JPH02300293A - Grease composition with improved low-temperature flow property and plastic resistance - Google Patents

Grease composition with improved low-temperature flow property and plastic resistance

Info

Publication number
JPH02300293A
JPH02300293A JP12048889A JP12048889A JPH02300293A JP H02300293 A JPH02300293 A JP H02300293A JP 12048889 A JP12048889 A JP 12048889A JP 12048889 A JP12048889 A JP 12048889A JP H02300293 A JPH02300293 A JP H02300293A
Authority
JP
Japan
Prior art keywords
oil
low
degrees
mineral oil
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12048889A
Other languages
Japanese (ja)
Other versions
JP2645324B2 (en
Inventor
Kazuhiro Matsumoto
一博 松本
Shigeki Kimura
茂樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOUYU KK
Original Assignee
NIPPON KOUYU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOUYU KK filed Critical NIPPON KOUYU KK
Priority to JP12048889A priority Critical patent/JP2645324B2/en
Publication of JPH02300293A publication Critical patent/JPH02300293A/en
Application granted granted Critical
Publication of JP2645324B2 publication Critical patent/JP2645324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve low-temp. flow properties and plastic resistance by compounding a base oil wherein a paraffin mineral oil with specified pour pt., aniline pt. and viscosity is a main component with, if necessary, a thickening agent, a rustproofing agent, etc. CONSTITUTION:Only paraffins which impair low-temp. flow properties are selectively incorporated in a zeolite catalyst from a paraffin mineral oil and catalytic hydrocracking thereof is performed to remove them as an intermediate distillate such as naphtha or LP gas and to obtain a paraffin mineral oil (a) with a pour pt. of -30 to -60 deg.C, an aniline pt. of 95-120 deg.C and a viscosity (at 40 deg.C) of 5-120cSt. A base oil with the component (a) as a main component is obtd. by compounding the component (a) with if necessary, a synthetic oil, a naphthene mineral oil, etc. The base oil is, if necessary, compounded with a thickening agent, an antioxidant, an extreme-pressure additive, a rustproofing agent, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低温流動性、耐プラスチ−2り性を向上したグ
リース組成物に関するものである。すなわち、各種プラ
スチック類を用いた機器類に使用して、その材質をおか
すことなく良好な潤滑性を保持するとともに、低温から
高温までの広い範囲内で、安定したグリース性状を保持
するグリース組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a grease composition with improved low-temperature fluidity and plasticity resistance. In other words, a grease composition that can be used in equipment made of various plastics and maintains good lubricity without damaging the material, and also maintains stable grease properties over a wide range from low to high temperatures. It is related to.

[従来の技術] 近年における精密機器類の高性俺化、及び小型化への急
速な進展に伴って、これらの機器類の回転部や、摺動部
等に使用されるグリースに対しても、その特性に合致し
たすぐれた性能が、要求されるようになってきた。すな
わち、小型化への方向に進むと、各種機器類の機構部を
構成するモーター、各種ベアリング、スイッチ等の部品
類もより小型化され、これらを駆動させるエネルギーも
、より小さな力で性能を発揮できるように設計される。
[Prior art] With the rapid progress toward high performance and miniaturization of precision equipment in recent years, there has been a need for grease used in the rotating and sliding parts of these equipment. , excellent performance matching these characteristics has come to be required. In other words, as we move toward miniaturization, the motors, various bearings, switches, and other parts that make up the mechanical parts of various devices also become smaller, and the energy used to drive them achieves performance with less force. It is designed to be possible.

これに付随して、これらの各部分に使用される潤滑グリ
ースも、耐熱性、低温性などの温度に依存する性能の他
に、低摩擦性、低トルク性等が、機器類の性能を発揮す
る上で、特に重要になってくる。このような要求をみた
す手段として、合成油を使用する傾向が強まり、さらに
低粘度油をグリースのベースオイルに用い、低トルり化
、及び低温から高温までの広い温度範囲での使用を可能
にするように設計される。
Along with this, the lubricating grease used in each of these parts not only has temperature-dependent properties such as heat resistance and low temperature properties, but also has low friction and low torque properties to bring out the performance of the equipment. This becomes especially important when doing so. As a means of meeting these demands, there is a growing trend to use synthetic oils, and low-viscosity oils are also used as base oils for greases, which reduce tor and enable use in a wide temperature range from low to high temperatures. Designed to be.

ところが合成油をベースオイルに用いると、種々の問題
が出てくる。その第1は、価格が高いことであり、次い
で耐プラスチックス性である。ここで、本発明における
プラスチックには、ポリスチレン樹脂、ABS樹脂、ポ
リ塩化ビニル樹脂等の汎用プラスチック類やその他の特
殊なプラスチ−7り類の他、ウレタンゴム、シリコンゴ
ム等の合成ゴム類も含むものとする。
However, when synthetic oils are used as base oils, various problems arise. The first is the high price, and the second is the resistance to plastics. Here, plastics in the present invention include general-purpose plastics such as polystyrene resin, ABS resin, polyvinyl chloride resin, and other special plastics, as well as synthetic rubbers such as urethane rubber and silicone rubber. shall be held.

一般的に各種プラスチックス類には、柔軟性をもたせる
目的で可塑剤が使用される。グリースのベースオイルと
してよく使われているグイエステル系油は、この可塑剤
そのものであり、低温性が要求されるグリースに使われ
ている。可塑剤は、その性質−Eプラスチックスに溶け
るため、プラスチックス自体を膨潤させたり、変形させ
たりする影響があり、その影響の度合はプラスチックと
油の性質に関係する。
Plasticizers are generally used in various plastics to make them flexible. Guester oil, which is often used as a base oil for grease, is a plasticizer itself, and is used in greases that require low-temperature properties. Because plasticizers dissolve in plastics, they have the effect of swelling or deforming the plastics themselves, and the degree of this effect is related to the properties of the plastics and oil.

例えば、シリコンゴムはシリコン油には影響を受けるが
、これ以外の合成油にはあまり影響を受けない、また汎
用プラスチックスとして各種機器に使用されているもの
は、直鎖状の合成油にはそれほど大きな影響を受けない
が、各種エステル系油、環状炭化水素系の構造を有する
合成油および鉱油には大きな影響を受ける。
For example, silicone rubber is affected by silicone oil, but not by other synthetic oils, and general-purpose plastics used in various devices are not affected by linear synthetic oils. Although it is not so affected, various ester oils, synthetic oils with a cyclic hydrocarbon structure, and mineral oils are significantly affected.

従って、耐プラスチックス用グリースのベースオイルに
は直鎖状炭化水素系であるパラフィン系鉱油、α−オレ
フィン系油、植物油等が用いられる。逆にプラスチック
類を膨潤させる基材としては、ナフテン系鉱油、エステ
ル系油等があり、これらは耐プラスチックス用グリース
には使用できない。
Therefore, as the base oil for plastic-resistant grease, linear hydrocarbon-based paraffinic mineral oils, α-olefin-based oils, vegetable oils, and the like are used. Conversely, base materials that swell plastics include naphthenic mineral oils, ester oils, etc., and these cannot be used in plastic-resistant greases.

以上のような理由から、耐プラスチックス、耐ゴム用の
グリースには、これらの基材に影響を与えない原料を使
用する必要があり、おのずから限定される結果となる。
For the above reasons, it is necessary to use raw materials that do not affect these base materials for plastic-resistant and rubber-resistant greases, which naturally results in limitations.

又、広い温度範囲での使用を考えた場合、低温から高温
まで耐えられる合成油はあまりなく、低温性能がよいも
のは、高温では不安定になり、逆に高温性能がよいもの
は、低温性能の面で問題が出てしまう。
Also, when considering use in a wide temperature range, there are not many synthetic oils that can withstand from low to high temperatures; those with good low-temperature performance become unstable at high temperatures, and conversely, those with good high-temperature performance have poor low-temperature performance. A problem arises in terms of.

従って耐プラスチックス性及び、広い温度範囲で使える
ものという条件下で1合成油を選定していくと、問題点
が多く、必ずしも満足のゆく結果が得られていない。
Therefore, when a synthetic oil is selected under the conditions of plastic resistance and usability over a wide temperature range, there are many problems and satisfactory results are not always obtained.

又、合成油をベースオイルに用いると、増ちょう剤との
相溶性が悪い上に加えて、低粘度油を使用すると、両者
の悪い関係が増幅され、その結果、グリースから油分の
ニジミが多くなり、潤滑を必要としない部分にまで、油
が流出し、汚染するという好ましくない現象があられれ
、問題となる。
Furthermore, when synthetic oil is used as a base oil, it has poor compatibility with the thickener, and in addition, when low viscosity oil is used, the bad relationship between the two is amplified, resulting in increased oil bleed from the grease. However, oil leaks even to parts that do not require lubrication, causing an undesirable phenomenon of contamination.

低温特性だけを考えた場合に、鉱油にもナフテン系のも
のがあり、これをベースに用いると、低温流動性が良好
で、−30度Cとかなり低温領域まで、使用できるグリ
ース組成物を提供できる。これらナフテン系鉱油をベー
ス油に用いると、構造の面でも安定なグリース組成物が
得られ、低温からある程度の高温領域、すなわち150
度C程度まで、安定した性状を保持できる。しかし、そ
れ以りの高温になると、不安定になりその性状を保持で
きなくなる。さらに、これらのナフテン系鉱油を用いる
と、樹脂やゴム等の材料を膨潤してしまうため、金属以
外の材料を用いた機器には、使用できない結果となると
いう問題点を有している。
Considering only low-temperature properties, naphthene-based mineral oils can be used as a base to provide a grease composition that has good low-temperature fluidity and can be used at temperatures as low as -30 degrees Celsius. can. When these naphthenic mineral oils are used as a base oil, a structurally stable grease composition can be obtained, and it can be used in a range from low temperatures to a certain high temperature range, i.e. 150
Stable properties can be maintained up to about 100°C. However, at higher temperatures, it becomes unstable and cannot maintain its properties. Furthermore, when these naphthenic mineral oils are used, they swell materials such as resins and rubbers, so there is a problem that they cannot be used in devices using materials other than metals.

また一般によく利用されているパラフィン系鉱油をベー
スオイルとしたグリースは、増ちょう剤との相溶性がよ
く、高温安定性、耐プラスチックス性も良好であるが、
低温領域で流動不能であるという問題点を有している。
In addition, commonly used greases based on paraffinic mineral oil have good compatibility with thickeners, high temperature stability, and good plastic resistance.
It has the problem of not being able to flow at low temperatures.

グリースのベースオイルとして5合成油にも。5 synthetic oil as a base oil for grease.

ナフテン系鉱油にも、またパラフィン系鉱油にも上記の
ようにそれぞれ問題点があり、必ずしも満足のゆく結果
が得られていない。
Both naphthenic mineral oil and paraffinic mineral oil have their own problems as described above, and satisfactory results have not always been obtained.

[発明が解決しようとする問題点] 本発明は上記′問題点を解決し、各種プラスチック類を
用いた機器類に使用して、その材質をおかすことなく良
好な潤滑性を保持するとともに、低温から高温までの広
い範囲内で、安定したグリース性状を保持することを特
徴とする低温流動性、耐樹脂性を向上したグリース組成
物を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems, and can be used in equipment using various plastics to maintain good lubricity without damaging the material, and to maintain good lubricity at low temperatures. It is an object of the present invention to provide a grease composition with improved low-temperature fluidity and resin resistance, which is characterized by maintaining stable grease properties over a wide range from low to high temperatures.

[問題点を解決するための手段] 上記問題点を解決し、発明の目的を達成するため、本発
明に係る低温流動性、耐樹脂性を向上したグリース組成
物は次のように構成したことを特徴とする。すなわち、
イソパラフィンを主成分とし、流動点が一30度C〜−
60度C、アニリン点が85度C〜120度C,40度
C(7)粘度が5〜120cStであるパラフィン系鉱
油をベースオイルの主体としたことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems and achieve the object of the invention, the grease composition with improved low-temperature fluidity and resin resistance according to the present invention is configured as follows. It is characterized by That is,
The main component is isoparaffin, and the pour point is 130 degrees C~-
60 degrees C, an aniline point of 85 degrees C to 120 degrees C, 40 degrees C (7) and a paraffinic mineral oil having a viscosity of 5 to 120 cSt as the main base oil.

[実施例] 以下本発明の実施例により詳細に説明する。[Example] The present invention will be explained in detail below using examples.

本実施例に係るグリース組成物は、イソパラフィンを主
成分とし、流動点が一30度C〜−60度C、アニリン
点が95度C−120度C,40度Cの粘度が5〜12
0cStであるパラフィン系鉱油をベースオイルの主体
とする。
The grease composition according to this example contains isoparaffin as a main component, has a pour point of 130 degrees C to -60 degrees C, an aniline point of 95 degrees C to 120 degrees C, and a viscosity of 5 to 12 degrees C.
The base oil is mainly paraffinic mineral oil with 0 cSt.

本実施例に係るパラフィン系鉱油は、原料である従来の
パラフィン系鉱油中の低温流動性を阻害するパラフィン
類のみを選択的にゼオライト触媒の中に取り込み、接触
水素化分解してナフサなどの中間留分やLPガスにして
除去することにより得られる。
The paraffinic mineral oil according to this example is produced by selectively incorporating only the paraffins that inhibit low-temperature fluidity in conventional paraffinic mineral oil, which is a raw material, into a zeolite catalyst, and catalytically hydrocracking it to produce intermediates such as naphtha. It can be obtained by removing it as a fraction or LP gas.

ゼオライト触媒は、珪素原子とアルミニウム原子および
これらの原子を結ぶ酸素結合を主体として構成される結
晶性の物質で、その特徴として結晶内に均一な細孔を多
数もっている。このようなゼオライト触媒として1例え
ば、モーピルオイル社の発表した10員環の細孔構造を
有するゼオライトZSM−5触媒を挙げることができる
Zeolite catalysts are crystalline substances mainly composed of silicon atoms, aluminum atoms, and oxygen bonds connecting these atoms, and are characterized by having many uniform pores within the crystals. An example of such a zeolite catalyst is a zeolite ZSM-5 catalyst having a 10-membered ring pore structure published by Mopil Oil.

この触媒は、反応分子や反応生成分子の孔への出入りを
うまくコントロールするため、極めて良好な分子形状選
択性を示す0石油系炭化水素の中で、細い直鎖状の分子
構造をもつノルマルパラフィンや、僅かに枝分れしたパ
ラフィン類はゼオライトの細孔内に入ることができるが
、大きな枝をもつイソパラフィンや環状構造をもつ炭化
水素類は細孔内に入ることができない、従って、ゼオラ
イト触媒は低温流動性を阻害するパラフィン類のみを選
択的に触媒の中に取り込み接触水素化分解し、ナフサな
どの中間留分やLPガスにして除去する。この製造は例
えばモーピル式接触脱ロウMLD讐(モービル ループ
 デフ−2クシンク)装置により行われる。ゼオライト
触媒の細孔内に入ることができない形状の、大きな枝を
もつイソパラフィンや環状構造をもつ炭化水素類は分解
されず、処理油中に残り、得られたパラフィン系鉱油の
流動点は低い。
This catalyst is a normal paraffin with a thin linear molecular structure among petroleum hydrocarbons that exhibit extremely good molecular shape selectivity because it effectively controls the entry and exit of reaction molecules and reaction product molecules into the pores. Paraffins with large branches and slightly branched paraffins can enter the pores of zeolite, but isoparaffins with large branches and hydrocarbons with a cyclic structure cannot enter into the pores. In this method, only paraffins that inhibit low-temperature fluidity are selectively incorporated into a catalyst, subjected to catalytic hydrogenolysis, and removed as middle distillates such as naphtha or LP gas. This production is carried out, for example, using a Mobil catalytic dewaxing MLD system (Mobil Loop Def-2 Sink). Isoparaffins with large branches and hydrocarbons with a cyclic structure that cannot enter the pores of the zeolite catalyst are not decomposed and remain in the treated oil, resulting in a low pour point of the paraffinic mineral oil obtained.

なお上記のように、大きな枝をもつイソパラフィンや環
状構造をもつ炭化水素類は、低温性能がよいが、溶剤膜
ロウ法では、これらの低温性能に有効な成分まで除去さ
れてしまう、従って溶剤膜ロウ法によっては、本実施例
のような性能のよいグリースを得ることはできない。
As mentioned above, isoparaffins with large branches and hydrocarbons with a cyclic structure have good low-temperature performance, but in the solvent film waxing method, even the components that are effective for low-temperature performance are removed. Depending on the waxing method, it is not possible to obtain a grease with good performance as in this example.

本実施例のパラフィン系鉱油は、流動点が一30度C〜
−60度C、アニリン点が85度CN 120度Cであ
るが、従来のパラフィン系鉱油、ナフテン系鉱油の流動
点は夫々−5度C〜−15度C1−10度C〜−40度
Cであり、また従来のパラフィン系鉱油、ナフテン系鉱
油、芳香族系鉱油のアニリン点は夫々 100度C〜 
130度C180度CN 100度C160度C〜85
度Cであって、本実施例のパラフィン系鉱油は、従来の
パラフィン系鉱油、ナフテン系鉱油、芳香族系鉱油とは
相違する。上記本実施例のパラフィン系鉱油と、従来の
パラフィン系鉱油、ナフテン系鉱油、芳香族系鉱油の性
状の相違を表にすると第5表の通りである。
The paraffinic mineral oil used in this example has a pour point of 130 degrees Celsius or more.
-60 degrees C, the aniline point is 85 degrees CN and 120 degrees C, but the pour points of conventional paraffinic mineral oils and naphthenic mineral oils are -5 degrees C to -15 degrees C, 1-10 degrees C to -40 degrees C, respectively. The aniline point of conventional paraffinic mineral oil, naphthenic mineral oil, and aromatic mineral oil is 100 degrees C ~
130 degrees C180 degrees CN 100 degrees C160 degrees C~85
degree C, and the paraffinic mineral oil of this example is different from conventional paraffinic mineral oils, naphthenic mineral oils, and aromatic mineral oils. Table 5 shows the differences in properties between the paraffinic mineral oil of this example and conventional paraffinic mineral oils, naphthenic mineral oils, and aromatic mineral oils.

なお、ベースオイルとして、上記イソパラフィンを主成
分とするパラフィン系鉱油に、合成油、ナフテン系鉱油
などを配合してもよい0合成油としては、ジオクチルセ
バケートのようなジエステル類、脂肪族モノカルボン酸
のペンタエリスリトールエステルのようなテトラエステ
ル等のエステル油やポリα−オレフィン等のポリオレフ
ィン油、ポリグリコール油、ポリフェニールエーテル油
、シリコーン油、ハロゲン化炭化水素油、アルキルベン
ゼン油なンが例示できる。
As the base oil, synthetic oil, naphthenic mineral oil, etc. may be blended with the paraffinic mineral oil whose main component is isoparaffin. Examples of synthetic oil include diesters such as dioctyl sebacate, aliphatic monocarboxylic acids, etc. Examples include ester oils such as tetraesters such as pentaerythritol esters, polyolefin oils such as polyα-olefins, polyglycol oils, polyphenyl ether oils, silicone oils, halogenated hydrocarbon oils, and alkylbenzene oils.

本実施例に係るグリース組成物は、上記ベースオイルの
他、必要に応じて通常添加される各種の添加剤を加えて
もよい0例えば、増ちょう剤、酸化防止剤、極圧添加剤
、防錆剤等を適宜添加する。
In addition to the above-mentioned base oil, the grease composition according to this example may contain various commonly added additives as necessary. For example, thickeners, antioxidants, extreme pressure additives, rust preventive additives, etc. Add agents, etc. as appropriate.

増ちょう剤としては、従来から公知の金属石けん、無機
累増ちょう剤、有機系増ちょう剤等を挙げることができ
る。
Examples of the thickener include conventionally known metal soaps, inorganic cumulative thickeners, organic thickeners, and the like.

金属石けんの金属部分には、ナトリウム、カリウム、カ
ルシウム、バリウム、ストロンチウム、アルミニウム、
リチウムなどが挙げられ、該金属石けんの脂肪酸部分に
は、各種の脂肪酸、または脂肪酸混合物、更に脂肪酸と
他の酸、例えば酢酸、安息香酸、ホウ酸、ジカルボン酸
、サリチル酸などを組み合せたいわゆるコンプレックス
石けんタイプを挙げることができる。これらの脂肪酸類
は、一般的に動物油脂、植物油、ワックス等に含まれる
グリセリンエステルを分解して得たもの、あるいは人工
的に生成した鎖状の脂肪酸類である。かかる脂肪酸類の
代表的な例としては、ミリスチン酸、パルミチン酸、ス
テアリン酸等の飽和脂肪酸、オレイン酸等の不飽和脂肪
酸、12−ヒドロキシステアリン酸等の脂肪酸を挙げる
ことができる。
The metal parts of metal soap include sodium, potassium, calcium, barium, strontium, aluminum,
The fatty acid portion of the metal soap includes various fatty acids, fatty acid mixtures, and so-called complex soaps that combine fatty acids with other acids such as acetic acid, benzoic acid, boric acid, dicarboxylic acid, and salicylic acid. types can be listed. These fatty acids are generally obtained by decomposing glycerin esters contained in animal fats, vegetable oils, waxes, etc., or are artificially produced chain fatty acids. Typical examples of such fatty acids include saturated fatty acids such as myristic acid, palmitic acid, and stearic acid, unsaturated fatty acids such as oleic acid, and fatty acids such as 12-hydroxystearic acid.

無機累増ちょう剤としては、ベントナイト、コロイドシ
リカ、シリカエアロゲル、アルミナ、黒鉛、雲母、タル
ク、クレー、ケイソウ土などが挙げられる。
Examples of inorganic thickeners include bentonite, colloidal silica, silica aerogel, alumina, graphite, mica, talc, clay, diatomaceous earth, and the like.

また有機系増ちょう剤としては、ウレア累増ちょう剤等
を挙げることができる。その代表的なものに、ジウレア
系、テトラウレア系等が例示できる。この他の有機系増
ちょう剤としては、尿素系、インダンスレン系、フタロ
シアニン系、アメリン系等を挙げることができる。
Examples of organic thickeners include urea cumulative thickeners and the like. Typical examples include diurea and tetraurea. Examples of other organic thickeners include urea-based, indanthrene-based, phthalocyanine-based, and amerin-based thickeners.

さらに本実施例に係るグリース組成物は、必要に応じて
通常添加される各種の添加剤を用いることができる0例
えば、酸化防止剤、極圧添加剤、防錆剤等を適宜添加す
る。
Further, the grease composition according to the present example may contain various additives that are normally added as needed. For example, antioxidants, extreme pressure additives, rust preventives, etc. may be added as appropriate.

[実施例1.2,3および比較例1、?、3]第1表に
示す配合に基づくグリース組成物を以下のような方法で
調整する。
[Examples 1, 2, 3 and Comparative Example 1, ? , 3] A grease composition based on the formulation shown in Table 1 is prepared by the following method.

先ずベースオイルの全体量の約273量と、12−ヒド
ロキシステアリン酸およびステアリン酸の全部を釜内に
張り込み、加熱、撹拌する。脂肪酸類が溶解した後85
〜85度C位の所で水酸化リチウムを水溶液として添加
する。この水酸化リチウムの量は、脂肪酸類を完全に中
和するに必要な量である。この工程で脂肪酸と水酸化リ
チウムとの反応を進め、十分な時間をかけて、いわゆる
リチウム石けんを形成させる。脱水工程を経て更に加熱
、撹拌を続け、最終的に180〜200度Cまで上げた
後加熱をやめる。この時点で残りのベースオイルを加え
、急冷する。更に撹拌を続け、120度C以下で酸化防
止剤等の添加剤を加え、均一に混合した後ディスパーミ
ルにかけ、グリース組成物を得た。
First, approximately 273 of the total amount of base oil, 12-hydroxystearic acid, and all of stearic acid are charged into a pot, heated, and stirred. After fatty acids are dissolved 85
At ~85 degrees C, lithium hydroxide is added as an aqueous solution. This amount of lithium hydroxide is the amount necessary to completely neutralize the fatty acids. This step allows the fatty acids to react with the lithium hydroxide, allowing enough time to form what is known as lithium soap. After the dehydration process, heating and stirring are continued, and the temperature is finally raised to 180 to 200 degrees Celsius, after which heating is stopped. At this point, add the remaining base oil and cool quickly. Stirring was continued, and additives such as antioxidants were added at 120 degrees Celsius or lower, mixed uniformly, and then passed through a disper mill to obtain a grease composition.

[実施例4.5および比較例4.5] 第2表に示す配合に基づくグリース組成物を以下のよう
な方法で調整する。
[Example 4.5 and Comparative Example 4.5] Grease compositions based on the formulations shown in Table 2 are prepared in the following manner.

実施例4および比較例4はアルミニウム複合タイプグリ
ースで、次のような方法で調整される。
Example 4 and Comparative Example 4 are aluminum composite type greases, which are prepared in the following manner.

先ずベースオイルの全体量と安息香酸、ステアリン酸の
全量を釜内に張り込み、加熱、撹拌する。
First, the entire amount of base oil, benzoic acid, and stearic acid are poured into a pot, heated, and stirred.

80度C付近で酸類は溶解するが、更に温度を上げ、8
5〜85度Cでアルミニウムオリゴマー(トリオキシ−
アルミニウム トリーイソプロポキサイド)を添加する
0反応を完全に終結させる目的でゆっくりと温度を上げ
、最高加熱温度185〜195度Cまで上げ、加熱をや
め、以後放冷撹拌を続ける。120度C以下で酸化防止
剤を添加し、均一に混合した後ディスパーミルにかけ、
グリース組成物を得た。
Acids dissolve at around 80 degrees Celsius, but by raising the temperature further,
Aluminum oligomer (trioxy-
In order to completely terminate the reaction of adding (aluminum tri-isopropoxide), the temperature is slowly raised to a maximum heating temperature of 185 to 195 degrees Celsius, heating is stopped, and stirring is continued thereafter. Add the antioxidant at below 120 degrees Celsius, mix uniformly and then apply it to a disper mill.
A grease composition was obtained.

実施例5および比較例5は有機ベントナイト系グリース
で1次のような方法で調整される。先ずベースオイルの
全体量の172量と有機ベントナイト累増ちょう副原料
であるバラゲール(商標、ナシ璽ナルレッドコーポレー
ション製造) ヲm 加し、よく撹拌する0次いで残り
のベースオイルを少しづつ添加し時間をかけて全部の量
を入れる。
Example 5 and Comparative Example 5 were prepared using organic bentonite greases in the following manner. First, add 172 of the total amount of base oil and organic bentonite additive, Balaguer (trademark, manufactured by Nashikinal Red Corporation), and stir well.Next, add the remaining base oil little by little and take a while. Add the entire amount.

この工程中、均一に混ざるよう特に注意し、撹拌を十分
に行うことが必要である0次にメタノールを添加し、よ
く混合するよう十分な撹拌を行う。
During this step, special care must be taken to ensure uniform mixing and thorough stirring is required.Methanol is then added and stirred thoroughly to ensure thorough mixing.

均一に混合した後、加熱を開始し、メタノールを除去し
、100度Cまで温度を1げ15分保持後消火する。よ
く混合した後、酸化防止剤等の添加剤を加え、均一にな
った時点で三段ロールにかけ、調整を終了する。
After uniformly mixing, heating is started, methanol is removed, and the temperature is raised to 100 degrees Celsius and held for 15 minutes before being extinguished. After mixing thoroughly, additives such as antioxidants are added, and when the mixture becomes uniform, it is passed through a three-stage roll to complete the adjustment.

上記の実施例において、酸化防止剤としては、スワノッ
クス(商標、精王化学株式会社製造)を使用した。また
、本実施例に使用されるパラフィン系鉱油の性状を第3
表に、比較例に使用される原料油の性状を第4表に示し
た。なお、第3表に示される本実施例のパラフィン系鉱
油は、モービル石油株式会社製造のもので、モーピル式
接触脱ロウNJW(モービル ループ デワックシング
)装置により製造されたものを使用した。なお、101
0.1022等は品番である。
In the above examples, Swanox (trademark, manufactured by Seio Chemical Co., Ltd.) was used as the antioxidant. In addition, the properties of the paraffinic mineral oil used in this example were
Table 4 shows the properties of the raw material oil used in the comparative example. The paraffinic mineral oil of this example shown in Table 3 was manufactured by Mobil Oil Co., Ltd. and was manufactured using a Mopil catalytic dewaxing NJW (Mobile Loop Dewaxing) device. In addition, 101
0.1022 etc. is the product number.

第1表、第2表には、得られたグリース組成物の性質を
示した。低温流動性を評価する試験として低温トルク試
験を、耐プラスチックス性を評価する方法として発泡ス
チロール試験を行い、その結果を示した。
Tables 1 and 2 show the properties of the obtained grease compositions. A low-temperature torque test was conducted to evaluate low-temperature fluidity, and a styrene foam test was conducted to evaluate plastic resistance, and the results are shown below.

第1表 第2表− 一庇」LjL −庇n 1−人一 実施例1〜5はいずれも本発明に係るもので、発泡スチ
ロール試験はすべて合格しており、耐プラスチックス性
に優れていることを示しており、更に一40度Cでの低
温トルク試験でも比較的低い数値がでており、低温流動
性が優れていることを示している。
Table 1 Table 2 - One Eaves LjL - Eaves 1 - Person 1 Examples 1 to 5 are all related to the present invention, all passed the Styrofoam test, and have excellent plastic resistance. Furthermore, a relatively low value was obtained in a low-temperature torque test at -40 degrees Celsius, indicating that the low-temperature fluidity is excellent.

これに対し、比較例1.4.5は従来のパラフィン系鉱
油をベースオイルに使用したもので、耐プラスチックス
性には優れているが、低温流動性は劣っている。また比
較例2.3は、ナフテン系鉱油、グイエステル系鉱油を
ベースオイルに使用したものであるが、いずれも低温ト
ルク試験の数値が低く、低温領域での性状はよいが、発
泡スチロール試験では不合格となり、樹脂への影響が大
きいことを示している。
On the other hand, Comparative Examples 1.4.5 used conventional paraffinic mineral oil as the base oil, and had excellent plastic resistance but poor low-temperature fluidity. In Comparative Example 2.3, naphthenic mineral oil and Guester mineral oil were used as the base oil, but both had low values in the low-temperature torque test and good properties in the low-temperature range, but failed the styrofoam test. , indicating that the influence on the resin is large.

[発明の効果] 本発明に係る低温流動性、耐プラスチックス性を向上し
たグリース組成物は上記のように構成されているので、
各種プラスチック類を用いた機器類に使用して、その材
質をおかすことなく良好な潤滑性を保持するとともに、
低温から高温までの広い範囲内で、安定したグリース性
状を保持するという効果を有する。
[Effects of the Invention] Since the grease composition of the present invention with improved low-temperature fluidity and plastic resistance is configured as described above,
Used in equipment made of various plastics, it maintains good lubricity without damaging the material, and
It has the effect of maintaining stable grease properties over a wide range of temperatures, from low to high temperatures.

Claims (1)

【特許請求の範囲】[Claims] イソパラフィンを主成分とし、流動点が−30度C〜−
60度C、アニリン点が95度C〜120度C、40度
Cの粘度が5〜120cStであるパラフィン系鉱油を
ベースオイルの主体としたことを特徴とする低温流動性
、耐プラスチック性を向上したグリース組成物。
Main component is isoparaffin, pour point is -30 degrees C~-
60 degrees C, aniline point is 95 degrees C to 120 degrees C, viscosity is 5 to 120 cSt at 40 degrees C, paraffinic mineral oil is used as the main base oil.It has improved low temperature fluidity and plastic resistance. Grease composition.
JP12048889A 1989-05-16 1989-05-16 Grease composition with improved low temperature fluidity and plastic resistance Expired - Lifetime JP2645324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12048889A JP2645324B2 (en) 1989-05-16 1989-05-16 Grease composition with improved low temperature fluidity and plastic resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12048889A JP2645324B2 (en) 1989-05-16 1989-05-16 Grease composition with improved low temperature fluidity and plastic resistance

Publications (2)

Publication Number Publication Date
JPH02300293A true JPH02300293A (en) 1990-12-12
JP2645324B2 JP2645324B2 (en) 1997-08-25

Family

ID=14787428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12048889A Expired - Lifetime JP2645324B2 (en) 1989-05-16 1989-05-16 Grease composition with improved low temperature fluidity and plastic resistance

Country Status (1)

Country Link
JP (1) JP2645324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058928A1 (en) * 2002-12-24 2004-07-15 Idemitsu Kosan Co., Ltd. Lube base oil and lubricating oil composition
JP2006070061A (en) * 2004-08-31 2006-03-16 Matsushita Electric Ind Co Ltd Grease for click section
JP2013217428A (en) * 2012-04-06 2013-10-24 Nsk Ltd Wheel supporting rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058928A1 (en) * 2002-12-24 2004-07-15 Idemitsu Kosan Co., Ltd. Lube base oil and lubricating oil composition
US7534749B2 (en) 2002-12-24 2009-05-19 Idemitsu Kosan Co., Ltd. Lube base oil and lubricating oil composition
JP2006070061A (en) * 2004-08-31 2006-03-16 Matsushita Electric Ind Co Ltd Grease for click section
JP4687036B2 (en) * 2004-08-31 2011-05-25 パナソニック株式会社 Click section grease
JP2013217428A (en) * 2012-04-06 2013-10-24 Nsk Ltd Wheel supporting rolling bearing

Also Published As

Publication number Publication date
JP2645324B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JP6072532B2 (en) Grease composition
JP5826626B2 (en) Grease composition
JP5943479B2 (en) Grease composition
JPH093466A (en) Grease composition for rolling bearing
US7402550B2 (en) Rolling bearing
JP2010540719A (en) Lubricating grease composition and preparation
WO2005080536A1 (en) Grease composition and rolling device
KR20160085843A (en) Process for preparing a complex calcium sulphonate grease
CN102344848A (en) Bearing anti-corrosive oil composition
CN111100743A (en) Low-temperature long-life extreme pressure lubricating grease and preparation method thereof
EP3548589B1 (en) Grease composition
JP5411457B2 (en) Lubricant composition
JPH02300293A (en) Grease composition with improved low-temperature flow property and plastic resistance
US5116522A (en) Grease composition containing an ethylene copolymer having a melt index of at least about 40
JP2024028640A (en) Grease composition for resin lubrication
JP2007511638A (en) Selection of PAO oil to control evaporability and low temperature torque of lubricating grease
JP4898022B2 (en) Lubricating grease composition
JP2004091711A (en) Grease composition
CA1334965C (en) Lubricating composition
JP2002327188A (en) Oil nonseparating lubricant composition
JP5765806B2 (en) Grease composition
JPH03128994A (en) Grease for sliding contact of electrical switch
JP2002265969A (en) Grease composition
JPH01308497A (en) Grease composition
CN112795422B (en) Lubricating grease and preparation method thereof