JPH02300240A - Production of expanded polyolefin - Google Patents

Production of expanded polyolefin

Info

Publication number
JPH02300240A
JPH02300240A JP12043989A JP12043989A JPH02300240A JP H02300240 A JPH02300240 A JP H02300240A JP 12043989 A JP12043989 A JP 12043989A JP 12043989 A JP12043989 A JP 12043989A JP H02300240 A JPH02300240 A JP H02300240A
Authority
JP
Japan
Prior art keywords
polyolefin
alkenylsilane
olefin
foaming
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12043989A
Other languages
Japanese (ja)
Other versions
JP2775704B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12043989A priority Critical patent/JP2775704B2/en
Publication of JPH02300240A publication Critical patent/JPH02300240A/en
Application granted granted Critical
Publication of JP2775704B2 publication Critical patent/JP2775704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To expand a polyolefin uniformly without the necessity for irradiation in a high dose by irradiating an olefin molding containing an alkenylsilane/olefin copolymer and a blowing agent with a radiation and expanding the molding by heating. CONSTITUTION:An alkenylsilane/olefin copolymer of an MW of 10000-1000000, obtained by copolymerizing 0.001-30mol% alkenylsilane of formula I (wherein n is 0-12; p is 1-3; and R is a 1-12C hydrocarbon group) with an olefin of formula II in the presence of a Ziegler/Natta catalyst, is melt-mixed with 1-50wt.% blowing agent (e.g. azodicarbon-amide) and molded into a polyolefin molding of any desired shape. This molding is irradiated with a radiation (e.g. gamma-rays) in a dose of several tens of rads to several Mrads, and expanded by heating at a temperature higher than the decomposition temperature of the blowing agent.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、発泡ポリオレフィンの製造方法に関する。許
しくは、主鎖にアルケニルシランを含有するポリオレフ
ィンと発泡剤を含有する成形物に放射線を照射した後、
加熱して発泡ポリオレフィンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing foamed polyolefin. Preferably, after irradiating a molded article containing a polyolefin containing alkenylsilane in its main chain and a blowing agent,
The present invention relates to a method of producing foamed polyolefin by heating.

〔従来の技術〕[Conventional technology]

ポリオレフィンの発泡体は軽量で比較的物性バランスに
優れることから、断熱材、緩衝材などとして人世に利用
されている8発泡ポリオレフィンの93a方法としては
従来より、低沸点の炭化水素化合物を発泡材として用い
発泡材とポリオレフィンの混合物を加圧下に加熱溶融し
て常圧下に押し出すことで発泡する方法、あるいは、発
泡材とポリオレフィンをif!合成形成形つい?1′過
酸化物で加熱架橋し、発泡するか、放射線で架橋しさら
に加熱発泡する方法などが知られている。特に敢りt腺
で梁橘し、ついで発泡する方法は、架橋が低温で行える
こと、成形、架橋、発泡が別々に行えることから、良好
な発泡体が得られることが知られている。
Since polyolefin foam is lightweight and has a relatively good balance of physical properties, the 93a method for producing 8-foamed polyolefin, which is used in the world as insulation and cushioning materials, has conventionally used a low-boiling-point hydrocarbon compound as a foaming material. A method of foaming by heating and melting a mixture of a foaming material and a polyolefin under pressure and extruding it under normal pressure, or a method of foaming a mixture of a foaming material and a polyolefin using IF! Is it a synthetic form? Known methods include heating and crosslinking with 1' peroxide and foaming, or crosslinking with radiation and then heating and foaming. In particular, it is known that a method of forming the material with a T gland and then foaming produces a good foam because crosslinking can be performed at low temperatures and molding, crosslinking, and foaming can be performed separately.

(発明が解決しようとする!IB) しかしながら、放射線による架橋はポリエチレンなどで
は架橋しやすいが、通常は架橋助剤が必要であり、特に
プロピレンなどのα−オレフィンでは多唖の架橋助剤と
比較的高締型の放射線を照射する必要があるなどの問題
があった。
(The invention attempts to solve this! IB) However, although crosslinking by radiation is easy to crosslink with polyethylene, etc., a crosslinking auxiliary agent is usually required, and in particular, for α-olefins such as propylene, compared with multi-tonal crosslinking auxiliary agents. There were problems such as the need to irradiate high-target radiation.

(課題を解決するための手段〕 本発明者らは上記問題を解決して発泡ポリオレフィンを
93aする方法に−)いて鋭意探索し、本発明を完成し
た。
(Means for Solving the Problems) The present inventors have earnestly searched for a method for solving the above problems and producing foamed polyolefin 93a, and have completed the present invention.

即ち、本発明は、アルケニルシランとオレフィンの共重
合体と発泡剤を含有するポリオレフィン成形物に放射線
を照射した後、発泡剤の分解温膚以上に加熱して発泡さ
せることを特徴とする発泡ポリオレフィンの製造方法で
ある。
That is, the present invention provides a foamed polyolefin, which is characterized by irradiating a polyolefin molded product containing an alkenylsilane-olefin copolymer and a foaming agent with radiation, and then foaming it by heating it to a temperature above the skin temperature at which the foaming agent decomposes. This is a manufacturing method.

本発明においてアルケニルシランとオレフィンの共重合
体は通常オレフィンとフルケニル7ランを遷移金属触媒
と有機金属化合物からなるいわゆるチーグラー・ナツタ
触媒を用いて11合することができ例えば、米国特許第
3.223.6f36号にその例が開示されている。さ
らにポリオレフィンをパーオキサイドなどのラジカル重
合開始剤の存在下にアルケニルシランと加熱処理するこ
とによってグラフト重合して得たグラフト共重合体であ
っても良い、アルケニルシランとしては少zくとも一つ
のSiH結合を有するものが好ましく用いられ、例えば
、一般式11gc=cl+−(C11g)a−5IHp
Rz−p (式中nは0〜12、pは1〜3、Rは炭素
数1〜12の炭化水素残基、)で表される化合物が例示
でき、具体的にはビニルシラン、アリルンラン、ブテニ
ルンラン、ペンテニルンラン、あるいはこれらの七ツマ
−の1〜3個の5L−H結合の[Iがクロルで置換され
た化合物などが例示できる。またオレフィンtしては一
触弐 o、c=co−R(式中Rは炭素数1−12の炭
化水素残基、) で示される化合物が例示でき、具体的
にはエチレン、プロピレン、ブテン−12ペンテン−1
、ヘキセン−1,2−メチルペンテン、ヘプテン−1,
オクテン−1などのα−オレフィンの他にスチレンまた
はその誘導体も例示される。
In the present invention, the copolymer of alkenylsilane and olefin can be prepared by combining an olefin and a fulkenyl 7-lane using a so-called Ziegler-Natsuta catalyst consisting of a transition metal catalyst and an organometallic compound. An example is disclosed in No. .6f36. Furthermore, it may be a graft copolymer obtained by graft polymerization by heat treating a polyolefin with an alkenylsilane in the presence of a radical polymerization initiator such as peroxide. Those having a bond are preferably used, for example, the general formula 11gc=cl+-(C11g)a-5IHp
Examples include compounds represented by Rz-p (in the formula, n is 0 to 12, p is 1 to 3, and R is a hydrocarbon residue having 1 to 12 carbon atoms), and specific examples include vinylsilane, allyrunrane, butenylrunrane. , pentenyl, or compounds in which [I of 1 to 3 5L-H bonds of these heptads are substituted with chloro. Examples of olefins include compounds represented by the following formula: 1-1-2 o, c=co-R (in the formula, R is a hydrocarbon residue having 1 to 12 carbon atoms), and specific examples include ethylene, propylene, butene, etc. -12pentene-1
, hexene-1,2-methylpentene, heptene-1,
In addition to α-olefins such as octene-1, styrene or derivatives thereof are also exemplified.

本発明においてオレフィン上アルケニルシランの共重合
体は、上記米国特許に記載された、T1Clコとトリエ
チルアルミニウムからなる触媒も使用できるがより好ま
しくはその後、開発された種々の高活性でポリオレフィ
ンを与える触媒が利用される。
In the present invention, for the copolymer of alkenylsilane on olefin, a catalyst consisting of T1Cl and triethylaluminum described in the above-mentioned US patent can also be used, but it is more preferable to use various highly active catalysts that have been developed since then and give polyolefins. is used.

重合法としても不活性溶媒を使用する溶媒法の池に塊状
重合法、気相重合法も採用できるにこで遷移金属化合物
とを機金属化合物からなる触媒としては、遷移金属化合
物としてはハロゲン化チタンが、有機金属化合物として
は有機アルミニウム化合物が好ましく用いられる0例え
ば四塩化チタンを金属アルミニウム、水素成いは有機ア
ルミニウムで還元して得た三塩化チタンを電子供与性化
合物で変性処理したものと有機アルミニウム化合物、さ
らに必要に応じ含酸素有機化合物などの電子供与性化合
物からなる触媒系、或いはハロゲン化マグネンウム等の
jU体或いはそれらを電子供与性化合物で処理したもの
にハロゲン化チタンを担持して得た′&移金金属化合物
触媒有機アルミニウム化合物、必要に応し含酸素a機化
合物などの電子供与性化合物からなる触媒系、あるいは
塩化マグネシウムとアルコールの反応物を炭化水素溶媒
中に熔解し、ついで四塩化チタンなどの沈澱剤で処理す
ることで炭化水素溶媒に不溶化し、必要に応しエステル
、エーテルなどのttt r−供与性の化合物で処理し
・ついでハロゲン化チタンで処理する方法などによって
得られる遷移金属化合物触媒と有機てルミニウム化合物
、必要に応じ含酸素有機化合物などの電子供与性化合物
からなる触媒系等が例示される(例えば、以下の文献に
種々の例が記載されている。 Ziegler−NaL
ta Catalysts andPolyaeriz
aLlon  by  John  Boar  Jr
(^rademlc  Press)、Journal
 or Macrosorecular 5ience
 Reviewsin Macro*olecular
 Chemistry and Phys:cs、C2
4(3) 355−385(1984)、同C25(1
) 578−597(1985))。
In addition to the solvent method that uses an inert solvent as a polymerization method, bulk polymerization method and gas phase polymerization method can also be used. When titanium is used, an organoaluminum compound is preferably used as the organometallic compound.For example, titanium trichloride obtained by reducing titanium tetrachloride with metal aluminum, hydrogen, or organoaluminum is modified with an electron-donating compound. Titanium halide is supported on a catalyst system consisting of an organoaluminum compound and, if necessary, an electron-donating compound such as an oxygen-containing organic compound, or a jU form such as magnesium halide, or a product treated with an electron-donating compound. The obtained '& transfer metal compound catalyst organoaluminum compound, optionally a catalyst system consisting of an electron-donating compound such as an oxygen-containing a-organic compound, or a reaction product of magnesium chloride and alcohol is dissolved in a hydrocarbon solvent, Then, it is treated with a precipitant such as titanium tetrachloride to make it insoluble in a hydrocarbon solvent, and if necessary, it is treated with a ttt r-donating compound such as an ester or ether, and then treated with a titanium halide. Examples include catalyst systems comprising the resulting transition metal compound catalyst, an organic aluminum compound, and, if necessary, an electron-donating compound such as an oxygen-containing organic compound (for example, various examples are described in the following literature). Ziegler-NaL
Catalysts and Polyaeriz
aLlon by John Boar Jr.
(^rademlc Press), Journal
or Macrosoricular 5ience
Reviews in Macro*olecular
Chemistry and Phys: cs, C2
4(3) 355-385 (1984), same C25(1
) 578-597 (1985)).

あるいは炭化水素溶剤に可溶なi!!移金属触媒とアル
ミノキサンからなる触媒を用いて重合することもできる
Or i! which is soluble in hydrocarbon solvents! ! Polymerization can also be carried out using a catalyst consisting of a transfer metal catalyst and an aluminoxane.

ここで電子供与性化合物としては通常エーテル、エステ
ル、オルソエステル、アルコキシ硅素化合物などの含酸
素化合物が好ましく例示でき、さらにアルコール、アル
デヒド、水なども使用可能である。
As the electron-donating compound, oxygen-containing compounds such as ethers, esters, orthoesters, and alkoxy silicon compounds are generally preferred, and alcohols, aldehydes, water, and the like can also be used.

有機アルミニラ・ム化合物としては、トリアルキルアル
ミニウム、ジアルキルアルミニウムハライド、アルキル
アルミニウムセス牛ハライド、アルキルアルミニウムシ
バライドが使用でき、/ルキル基としではメチル基、エ
チル基、プロピル基、ブチル基、ヘキシル基などが例示
され、ハライドとしでは塩素、臭素、沃素が例示される
。またアルミノキサンとしては上記有機アルミニウムと
水または結晶水とを反応することでir#られるオリゴ
マールポリマーである。
As the organic aluminium compound, trialkylaluminum, dialkylaluminum halide, alkylaluminum seth halide, and alkylaluminum civalide can be used. Examples of the /alkyl group include methyl group, ethyl group, propyl group, butyl group, hexyl group, etc. Examples include halides such as chlorine, bromine, and iodine. The aluminoxane is an oligomer polymer which can be IR-treated by reacting the organic aluminum with water or water of crystallization.

ここでアルケニルシランとオレフィンの重合割合として
は特に制限は無いが、ポリオレフィンとのln合という
意味からは、通常アルケニルシランが0.001〜30
モルχ程度、好ましくは0.1−10モルχである。ま
た混合せずに共重合体単独で用いる場合には好ましくは
o、ooi〜5モル2である。
There is no particular restriction on the polymerization ratio of alkenylsilane and olefin, but from the standpoint of ln combination with polyolefin, alkenylsilane is usually 0.001 to 30%
It is about mol χ, preferably 0.1-10 mol χ. Further, when the copolymer is used alone without being mixed, the amount is preferably o, ooi to 5 mol 2.

重合体の分子量としては特に制限はないが、混合して用
いるポリオレフィンの分子量と同程度あるいはそれ以下
とするのが好ましい、場合によっては、アルケニルシラ
ンを含有しない他はポリオレフィンと同様の重合(&[
l成、分子量等)を行って用いても良い0分子量として
は10000−1000000程度である。
There is no particular restriction on the molecular weight of the polymer, but it is preferably the same or lower than the molecular weight of the polyolefin used in the mixture.
The zero molecular weight that may be used after carrying out a molecular weight synthesis, molecular weight, etc.) is about 10,000 to 1,000,000.

ポリオレフィンにアルケニルシランをグラフトする方法
としては特に制限はなく、通常のグラフト共重合に用い
る方法及び条件が利用でき、通常は用いるポリオレフィ
ンとアルケニルシランの存在下にラジカル開始剤の分解
温度以上に加熱することで簡単にグラフト共重合するこ
とができる。
There are no particular restrictions on the method of grafting alkenylsilane to polyolefin, and the methods and conditions used for ordinary graft copolymerization can be used. Usually, the method and conditions used for graft copolymerization are heated to a temperature higher than the decomposition temperature of the radical initiator in the presence of the polyolefin and alkenylsilane used. This allows easy graft copolymerization.

本発明において用いるポリオレフィンとしては上記一般
式 1.c=cH−R(式中Rは炭素数1−12の炭化
水素残基、)で示されるオレフィン、具体的にはエチレ
ン、プロピレン、ブテン−1,ペンテン−1,ヘキセン
−1,2−メチルペンテン、ヘプテン−1、オクテン−
1などのα−オレフィンの他にスチレンまたはその誘導
体の単独重合体のみならず相互のランダム共重合体、あ
るいは、始めに成るオレフィン単独、或いは少量の他の
オレフィンと共重合し、ついで2N以上のオレフィンを
共重合することによって製造される所謂ブロック共重合
体などが例示される。特に単独では架橋しにくいプロピ
レンなどのα−オレフィンまたはその共重合体に本発明
の方法を適用すると効果的である。これらのポリオレフ
ィンの製造法については既に公知であり種々の銘柄のも
のが市場で人手可能である、またアルケニルシランを用
いない他は上記オレフィンとアルケニルシランの重合体
の製造法と同様に行うことで製造可能である。
The polyolefin used in the present invention has the above general formula 1. Olefins represented by c=cH-R (wherein R is a hydrocarbon residue having 1 to 12 carbon atoms), specifically ethylene, propylene, butene-1, pentene-1, hexene-1,2-methyl Pentene, heptene-1, octene-
In addition to α-olefins such as 1, styrene or its derivatives are not only homopolymers but also random copolymers of each other, or the starting olefin alone or copolymerized with a small amount of other olefins, and then 2N or more Examples include so-called block copolymers produced by copolymerizing olefins. It is particularly effective to apply the method of the present invention to α-olefins such as propylene or copolymers thereof, which are difficult to crosslink when used alone. The production method for these polyolefins is already known and various brands are available on the market, and the method for producing the above-mentioned olefin and alkenylsilane polymer can be used, except that alkenylsilane is not used. Manufacturable.

本発明においては上記アルケニルシランとオレフィンの
共重合体は通常、アルケニルシランを含有しないポリオ
レフィンと混合するか、あるいはアルケニルシランを含
有しないポリオレフィンを混合せずにアルケニルシラン
の共重合体のみを用ることができる。混合して用いる際
のアルケニルシランとオレフィンの共重合体の使用割合
としては、共重合体中のフルケニルシラン含嗜にもよる
が通常?It合物中の共重合体の割合がQ、 1wt%
以上であるのが好ましく、放射線を照射する際のポリオ
レフィン中にアルケニルシランが0.005wLZ程1
度存在するようにするのが好ましい、混合に際し公知の
種々の添加剤を用いることは可能であり特に制限はない
In the present invention, the copolymer of alkenylsilane and olefin is usually mixed with a polyolefin that does not contain alkenylsilane, or only the copolymer of alkenylsilane is used without mixing polyolefin that does not contain alkenylsilane. I can do it. The proportion of copolymer of alkenylsilane and olefin used when mixed depends on the content of fulkenylsilane in the copolymer, but is it normal? The proportion of copolymer in the It compound is Q, 1wt%
It is preferable that the amount of alkenylsilane is about 0.005wLZ1 in the polyolefin when irradiated with radiation.
It is possible to use various known additives at the time of mixing, and there are no particular limitations.

放射線による架橋に先立ち、発泡剤とともに加熱溶融混
合し所望の形状に成形される。この除用いる発泡剤とし
ては、分解点が上記成形温度より高(、分解して気体を
発生するものであればどのようなものでも使用可能であ
り、発生気体が不活性であり使用し易いという点からも
、アゾジカルボンアミドなどのアゾ系の化合物が好まし
く用いられる0発泡剤の混合割合としては、発泡剤の特
性により異なるがアブジカルボンアミドなどで0゜1〜
50−tχ程度、好ましくは1〜40−tχ程度である
Prior to crosslinking with radiation, the material is heated, melted and mixed with a foaming agent and molded into a desired shape. As the foaming agent to be used, any foaming agent whose decomposition point is higher than the above-mentioned molding temperature (and which decomposes to generate gas) can be used, and the gas generated is inert and easy to use. From this point of view, azo compounds such as azodicarbonamide are preferably used. The mixing ratio of the blowing agent varies depending on the characteristics of the blowing agent, but abdicarbonamide etc.
It is about 50-tχ, preferably about 1 to 40-tχ.

上記発泡剤を含有するポリオレフィンは所望の形状に成
形されついで放射線の照射による架橋反応が行われる 架橋反応を行う際には、不活性ガス雰囲気であれ、酸素
の存在下であれ可能であり目的に応じその環境を選ぶこ
とができる。
The polyolefin containing the above-mentioned blowing agent is molded into a desired shape and then subjected to a crosslinking reaction by irradiation with radiation.When carrying out the crosslinking reaction, it is possible to perform the crosslinking reaction in an inert gas atmosphere or in the presence of oxygen. You can choose the environment according to your needs.

本発明において利用する放射線としてはα線、β線、T
線、X、線、中性子線などが例示でき、特にrklA、
ilf子線が好ましく利用でき、照射量としては、数+
rad〜数十Mrad程度照射するのが一触的であり、
架橋度が発泡に好適な条件となるような線量照射され、
ポリオレフィンの性質あるいは発泡の程度によってこと
なるが通常架橋度とじてlO〜902となるようにする
のが一触的である。
The radiation used in the present invention includes α rays, β rays, T
Examples include rays, X, rays, and neutron beams, especially rklA,
ILF coson beams can be preferably used, and the irradiation dose is several +
It is a touch to irradiate from rad to several tens of Mrad,
Irradiation is carried out at a dose such that the degree of crosslinking is suitable for foaming.
Although it depends on the properties of the polyolefin or the degree of foaming, it is generally recommended that the degree of crosslinking be 10 to 902.

照射の温度としては特に制限は無く、ポリオレフィンの
耐熱温度以下で発泡剤の分解温度以下であればよいが、
通常常温で行えば充分である。
There are no particular restrictions on the irradiation temperature, and it may be below the heat-resistant temperature of the polyolefin and below the decomposition temperature of the blowing agent.
Normally, it is sufficient to carry out the reaction at room temperature.

こうして架橋した成形物は、発泡剤の分解温度以上に加
熱し発泡される。この際の好ましい温度、時間について
はポリオレフ4ンの特性により異なり特定できないが通
常上記成形温度のlO〜150゛C高温で所望の発泡倍
率になるまで行われる。
The thus crosslinked molded product is heated to a temperature higher than the decomposition temperature of the foaming agent and foamed. The preferable temperature and time at this time vary depending on the characteristics of the polyolefin 4 and cannot be specified, but it is usually carried out at a temperature of 10 to 150°C above the above-mentioned molding temperature until the desired expansion ratio is achieved.

〔実施例〕〔Example〕

以下に実施例を示しさらに本発明を説明する。 The present invention will be further explained with reference to Examples below.

実験例1 直径12−の鋼球9kgの入った内容積4!の粉砕用ポ
ットを4個装備した振動ミルを用意する。各ボットに窒
素雰囲気下で塩化マグネシウム300g、テトラエトキ
シシラン60I11およびα、α、α−トリクロロトル
エン45m1を入れ、40時間粉砕した。
Experimental example 1 Internal volume 4 containing 9 kg of steel balls with a diameter of 12-! Prepare a vibrating mill equipped with four grinding pots. 300 g of magnesium chloride, 60I11 of tetraethoxysilane, and 45 ml of α,α,α-trichlorotoluene were placed in each bottle under a nitrogen atmosphere, and the mixture was ground for 40 hours.

こうして得た共粉砕物300gを51のフラスコに入れ
、四塩化チタン1.5eおよびトルエン1.5 ffi
を加え、100°Cで30分間撹拌処理し、次いで上澄
液を除いた。再び四塩化チタン1.5iおよびトルエン
1.51を加え、100℃で30分間撹拌処理し、次い
で上澄液を除いた。その後固形分をn−ヘキサンで繰り
返し洗浄して遷移金属触媒スラリーを得た。一部をサン
プリングしてチタン分を分析したところチタン分は1.
9wL%であった。
300 g of the thus obtained co-pulverized product was placed in a 51 flask, and 1.5 e of titanium tetrachloride and 1.5 ffi of toluene were added.
was added, stirred at 100°C for 30 minutes, and then the supernatant was removed. 1.5 i of titanium tetrachloride and 1.5 l of toluene were added again, stirred at 100° C. for 30 minutes, and then the supernatant was removed. Thereafter, the solid content was repeatedly washed with n-hexane to obtain a transition metal catalyst slurry. When we sampled a portion and analyzed the titanium content, the titanium content was 1.
It was 9wL%.

内容積200 mの耐圧ガラスオートクレーブに窒素雰
囲気下トルエン40d、上記遷移金属触媒50q、ジエ
チルアルミニウムクロライドO,128aN、ρ−トル
イル酸メチル0.06afおよびトリエチルアルミニウ
ム0.20−を入れ、ついでビニルシラン4.Ogを圧
入した後、プロピレンを5 kg / iニーになるま
で装入し、70°Cで圧カ一定で2時間重合した。その
後スラリーを取り出し、濾過乾燥して43gのパウダー
を()た、135°Cのテトラリン溶液で測定した掻限
粘度(以下ηと略記する)、示差熱分析装置を用い10
℃/−10で昇温或いは降温することで融点及び結晶化
温度を最大ピーク温度と・して測定した所、得られたパ
ウダーは、ηが1.61であり、融点156℃、結晶化
温度118℃である結晶性のポリプロピレンであった。
In a pressure-resistant glass autoclave with an internal volume of 200 m, 40 d of toluene, 50 q of the above transition metal catalyst, O, 128 aN of diethylaluminium chloride, 0.06 af of ρ-methyl toluate, and 0.20 of triethyl aluminum were placed in a nitrogen atmosphere, and then 4. After pressurizing Og, propylene was charged at a rate of 5 kg/i knee, and polymerization was carried out at 70°C for 2 hours at a constant pressure. After that, the slurry was taken out, filtered and dried to obtain 43g of powder (2), and the limiting viscosity (hereinafter abbreviated as η) was measured with a tetralin solution at 135°C using a differential thermal analyzer.
When the melting point and crystallization temperature were measured with the maximum peak temperature by increasing or decreasing the temperature at 156°C/-10°C, the obtained powder had an η of 1.61, a melting point of 156°C, and a crystallization temperature of 156°C. It was crystalline polypropylene with a temperature of 118°C.

尚元素分析によればビニルシラン単位を1.8wL%含
有していた。
According to elemental analysis, it contained 1.8 wL% of vinylsilane units.

得られた共重合体に、フェノール系の安定剤10/xo
ooo重置比(対ポリプロピレン共重合体)およびステ
アリン酸カルシウム15/ 10000 重Jlt 比
、アブジカルボンアミド1000/1ooooli I
比を加え厚さ2鳳漏と1mmのlc■X5C−のシート
とした。このシートにを電子線(750kV)をIMr
ad照射し、ついでノートは250℃に10分間加熱し
て発泡倍率r) 20 (nの発泡ソートを得た。シー
トの表面は滑らかであり断面の観測によれば均一に発泡
していた。
A phenolic stabilizer 10/xo was added to the obtained copolymer.
ooo superposition ratio (to polypropylene copolymer) and calcium stearate 15/10000 weight Jlt ratio, abdicarbonamide 1000/1ooooli I
The ratio was added to make a sheet with a thickness of 2 mm and a thickness of 1 mm. An electron beam (750kV) is applied to this sheet.
ad irradiation, and then the notebook was heated to 250° C. for 10 minutes to obtain a foam sort with a foaming ratio r) 20 (n. The surface of the sheet was smooth, and observation of the cross section showed that it was foamed uniformly.

比較例1 ビニルシランを存在させること無く重合して得たポリプ
ロピレンのηは1.61であり、融点156°C1結晶
化温度118℃の結晶性ポリプI−1ピレンを用いて同
様にしたところ、架橋していないため放射線を照射した
後加熱したところ変形してしつまった。
Comparative Example 1 The η of polypropylene obtained by polymerization without the presence of vinyl silane was 1.61, and when the same procedure was performed using crystalline polyp I-1 pyrene with a melting point of 156°C and a crystallization temperature of 118°C, crosslinking was observed. When the material was heated after being irradiated with radiation, it became deformed.

実施例2 ビニルシランに変えアリルシランを用いて重合してアリ
ル9576社1.3wtχのポリプロピレンを得、実施
例1と同様に発泡体を製造したところ約20倍の発泡倍
率の均一な発泡体が得られた。
Example 2 Polypropylene of Allyl 9576 Co., Ltd., 1.3 wtχ was obtained by polymerization using allylsilane instead of vinylsilane, and a foam was produced in the same manner as in Example 1. A uniform foam with an expansion ratio of about 20 times was obtained. Ta.

、実施例3 アゾジカルボンアミド2000/10000重量比を加
え、また電子線の照射を2Mradとした他は実施例1
と同様にしたところ発泡倍率約30倍の均一な発泡体が
得られた。
, Example 3 Example 1 except that azodicarbonamide 2000/10000 weight ratio was added and the electron beam irradiation was set to 2 Mrad.
In the same manner as above, a uniform foam with a foaming ratio of about 30 times was obtained.

実施例4 電子線にかえ&@COによるr線を2Mrad照射した
他は実施例1と同様にしたところ発泡倍率約25倍の均
一な発泡体が得られた。
Example 4 A uniform foam with a foaming ratio of about 25 times was obtained in the same manner as in Example 1 except that 2 Mrad of r-rays and @CO were used instead of electron beams.

〔発明の効果) 本発明の方法を実施することにより均一な発泡体が闇便
に得られ工業的に極めて価値がある。
[Effects of the Invention] By carrying out the method of the present invention, a uniform foam can be obtained easily and is extremely valuable industrially.

Claims (1)

【特許請求の範囲】[Claims] 1、アルケニルシランとオレフィンの共重合体と発泡剤
を含有するポリオレフィン成形物に放射線を照射した後
、発泡剤の分解温度以上に加熱して発泡させることを特
徴とする発泡ポリオレフィンの製造方法。
1. A method for producing a foamed polyolefin, which comprises irradiating a polyolefin molded product containing an alkenylsilane and olefin copolymer and a foaming agent with radiation, and then foaming the product by heating to a temperature higher than the decomposition temperature of the foaming agent.
JP12043989A 1989-05-16 1989-05-16 Method for producing expanded polyolefin Expired - Lifetime JP2775704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12043989A JP2775704B2 (en) 1989-05-16 1989-05-16 Method for producing expanded polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12043989A JP2775704B2 (en) 1989-05-16 1989-05-16 Method for producing expanded polyolefin

Publications (2)

Publication Number Publication Date
JPH02300240A true JPH02300240A (en) 1990-12-12
JP2775704B2 JP2775704B2 (en) 1998-07-16

Family

ID=14786234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12043989A Expired - Lifetime JP2775704B2 (en) 1989-05-16 1989-05-16 Method for producing expanded polyolefin

Country Status (1)

Country Link
JP (1) JP2775704B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011955A1 (en) * 2001-07-31 2003-02-13 Compco Pty Ltd Methods of recycling and/or upgrading olefin (co)polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011955A1 (en) * 2001-07-31 2003-02-13 Compco Pty Ltd Methods of recycling and/or upgrading olefin (co)polymers

Also Published As

Publication number Publication date
JP2775704B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JPH02503687A (en) Method for producing silica gel-supported metallocene alumoxane catalyst
JP2880725B2 (en) Method for producing crosslinked polyolefin
JP2988942B2 (en) Method for producing crosslinked polyolefin
JPH02300240A (en) Production of expanded polyolefin
JP3181704B2 (en) Method for producing cross-linked molded article of polyolefin
JPH0333135A (en) Oriented polyolefin film
JP3281132B2 (en) Method for producing crosslinked polyolefin
JP2880732B2 (en) Method for producing polyolefin resin composition
JP3174407B2 (en) Method for producing crosslinked polyolefin
JPH03750A (en) Polyolefin resin composition
JP3171653B2 (en) Method for producing crosslinked polyolefin molded article
JP3176140B2 (en) Method for producing crosslinked polyolefin
JPH04239527A (en) Production of molded product of cross-linked polyolefin
JP3176141B2 (en) Method for producing crosslinked polyolefin
JP3171697B2 (en) Method for producing crosslinked polyolefin
JP3281133B2 (en) Method for producing crosslinked polyolefin
JP3171655B2 (en) Method for producing crosslinked polyolefin molded article
JP3171666B2 (en) Method for producing crosslinked polyolefin molded article
JPH0774295B2 (en) Method for producing polypropylene resin composition
JP3171709B2 (en) Modification method of polyolefin
JP3142929B2 (en) Method for producing cross-linked molded product
JPH03122127A (en) Production of crosslinked polyolefin
JPH0393836A (en) Production of crosslinked polyolefin
JPH0340864A (en) Yarn of polyolefin
JPH04248842A (en) Production of crosslinked molded product of polyolefin