近づき
、スクリュウロータ4.5との間に所定の間隙を形成し
、圧縮を行って高圧空気を吐出させることにより、過給
を行うものである。
Next, when performing supercharging (see Fig. 7), the discharge side total pressure lead-out pipe I3 from the discharge pipe 7I on the downstream side of the discharge port is connected to the piston 8.
.. The total pressure on the discharge side is guided to the working chamber 10 on the back pressure side of the piston 8.9, and the piston 8.
.. Due to the difference between the total pressure on the discharge side of the back pressure side of the piston 8.9 and the pressure applied to the surface of the piston 8.9 on the screw rotor 4.5 side when the piston 8.9 is away from the screw rotor 4.5, the piston 8.9 approaches the screw rotor 4.5, forms a predetermined gap therebetween, performs compression, and discharges high-pressure air, thereby performing supercharging.

この構成により、特別な駆動源を必要とせずにピストン
を進退させることができ、構成が簡略化できるものであ
る。
With this configuration, the piston can be moved forward and backward without requiring a special drive source, and the configuration can be simplified.

次いで、第8図及び第9図に示すピストンの駆動手段と
してソレノイドを採用したたものを説明する。
Next, a method using a solenoid as the piston driving means shown in FIGS. 8 and 9 will be described.

ピストン8.9の背圧側の作動室10にソレノイド16
を設置し、ピストン8.9の背面から突出しているピス
トンロッド81.91を鉄心としてソレノイド16の励
磁することにより、ピストン8.9を進退させている。
A solenoid 16 is installed in the working chamber 10 on the back pressure side of the piston 8.9.
The piston 8.9 is moved forward and backward by energizing the solenoid 16 using the piston rod 81.91 protruding from the back surface of the piston 8.9 as an iron core.

この構成によると、簡単な構造で任意にピストンを進退
することができるものである。
According to this configuration, the piston can be moved forward or backward as desired with a simple structure.

なお、ピストンロッド81.91を鉄心としたものにつ
いて述べてきたが、ソレノイド16による移動方法とし
てはこれに限られるものではなく、適宜公知の手段を採
用できることは勿論である。
Although a case has been described in which the piston rods 81 and 91 are iron cores, the method of movement by the solenoid 16 is not limited to this, and it goes without saying that any known means can be adopted as appropriate.

さらに、第1O図に示す電気モータを使用してピストン
を駆動するものは、ピストン8.9の背面に突出するピ
ストンロッド81.91の外周に螺子溝82.92を設
けてあり、電気モータ19の出力軸18の先端に設けら
れたウオーム歯車17が上記ピストンロッド81.91
の螺子溝82.92と噛み合っている。
Further, in the case of driving a piston using an electric motor as shown in FIG. The worm gear 17 provided at the tip of the output shaft 18 of the piston rod 81.91
The screw grooves 82 and 92 are engaged with each other.

電気モータ19の回転により、出力軸18を介してウオ
ーム歯車17が回動され、ピストンロッド81.91を
軸方向に移動させ、ピストン8.9を進退させるもので
ある。
The rotation of the electric motor 19 rotates the worm gear 17 via the output shaft 18, moving the piston rod 81.91 in the axial direction and moving the piston 8.9 forward and backward.

以上、エンジンの過給機についてのみ述べてきたが、本
発明はこれに限られるものではなく、産業用過給機付発
動機、リシュルム型コンプレッサ或いはバキュームポン
プ等に適用することができるものである。
Although only the supercharger of an engine has been described above, the present invention is not limited to this, but can be applied to an industrial supercharged engine, a Richulme compressor, a vacuum pump, etc. .

〔発明の効果〕〔Effect of the invention〕

本発明は上述のとおり構成されているので、以下に記載
する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

電磁クラッチを用いることなく非過給時の駆動動力を低
減させることができ、エンジン出力軸と過給機との伝動
機構が簡略化されて設置自由度が大きくなるとともに、
過給機内部で空気を循環さセルため、低負荷時のバイパ
ス配管を不要とし、エンジンルーム内の設置スペースに
余裕ができるものである。
It is possible to reduce the driving power when not supercharging without using an electromagnetic clutch, and the transmission mechanism between the engine output shaft and the supercharger is simplified, increasing the degree of freedom in installation.
Since the air is circulated inside the supercharger, bypass piping is not required at low loads, freeing up installation space in the engine room.

また、ピストンの位置をリニアに調節することができる
から、スクリュウロータとピストンの距離を適当な値に
制御することにより、吐出圧力をリニアに制御すること
ができるものである。
Furthermore, since the position of the piston can be adjusted linearly, the discharge pressure can be linearly controlled by controlling the distance between the screw rotor and the piston to an appropriate value.

また、吸込側静圧と吐出側全圧とを三方弁を介して上記
ピストンの背圧側に切替自在に導入することにより、特
別な駆動源を必要とせずにピストンを進退させることが
でき、構成が簡略化できるものである。
In addition, by switchably introducing static pressure on the suction side and total pressure on the discharge side to the back pressure side of the piston via a three-way valve, the piston can be moved forward and backward without the need for a special drive source. can be simplified.

さらに、ソレノイド或いは電気モータを用いることによ
り、構成を簡単にすることができるものである。
Furthermore, the construction can be simplified by using a solenoid or an electric motor.

【図面の簡単な説明】 第1図は従来の過給機付エンジンの概略図、第2図は本
発明を通用した過給機の断面図、第3図及び第4図は動
作説明図、第5図は本発明を適用した過給機の回転数に
対する駆動動力の実測値の一例を示すグラフ、第6図及
び第7図はピストン駆動手段の一例を示す概略図、第8
図及び第9図は他のピストン駆動手段の一例を示す+1
!!略図、第10図はさらに異なるピストン駆動手段の
一例を示す概略図である。 l・・・ケーシング、 2.3・・・ロータ室、 4.5・・・スクリエウロータ、 6・・・吸込口、 7・・・吐出口、 8.9・ ・ ・ピストン、 IO・・・ピストン背圧側の作動室、 11・ ・ ・プーリ、 12・・・吸込側静圧導出管、 13・・・吐出側全圧導出管、 41、51・・・駆動軸、 14・・・三方弁、 61・・・吸気管、 ハ・・・吐出管。
[Brief Description of the Drawings] Fig. 1 is a schematic diagram of a conventional supercharged engine, Fig. 2 is a sectional view of a supercharger according to the present invention, Figs. 3 and 4 are explanatory diagrams of operation, FIG. 5 is a graph showing an example of an actual measured value of driving power with respect to the rotational speed of a supercharger to which the present invention is applied; FIGS. 6 and 7 are schematic diagrams showing an example of a piston driving means; FIG.
Figures 9 and 9 show an example of other piston driving means +1
! ! FIG. 10 is a schematic diagram showing an example of a further different piston driving means. l...Casing, 2.3...Rotor chamber, 4.5...Screw rotor, 6...Suction port, 7...Discharge port, 8.9...Piston, IO... - Piston back pressure side working chamber, 11... Pulley, 12... Suction side static pressure outlet pipe, 13... Discharge side total pressure outlet pipe, 41, 51... Drive shaft, 14... Three sides Valve, 61...Intake pipe, C...Discharge pipe.

Claims (4)

【特許請求の範囲】[Claims] (1)自動車用エンジンの出力軸に連結され、一対のス
クリュウロータを有する機械駆動式リショルム型過給機
において、吐出口の壁面の少なくとも一部を形成し、且
つスクリュウロータに対して進退自在にピストンを設け
、該ピストンを進退させることにより、過給不要時には
圧縮を行わないことを特徴とする機械駆動式リショルム
型過給機の吐出口形状制御機構。
(1) In a mechanically driven Lysholm supercharger that is connected to the output shaft of an automobile engine and has a pair of screw rotors, the supercharger forms at least a part of the wall surface of the discharge port and is movable toward and away from the screw rotor. A discharge port shape control mechanism for a mechanically driven Lysholm type supercharger, characterized in that a piston is provided and the piston is moved back and forth so that compression is not performed when supercharging is not required.
(2)吸入口の上流側から吸込側静圧を導出するととも
に、吐出口の下流側から吐出側全圧を導出し、吸込側静
圧と吐出側全圧とを三方弁を介して上記ピストンの背圧
側に切替自在に導入することを特徴とする請求項(1)
記載の機械駆動式リショルム型過給機の吐出口形状制御
機構。
(2) The suction side static pressure is derived from the upstream side of the suction port, and the discharge side total pressure is derived from the downstream side of the discharge port, and the suction side static pressure and the discharge side total pressure are transferred to the piston through the three-way valve. Claim (1) characterized in that it is switchably introduced to the back pressure side of the
Discharge port shape control mechanism of the mechanically driven Lysholm type supercharger described.
(3)ソレノイドを用いて上記ピストンを進退させるこ
とを特徴とする請求項(1)記載の機械駆動式リショル
ム型過給機の吐出口形状制御機構。
(3) The discharge port shape control mechanism for a mechanically driven Lysholm type supercharger according to claim (1), wherein the piston is moved forward and backward using a solenoid.
(4)電気モータ等の回転を歯車或いはウォーム歯車を
介して上記ピストンに伝達し、ピストンを進退させるこ
とを特徴とする請求項(1)記載の機械駆動式リショル
ム型過給機の吐出口形状制御機構。
(4) The shape of the discharge port of the mechanically driven Lysholm supercharger according to claim (1), wherein the rotation of an electric motor or the like is transmitted to the piston via a gear or a worm gear to move the piston forward or backward. Control mechanism.
JP1120544A 1989-05-16 1989-05-16 Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger Pending JPH02301691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120544A JPH02301691A (en) 1989-05-16 1989-05-16 Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120544A JPH02301691A (en) 1989-05-16 1989-05-16 Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger

Publications (1)

Publication Number Publication Date
JPH02301691A true JPH02301691A (en) 1990-12-13

Family

ID=14788927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120544A Pending JPH02301691A (en) 1989-05-16 1989-05-16 Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger

Country Status (1)

Country Link
JP (1) JPH02301691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105378A (en) * 1995-10-30 2000-08-22 Shaw; David N. Variable capacity vapor compression cooling system
EP2047103A1 (en) * 2006-07-27 2009-04-15 Carrier Corporation Screw compressor capacity control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214012Y2 (en) * 1974-10-03 1977-03-30
JPS625975U (en) * 1985-06-27 1987-01-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214012Y2 (en) * 1974-10-03 1977-03-30
JPS625975U (en) * 1985-06-27 1987-01-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105378A (en) * 1995-10-30 2000-08-22 Shaw; David N. Variable capacity vapor compression cooling system
EP2047103A1 (en) * 2006-07-27 2009-04-15 Carrier Corporation Screw compressor capacity control
EP2047103A4 (en) * 2006-07-27 2012-06-27 Carrier Corp Screw compressor capacity control

Similar Documents

Publication Publication Date Title
KR101723704B1 (en) Internal combustion engine and supercharger
KR100345843B1 (en) Screw compressor and method for controlling the operation of the same
US4610613A (en) Control means for gas compressor having dual slide valves
CA2677951C (en) Compressor having a dual slide valve assembly
US4610612A (en) Rotary screw gas compressor having dual slide valves
US4704069A (en) Method for operating dual slide valve rotary gas compressor
PL208520B1 (en) Hybrid-type compressor
US3756753A (en) Two stage screw rotor machines
JPH0388989A (en) Screw compression device and its rotor control device and operation control device
US5244352A (en) Multi-stage vacuum pump installation
US4105375A (en) Rotary piston compressor
JPH02301691A (en) Discharge port shape controlling mechanism for mechanical drive type lysholm supercharger
JPH04175495A (en) Screw type pump
US4233003A (en) Rotary pump
JP2019019671A (en) Screw compressor
US2845777A (en) Improvements in inlet port means for rotary elastic fluid actuated positive displacement power plants
CA3139764C (en) Cooled dry vacuum screw pump
US3031972A (en) Free piston engine driven pump assembly
US4636148A (en) Vane type compressor with volume control
CN218760417U (en) Screw compressor with adjustable internal volume ratio
JP2808333B2 (en) Power reduction method for mechanically driven lithorm-type supercharger
RU2714207C1 (en) Screw expansion machine
CN218093441U (en) Two-stage compressor
JPS61101693A (en) Oil free displacement type hydraulic machine
JPS595892A (en) Multistage intercooler gear pump type compressor