JPH0230046B2 - KANETSUKIKINOSEIGYOKAIRO - Google Patents

KANETSUKIKINOSEIGYOKAIRO

Info

Publication number
JPH0230046B2
JPH0230046B2 JP15292880A JP15292880A JPH0230046B2 JP H0230046 B2 JPH0230046 B2 JP H0230046B2 JP 15292880 A JP15292880 A JP 15292880A JP 15292880 A JP15292880 A JP 15292880A JP H0230046 B2 JPH0230046 B2 JP H0230046B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
heater
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15292880A
Other languages
Japanese (ja)
Other versions
JPS5775332A (en
Inventor
Masaki Nakamura
Takanori Gonda
Haruo Terai
Shigeo Hamaoka
Katsunori Zaizen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15292880A priority Critical patent/JPH0230046B2/en
Publication of JPS5775332A publication Critical patent/JPS5775332A/en
Publication of JPH0230046B2 publication Critical patent/JPH0230046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F5/00Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は交流電源に接続されるコンデンサおよ
び抵抗からなるCR積分回路のコンデンサ充電時
間を利用して、ヒータへの通電を所定時間後に遮
断する加熱機器の制御回路に関するものである。 従来の技術 CR積分回路を用いた加熱機器の制御回路の従
来例を第1図に示す。 第1図において、1は交流電源で、電源スイツ
チ2を介してヒータ14が接続されている。この
ヒータ14と並列に接続されるCR積分回路3は、
ダイオード4、抵抗5、コンデンサ6の直列回路
より構成され、スイツチ2が閉じられる(スイツ
チ2はラツチ機構等により閉状態が保持される)
と、コンデンサ6は、電源電圧で、かつ半波で充
電される。また、ヒータ14と並列に基準電圧回
路7が接続されており、ダイオード20、抵抗2
1およびコンデンサ8により交流電源1を直流電
源に変換し、コンデンサ8の両端に接続した定電
圧ダイオード9により定電化されている。この定
電圧ダイオード9の電圧を抵抗10,11により
分圧し基準電圧を発生させている。この抵抗1
0,11の接続点の基準電圧とCR積分回路3の
コンデンサ6の電圧とを比較する比較器である
PUT12を備えている。このPUT12のカソー
ド端子13はソレノイド15への通電制御を行う
サイリスタ16のゲートに出力されている。ソレ
ノイド15は、スイツチ2を開状態にする動作を
行う。 この構成において、スイツチ2を閉じると、前
述したように、CR積分回路3のコンデンサ6の
電圧は徐々に上昇してゆき、基準電圧に達すると
PUT12はオンになり、コンデンサ6の充電電
荷を放出し、カソード端子13にパルス出力が得
られる。この出力によりサイリスタ16がオンし
てソレノイド15に電流が流れるため、スイツチ
2が開く。すなわち、コンデンサ6への充電時間
によりヒータ14への通電時間を制御する。 この従来例において、基準電圧は定電圧ダイオ
ード9により定電圧化しているので、電源電圧が
高くなると、コンデンサ6の充電速度が速くな
り、コンデンサ6の電圧が基準電圧に達するまで
の時間が速くなり、よつて、PUT12がオンす
るまでの時間が短くなる。また逆に電源電圧が低
くなると、PUT12がオンになるまでの時間が
長くなる。これらの変化の割合は、CR積分回路
3に、電源電圧の変動をそのまま加えているの
で、電源電圧変動率と時限に変動率の関係は第2
図に示すように、ほぼ逆比例の関係がある。第2
図に、従来例の回路を実験室で試作し、実験した
結果を実線で示す。実験結果によれば、電源電圧
を100Vから−15%変化させるとスイツチ2をオ
ンしてからヒータ14の通電を停止するまでの時
限は+18.7%、また、電源電圧を+15%変化させ
るとその時限は−15.2%変化する。 発明が解決しようとする課題 しかしながら、この従来例をオーブントースタ
等の加熱機器に応用すると、調理物の仕上りは、
その調理物に与えられたトータル熱量によつて決
まるので、電源電圧に対し逆比例の関係でヒータ
14への通電時限を変化させても充分な補正がで
きず、オーブントースタでパンを焼くと、電源電
圧変動により、焼色がかなり異なるという課題を
有していた。 すなわち、電源電圧100Vにおける入力W0で、
ヒータ14へt0秒通電して所定の焼色にパンを焼
くことができるとすると、そのときのトータル熱
量は、 W0t0=V2 0t0/R(Rはヒータ14の抵抗値) となる。このトータル熱量W0t0を電源電圧がV
に変動した場合にでも得ようとすれば、そのとき
のヒータ14への通電時間tの変動率を計算して
みると、 V2 0t0/R=V2t/R ∴t/t0=V2 0/V2=(1/V/V02 となり、その計算結果を下表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a control circuit for a heating device that cuts off electricity to a heater after a predetermined period of time by utilizing the capacitor charging time of a CR integration circuit consisting of a capacitor and a resistor connected to an AC power source. . Prior Art Figure 1 shows a conventional example of a control circuit for heating equipment using a CR integral circuit. In FIG. 1, reference numeral 1 denotes an AC power source, to which a heater 14 is connected via a power switch 2. In FIG. The CR integration circuit 3 connected in parallel with this heater 14 is
It consists of a series circuit of a diode 4, a resistor 5, and a capacitor 6, and the switch 2 is closed (the switch 2 is kept closed by a latch mechanism, etc.)
Then, the capacitor 6 is charged with the power supply voltage and with half waves. Further, a reference voltage circuit 7 is connected in parallel with the heater 14, and includes a diode 20 and a resistor 2.
1 and a capacitor 8 to convert the AC power supply 1 into a DC power supply, and a constant voltage diode 9 connected to both ends of the capacitor 8 makes the current constant. The voltage of the constant voltage diode 9 is divided by resistors 10 and 11 to generate a reference voltage. This resistance 1
This is a comparator that compares the reference voltage at the connection point of 0 and 11 with the voltage of the capacitor 6 of the CR integration circuit 3.
Equipped with PUT12. The cathode terminal 13 of this PUT 12 is outputted to the gate of a thyristor 16 that controls the energization of the solenoid 15. The solenoid 15 operates to open the switch 2. In this configuration, when the switch 2 is closed, the voltage of the capacitor 6 of the CR integration circuit 3 gradually increases, and when it reaches the reference voltage, as described above.
PUT 12 is turned on, discharges the charge stored in capacitor 6, and a pulse output is obtained at cathode terminal 13. This output turns on the thyristor 16 and current flows through the solenoid 15, which opens the switch 2. That is, the time for energizing the heater 14 is controlled by the time for charging the capacitor 6. In this conventional example, the reference voltage is regulated by the voltage regulator diode 9, so as the power supply voltage increases, the charging speed of the capacitor 6 becomes faster, and the time it takes for the voltage of the capacitor 6 to reach the reference voltage becomes faster. , Therefore, the time it takes for PUT 12 to turn on becomes shorter. Conversely, when the power supply voltage decreases, the time it takes for the PUT 12 to turn on becomes longer. The rate of these changes is calculated by directly adding the fluctuation of the power supply voltage to the CR integration circuit 3, so the relationship between the fluctuation rate of the power supply voltage and the fluctuation rate of the time period is the second one.
As shown in the figure, there is a nearly inversely proportional relationship. Second
In the figure, a conventional circuit was prototyped in a laboratory, and the experimental results are shown by solid lines. According to the experimental results, when the power supply voltage is changed by -15% from 100V, the time from turning on switch 2 to stopping energization of heater 14 is +18.7%, and when the power supply voltage is changed by +15%, Its time period changes by -15.2%. Problems to be Solved by the Invention However, when this conventional example is applied to a heating device such as a toaster oven, the finish of the cooked food becomes
Since it is determined by the total amount of heat given to the food, it is inversely proportional to the power supply voltage, so even if you change the time limit for energizing the heater 14, it cannot be compensated sufficiently. There was a problem in that the browning color varied considerably due to fluctuations in the power supply voltage. That is, at an input W 0 at a power supply voltage of 100V,
Assuming that it is possible to bake bread to a predetermined brown color by applying electricity to the heater 14 for t 0 seconds, the total amount of heat at that time is W 0 t 0 =V 2 0 t 0 /R (R is the resistance value of the heater 14 ) becomes. This total amount of heat W 0 t 0 is determined by the power supply voltage V
If you want to obtain the obtained result even if it fluctuates, calculate the fluctuation rate of the energization time t to the heater 14 at that time, and you will get V 2 0 t 0 /R=V 2 t/R ∴t/t 0 =V 2 0 /V 2 =(1/V/V 0 ) 2 , and the calculation results are shown in the table below.

【表】 これを図示すると、第2図の点線のようにな
る。従つて、トータル熱量補正を行うためには、
電源電圧変動率に対して、約2倍以上のヒータ1
4への通電時間変化率をもたせる必要があり、従
来の単なるCR積分回路3による逆比例の補正で
は十分にパンの焼色を一定に保つことができない
という課題を有していた。 本発明は上記課題に鑑み、電源電圧の変動によ
るヒータの通電時間の補正を大きくとれるように
し、加熱機器において最適なヒータ通電制御を行
うことを目的とする。 課題を解決するための手段 上記目的を達成するために本発明は、交流電源
にスイツチ2を介して接続されるヒータ14と、
このヒータ14に並列に接続される定電圧素子1
8および抵抗5、ダイオード4、コンデンサから
なるCR積分回路3の直列回路と、このCR積分回
路3におけるコンデンサ6の充電電圧と基準電圧
回路7の基準電圧とを比較する比較器12とを備
え、前記定電圧素子18により、交流電源電圧が
一定電圧以下のときにCR積分回路3への電圧印
加を阻止し、一定電圧に達すると交流電源電圧か
ら一定電圧を差し引いた電圧をCR積分回路3に
印加する構成とし、前記比較器12は前記CR積
分回路3におけるコンデンサ6の充電電圧が基準
電圧以上になつたとき前記スイツチ2を閉から開
状態とし、ヒータ14の通電時間を制御する構成
である。 作 用 上記構成によれば、交流電源電圧に変動が生じ
て、たとえば電圧が低下したとすると、定電圧素
子18は交流電源電圧から一定電圧を差し引いた
電圧をCR積分回路3に印加するため、CR積分回
路3のコンデンサ6の充電速度を定電圧素子18
を設けない場合に比べ低下させ、ヒータの通電時
間を延ばすことができる。また、定電圧素子18
は一定電圧に達するまでCR積分回路3への電圧
印加を阻止するため、CR積分回路3への電圧印
加時間も定電圧素子18を設けない場合より短く
なり、よつてCR積分回路3のコンデンサの充電
速度はより低下することになり、ヒータの通電時
間を大幅に延長できる。 実施例 本発明は上記問題点を解決するもので、以下、
本発明の一実施例について第3図〜第5図に基づ
き説明する。第3図にオーブントースタの制御回
路を示しているが、図中、第1図と同一部品には
同一の番号を付し、詳細な説明は省略する。第3
図において、18は定電圧素子である定電圧ダイ
オード、19,22はそれぞれ抵抗である。定電
圧ダイオード18は交流電源電圧が一定電圧以下
のときにCR積分回路3への電圧印加を阻止し、
一定電圧に達すると交流電源電圧から一定電圧を
差し引いた電圧をCR積分回路3に印加する。な
お、電圧変更手段は定電圧ダイオード以外のもの
でもよく、要は上記動作を行い得る回路であれば
よい。また基準電圧回路7内の定電圧ダイオード
9にはトランジスタ17のコレクタが接続され、
このトランジスタ17のベースは基準電圧を発生
させる抵抗11に接続されている。 上記構成において、電源スイツチ2が閉じられ
る(一度閉じられるとラツチ機構等により閉状態
を保持する)と、CR積分回路3および基準電圧
回路7にはダイオード4,20により第4図に示
す半波が入力されることになる。しかし、これら
回路3,7の前段に定電圧ダイオード18が接続
されているため、交流電源1の電圧がツエナー電
圧Vzより低いときには上記回路3,7側には流
入しないため、定電圧ダイオード18のアノード
端子の電圧(抵抗19と20の直列接続体の両端
電圧)は0である。そして、交流電源1の電圧が
第4図に示すように徐々に増加し、Vz以上とな
ると、定電圧ダイオード18は導通状態となり、
上記回路3,7には第5図に示すように、定電圧
ダイオード18のツエナー電圧Vzを電源電圧か
ら差し引いた電圧が印加されることになる。すな
わち、交流電源1の電圧がツエナー電圧Vz以上
になると定電圧ダイオード18は導通状態となる
が、この導通状態では定電圧ダイオード18には
ツエナー電圧Vzが常に発生しているため、上記
回路3,7には、交流電源1の電圧がツエナー電
圧Vz以上の領域において、このツエナー電圧Vz
分だけ電圧降下した電圧が印加されることとな
り、第5図に示す波形となる。 次に、第5図に示す電圧が基準電圧回路7に印
加されると、抵抗10,11に電流が流れ、トラ
ンジスタ17はオンする。よつて、定電圧ダイオ
ード9を流れる電流はトランジスタ17側に流
れ、サイリスタ16のゲートには流れず、サイリ
スタ16はオフのままである。定電圧ダイオード
9は、電源スイツチ2の投入直後にサイリスタ1
6を誤点弧するのを防止するとともにコンデンサ
8の両端を定電圧化する働きをする。 一方、CR積分回路3にも第5図に示す電圧が
印加され電流が流れ、コンデンサ6を充電する。
そして、コンデンサ6への充電が進み、PUT1
2のアノード電圧Aがゲート電圧(基準電圧)G
より高くなるとPUT12はオンになる。このと
き、PUT12のゲートGとカソードKとはシヨ
ート状態となるので、今まで抵抗11を介してト
ランジスタ17のベースに流れ込んでいた電流は
PUT12よりバイパスされ、よつてトランジス
タ17はオフになる。すると、それまで定電圧ダ
イオード9→トランジスタ17と流れていた電流
はサイリスタ16のゲートに流れ込み、サイリス
タ16をオンにさせる。すると、ソレノイド15
に電流が流れ、プランジヤーを動作させて、電源
スイツチ2の機械的保持を解除させ、スイツチは
開く。そしてヒータ14への通電は停止する。な
お、電源電圧をカツトする定電圧ダイオード18
の電圧を適当に選ぶことにより、動源電圧の変動
を増幅して、CR積分回路3に印加することがで
きる。その結果、CR積分回路3の時定数を変化
させることなく、電源電圧の変動率に対するヒー
タ14への通電時間の変化率は任意に設定するこ
とができる。 次に、電源電圧とCR積分回路3との充電時間
との関係を第5図により説明する。定電圧ダイオ
ード18を介して印加される電圧は第4図に示す
半波の電圧(交流電源電圧の半波電圧)により異
なる。すなわち、第4図のAのような高い電圧が
印加されると、第5図のAの電圧がCR積分回路
3に印加され、第4図のBのような通常電圧が印
加されると第5図のBの電圧がCR積分回路3に
印加され、さらに第4図のCの低い電圧が印加さ
れると第5図のCの電圧がCR積分回路3に印加
される。第5図のA、B、Cの電圧はA>B>C
の関係があることから明らかな通り、CR積分回
路3のコンデンサの充電速度はA、B、Cの順で
速いものである。また、CR積分回路3に電圧を
印加する時間はtA>tB>tCの関係であり、高い電
圧の方が電圧印加時間も長くなり、CR積分回路
3のコンデンサ充電速度も速くなる。よつてCR
積分回路3への印加電圧の大きさと印加電圧時間
との相乗効果によりA、B、Cの各々の場合で
CR積分回路3への充電速度を大きく変えること
ができる。 第6図には、本発明の実施例を実験室で測定し
たデータがあり、定電圧ダイオード18の電圧を
種々変化させて、電源電圧と時限(ヒータ14へ
の通電時間)の関係を測定したものである。図中
の破線、二点鎖線、一点鎖線の順に定電圧ダイオ
ード18の電圧を大きくすれば、変化率を大きく
とれることが分る。なお、図中の実線は従来の定
電圧ダイオード18を用いない場合を示してい
る。 なお、上述したように、電源電圧変動によるヒ
ータ14のトータル熱量の補正を行う場合は、第
2図に示した点線のような変化率になるのが適し
ており、実験の結果、このような変化率を得る定
電圧ダイオード18の電圧は、43Vであつた。こ
の定数でもつて、パンの焙焼実験を行つた結果、
電源電圧変動に対して、殆んど焼色が変わらない
という良好な結果を得た。なお、パンの焙焼に関
しては、オーブンからの熱放散やパンへの伝達ロ
スがあるため、計算で得た変化率よりも幾分大き
く設定する方が良いようである。 発明の効果 以上の実施例から明らかな通り、本発明によれ
ば、CR積分回路が電圧変更手段を介して交流電
源に接続されているため、CR積分回路の印加電
圧および印加電圧時間の両方を交流電源電圧変動
に対して変更することができ、交流電源電圧変動
に対してCR積分回路の充電速度を大きく変更で
き、よつてヒータへの通電時間を加熱機器に最適
となる補正が可能となる。
[Table] If this is illustrated, it will look like the dotted line in Figure 2. Therefore, in order to perform total heat correction,
Heater 1 is approximately twice as high as the power supply voltage fluctuation rate.
It is necessary to provide a change rate over the time of energization to 4, and there was a problem that the conventional inverse proportional correction using a simple CR integration circuit 3 could not sufficiently keep the browning of the bread constant. SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to make it possible to largely correct the heater energization time due to fluctuations in power supply voltage, and to perform optimal heater energization control in a heating device. Means for Solving the Problems In order to achieve the above object, the present invention includes a heater 14 connected to an AC power source via a switch 2;
Constant voltage element 1 connected in parallel to this heater 14
8, a series circuit of a CR integrating circuit 3 consisting of a resistor 5, a diode 4, and a capacitor, and a comparator 12 for comparing the charging voltage of the capacitor 6 in the CR integrating circuit 3 with the reference voltage of the reference voltage circuit 7, The constant voltage element 18 prevents voltage application to the CR integrating circuit 3 when the AC power supply voltage is below a certain voltage, and when the constant voltage is reached, applies a voltage obtained by subtracting the constant voltage from the AC power supply voltage to the CR integrating circuit 3. The comparator 12 is configured to change the switch 2 from the closed state to the open state and control the energization time of the heater 14 when the charging voltage of the capacitor 6 in the CR integration circuit 3 becomes equal to or higher than the reference voltage. . Effects According to the above configuration, when a fluctuation occurs in the AC power supply voltage and, for example, the voltage decreases, the constant voltage element 18 applies a voltage obtained by subtracting a constant voltage from the AC power supply voltage to the CR integrating circuit 3. The charging speed of the capacitor 6 of the CR integration circuit 3 is determined by the constant voltage element 18.
This makes it possible to reduce the amount of electricity compared to the case where the heater is not provided, and to extend the energization time of the heater. In addition, constant voltage element 18
prevents the voltage application to the CR integration circuit 3 until a constant voltage is reached, so the voltage application time to the CR integration circuit 3 is also shorter than when the constant voltage element 18 is not provided, and therefore the capacitor of the CR integration circuit 3 The charging speed is further reduced, and the energization time of the heater can be significantly extended. Examples The present invention solves the above problems, and the following:
An embodiment of the present invention will be described based on FIGS. 3 to 5. FIG. 3 shows a control circuit for a toaster oven. In the figure, parts that are the same as those in FIG. 1 are given the same numbers, and detailed explanations will be omitted. Third
In the figure, 18 is a constant voltage diode which is a constant voltage element, and 19 and 22 are respective resistors. The constant voltage diode 18 prevents voltage application to the CR integration circuit 3 when the AC power supply voltage is below a certain voltage,
When the constant voltage is reached, a voltage obtained by subtracting the constant voltage from the AC power supply voltage is applied to the CR integration circuit 3. Note that the voltage changing means may be other than a constant voltage diode, and may be any circuit as long as it can perform the above operation. Further, the collector of the transistor 17 is connected to the constant voltage diode 9 in the reference voltage circuit 7.
The base of this transistor 17 is connected to a resistor 11 that generates a reference voltage. In the above configuration, when the power switch 2 is closed (once closed, it is maintained in the closed state by a latch mechanism, etc.), the CR integration circuit 3 and the reference voltage circuit 7 are connected to the half-wave circuit shown in FIG. 4 by the diodes 4 and 20. will be input. However, since the voltage regulator diode 18 is connected in front of these circuits 3 and 7, when the voltage of the AC power source 1 is lower than the Zener voltage Vz, it does not flow into the circuits 3 and 7. The voltage at the anode terminal (the voltage across the series connection of resistors 19 and 20) is zero. Then, as the voltage of the AC power supply 1 gradually increases as shown in FIG. 4 and becomes equal to or higher than Vz, the voltage regulator diode 18 becomes conductive.
As shown in FIG. 5, a voltage obtained by subtracting the Zener voltage Vz of the voltage regulator diode 18 from the power supply voltage is applied to the circuits 3 and 7. That is, when the voltage of the AC power supply 1 becomes equal to or higher than the Zener voltage Vz, the voltage regulator diode 18 becomes conductive. However, in this conductive state, the Zener voltage Vz is always generated in the voltage regulator diode 18, so that the circuit 3, 7, in a region where the voltage of the AC power supply 1 is higher than the Zener voltage Vz, this Zener voltage Vz
A voltage dropped by that amount is applied, resulting in a waveform shown in FIG. Next, when the voltage shown in FIG. 5 is applied to the reference voltage circuit 7, current flows through the resistors 10 and 11, and the transistor 17 is turned on. Therefore, the current flowing through the constant voltage diode 9 flows to the transistor 17 side and does not flow to the gate of the thyristor 16, so that the thyristor 16 remains off. The voltage regulator diode 9 connects the thyristor 1 immediately after the power switch 2 is turned on.
It functions to prevent erroneous ignition of capacitor 6 and to maintain a constant voltage across both ends of capacitor 8. On the other hand, the voltage shown in FIG. 5 is also applied to the CR integration circuit 3, and current flows to charge the capacitor 6.
Then, charging of capacitor 6 progresses and PUT1
2, the anode voltage A is the gate voltage (reference voltage) G
When it goes higher, PUT12 turns on. At this time, the gate G and cathode K of PUT12 are in a shorted state, so the current that had previously flowed into the base of transistor 17 via resistor 11 is now
It is bypassed by PUT 12, so transistor 17 is turned off. Then, the current that had been flowing from the constant voltage diode 9 to the transistor 17 flows into the gate of the thyristor 16, turning the thyristor 16 on. Then, solenoid 15
A current flows through the switch, operating the plunger, releasing the mechanical hold on the power switch 2, and opening the switch. Then, the power supply to the heater 14 is stopped. Note that a constant voltage diode 18 that cuts off the power supply voltage
By appropriately selecting the voltage, fluctuations in the power supply voltage can be amplified and applied to the CR integration circuit 3. As a result, the rate of change in the energization time to the heater 14 with respect to the rate of change in the power supply voltage can be arbitrarily set without changing the time constant of the CR integration circuit 3. Next, the relationship between the power supply voltage and the charging time of the CR integration circuit 3 will be explained with reference to FIG. The voltage applied via the constant voltage diode 18 varies depending on the half-wave voltage (half-wave voltage of the AC power supply voltage) shown in FIG. That is, when a high voltage such as A in FIG. 4 is applied, the voltage A in FIG. 5 is applied to the CR integration circuit 3, and when a normal voltage such as B in FIG. When the voltage B in FIG. 5 is applied to the CR integration circuit 3, and the low voltage C in FIG. 4 is further applied, the voltage C in FIG. 5 is applied to the CR integration circuit 3. The voltages of A, B, and C in Figure 5 are A>B>C
As is clear from the relationship, the charging speed of the capacitors of the CR integrating circuit 3 is faster in the order of A, B, and C. Further, the time for applying voltage to the CR integrating circuit 3 has the relationship t A > t B > t C , and the higher the voltage, the longer the voltage application time and the faster the capacitor charging speed of the CR integrating circuit 3 becomes. Yotsute CR
In each case of A, B, and C, due to the synergistic effect of the magnitude of the voltage applied to the integrating circuit 3 and the duration of the applied voltage,
The charging speed to the CR integration circuit 3 can be changed greatly. FIG. 6 shows data obtained by measuring an embodiment of the present invention in a laboratory, in which the voltage of the constant voltage diode 18 was variously changed, and the relationship between the power supply voltage and the time limit (the time period during which the heater 14 was energized) was measured. It is something. It can be seen that the rate of change can be increased by increasing the voltage of the constant voltage diode 18 in the order of the broken line, the two-dot chain line, and the one-dot chain line in the figure. Note that the solid line in the figure shows the case where the conventional constant voltage diode 18 is not used. As mentioned above, when correcting the total heat amount of the heater 14 due to fluctuations in the power supply voltage, it is appropriate to have a rate of change as shown in the dotted line in Figure 2, and as a result of experiments, we have found that The voltage of the constant voltage diode 18 for obtaining the rate of change was 43V. Even with this constant, as a result of bread roasting experiments,
Good results were obtained in that the baked color hardly changed despite variations in the power supply voltage. Regarding the roasting of bread, since there is heat dissipation from the oven and transmission loss to the bread, it seems better to set the rate of change somewhat larger than the calculated rate of change. Effects of the Invention As is clear from the above embodiments, according to the present invention, since the CR integrating circuit is connected to the AC power supply via the voltage changing means, both the applied voltage and the applied voltage time of the CR integrating circuit can be changed. It can be changed in response to AC power supply voltage fluctuations, and the charging speed of the CR integration circuit can be changed significantly in response to AC power supply voltage fluctuations, making it possible to correct the energization time to the heater to be optimal for the heating equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCRタイマ回路図、第2図は従
来例の電源電圧と時限の関係及びトータル熱量補
正を行う場合に必要な電源電圧と時限の関係の計
算値を示す特性図、第3図は本発明の一実施例を
示す回路図、第4図、第5図は従来および本発明
の回路動作を説明するための電圧波形図、第6図
は本発明によるCRタイマ回路の電源電圧と時限
の関係を示す実測特性図である。 1……交流電源、2……電源スイツチ、3……
CR積分回路、7……基準電圧回路、12……
PUT、18……定電圧ダイオード。
Figure 1 is a conventional CR timer circuit diagram, Figure 2 is a characteristic diagram showing the relationship between the power supply voltage and time limit in the conventional example, and the calculated value of the relationship between the power supply voltage and time limit required when performing total heat correction. The figure is a circuit diagram showing one embodiment of the present invention, Figures 4 and 5 are voltage waveform diagrams for explaining the circuit operations of the conventional and present invention, and Figure 6 is the power supply voltage of the CR timer circuit according to the present invention. FIG. 3 is an actually measured characteristic diagram showing the relationship between the time limit and the time limit. 1... AC power supply, 2... Power switch, 3...
CR integration circuit, 7...Reference voltage circuit, 12...
PUT, 18... Constant voltage diode.

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源にスイツチ2を介して接続されるヒ
ータ14と、このヒータ14に並列に接続される
定電圧素子18および抵抗5、ダイオード4、コ
ンデンサ6からなるCR積分回路3の直列回路と、
このCR積分回路3における充電用コンデンサ6
の充電電圧と基準電圧回路7の基準電圧とを比較
する比較器12とを備え、前記定電圧素子18に
より、交流電源電圧が一定電圧以下のときにCR
積分回路3への電圧印加を阻止し、一定電圧に達
すると交流電源電圧から一定電圧を差し引いた電
圧をCR積分回路3に印加する構成とし、前記比
較器12は、前記CR積分回路3におけるコンデ
ンサ6の充電電圧が基準電圧以上になつたとき前
記スイツチ2を閉から開状態とし、ヒータ14の
通電時間を制御する加熱機器の制御回路。
1 A series circuit of a heater 14 connected to an AC power source via a switch 2, a constant voltage element 18, a resistor 5, a diode 4, and a capacitor 6, which are connected in parallel to the heater 14, and a CR integrating circuit 3.
Charging capacitor 6 in this CR integration circuit 3
and a comparator 12 for comparing the charging voltage of the reference voltage circuit 7 with the reference voltage of the reference voltage circuit 7.
The voltage application to the integrator circuit 3 is blocked, and when a certain voltage is reached, a voltage obtained by subtracting a certain voltage from the AC power supply voltage is applied to the CR integrator circuit 3. A control circuit for a heating device that changes the switch 2 from a closed state to an open state when the charging voltage of the heater 14 becomes equal to or higher than a reference voltage, and controls the energization time of the heater 14.
JP15292880A 1980-10-29 1980-10-29 KANETSUKIKINOSEIGYOKAIRO Expired - Lifetime JPH0230046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15292880A JPH0230046B2 (en) 1980-10-29 1980-10-29 KANETSUKIKINOSEIGYOKAIRO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15292880A JPH0230046B2 (en) 1980-10-29 1980-10-29 KANETSUKIKINOSEIGYOKAIRO

Publications (2)

Publication Number Publication Date
JPS5775332A JPS5775332A (en) 1982-05-11
JPH0230046B2 true JPH0230046B2 (en) 1990-07-04

Family

ID=15551201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15292880A Expired - Lifetime JPH0230046B2 (en) 1980-10-29 1980-10-29 KANETSUKIKINOSEIGYOKAIRO

Country Status (1)

Country Link
JP (1) JPH0230046B2 (en)

Also Published As

Publication number Publication date
JPS5775332A (en) 1982-05-11

Similar Documents

Publication Publication Date Title
US4012617A (en) Power controller for microwave magnetron
US3201597A (en) Dimmer for electric lights
US4023004A (en) Microwave oven power supply and oscillator therefor
US3644793A (en) Timed "on" cycle electronic timing system
US4134038A (en) Speed control for a universal electric motor
JPH0230046B2 (en) KANETSUKIKINOSEIGYOKAIRO
US3585444A (en) Energy supply circuit
US4208584A (en) Circuit arrangement for an X-ray generator
US4220910A (en) Raising-pressure delay type electromagnetic pumps
JPS6367683B2 (en)
JP2712582B2 (en) Induction heating cooker
JP2987537B2 (en) Electric cooker and its control device
JPS6343827Y2 (en)
EP0104744A2 (en) Regulation circuit
JP2582635B2 (en) Drive device for electromagnetic pump
US3449631A (en) Power control circuit for low voltage lamps
JPS6025129B2 (en) Rice cooker initial temperature rise control circuit
JPS6086329A (en) Oven toaster
JPS60156420A (en) Controller of electric pressure kettle
JPH0119654B2 (en)
KR890000910Y1 (en) Output control circuit of microwave oven
JPH0538551Y2 (en)
JPS6347018Y2 (en)
JPS59218123A (en) Automatic roasting apparatus
JPS61272474A (en) Control device for diesel engine glow plug