JPH0230017A - Resign mold parts - Google Patents

Resign mold parts

Info

Publication number
JPH0230017A
JPH0230017A JP17920288A JP17920288A JPH0230017A JP H0230017 A JPH0230017 A JP H0230017A JP 17920288 A JP17920288 A JP 17920288A JP 17920288 A JP17920288 A JP 17920288A JP H0230017 A JPH0230017 A JP H0230017A
Authority
JP
Japan
Prior art keywords
resin
film
gas
aluminum
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17920288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kagawa
加川 芳弘
Michihiko Koyama
充彦 小山
Mitsuru Oyamada
小山田 満
Toshio Shimizu
敏夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17920288A priority Critical patent/JPH0230017A/en
Publication of JPH0230017A publication Critical patent/JPH0230017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Abstract

PURPOSE:To improve the mechanical characteristic and the thermal shock resistance of high voltage insulation parts by forming the inorganic film having the main component of aluminum and the thickness below a specific one on the surface of a cast resin, and forming an epoxy resin coating film on the surface of the inorganic film. CONSTITUTION:The surface of a cast resin 2 is degreased with an organic solution, and surface rough machining with a sand blast is made. An aluminum system inorganic filling material 4 using the solution of aluminum is applied to the surface mentioned above with a spray gun at the thickness below 1.0mm. When the thickness is 1.0mm or more, a fine crack is easily occurred on a film surface. Moreover an epoxy coating film 5 is formed on the material 4. This constitution enables mechanical and thermal characteristics to be improved with electric characteristic unlowered since the resin 2 including a glass fiber and a silica powder is unexposable directory to a SF cracked gas by means of the film 4.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば、六フッ化イオウ等の絶縁カスを使用
した電気機器に用いられる高電圧絶縁用樹脂モールド部
品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a resin molded part for high voltage insulation used in electrical equipment using insulating scum such as sulfur hexafluoride.

(従来の技術) 近年、電気機器は、ますます縮小化、大容量化の傾向が
強くなり、機器の絶縁も高電圧の領域では、六フッ化イ
オウガス(以下、SF6ガスという)等の絶縁ガスとエ
ポキシ注型品等の固体絶縁の組合せが用いられ、前記の
要求に対応している。
(Conventional technology) In recent years, there has been a strong tendency for electrical equipment to become smaller and larger in capacity, and in the high voltage range, insulating gas such as sulfur hexafluoride gas (hereinafter referred to as SF6 gas) is used to insulate equipment. A combination of solid insulation such as epoxy and cast epoxy is used to meet the above requirements.

高電圧機器の固体絶縁に使用される材料は、股に樹脂単
体で用いられることはなく、無機質の充填材が多量に添
加されている。無機質充填材の添加は、熱膨張率低減に
よる耐熱衝撃性向上、硬化収縮の低減1機械的特性、耐
摩耗性、耐熱性および耐薬品性等の特性向上をもたらす
。無機質の充填材として代表的なものは、シリカ粉末、
ガラス繊維、炭酸カルシウム等が知られている。特に、
ガラス繊維を充填させることにより、耐熱衝撃性と機械
的特性を著しく改善することができる。
Materials used for solid insulation of high-voltage equipment are not made of resin alone, but have large amounts of inorganic fillers added to them. Addition of an inorganic filler brings about improvement in thermal shock resistance by reducing the coefficient of thermal expansion, reduction in curing shrinkage, improvement in mechanical properties, abrasion resistance, heat resistance, chemical resistance, and other properties. Typical inorganic fillers are silica powder,
Glass fiber, calcium carbonate, etc. are known. especially,
By filling with glass fibers, thermal shock resistance and mechanical properties can be significantly improved.

しかしながら、SF6ガス中で使用する高電圧絶縁用樹
脂モールド部品を対象とした場合、これらの充填材のほ
とんどが不適当なものとなる。
However, most of these fillers are unsuitable for high voltage insulating resin molded parts used in SF6 gas.

周知のように、SF6ガスは、その優れた消弧性、絶縁
耐ツクを利用して高電圧機器の絶縁媒体として広く適用
されている。このSF6ガスは、通常化学的に安定であ
るが、アーク、コロナ、熱等により分解する。
As is well known, SF6 gas is widely used as an insulating medium for high voltage equipment due to its excellent arc extinguishing properties and dielectric strength. This SF6 gas is usually chemically stable, but decomposes due to arc, corona, heat, etc.

このSF6ガスには、SF4 、32 F2 。This SF6 gas includes SF4 and 32F2.

SOF2 、SOF4.302 F2等があり、これら
の分解ガスは、水分等の共存下で上記した無機質充填材
と反応し、樹脂硬化物の種々の特性を著しく低下さぜる
There are SOF2, SOF4.302F2, etc., and these decomposed gases react with the above-mentioned inorganic fillers in the presence of moisture, etc., and significantly deteriorate various properties of the cured resin material.

第4図は、SF6ガス圧4a−tlll、電流持続時間
60 Sec、放電回数10回1時間間隔3〜5m団を
1サイクルとする大電流のアークによってSF6分解ガ
スを密閉容器中に発生させ、それぞれの充填材を含有す
るエポキシ樹脂注型材料の絶縁抵抗の変化を示したもの
である。ただし、放電時間は積算した@間を示す。同図
から、シリカ粉末およびガラス繊維を充填した系は、分
解ガスの影響を受け、絶縁抵抗の低下が著しい。これら
の組成は、耐熱衝撃性、a域内特性に優れているが、S
F6ガス中で絶縁材料として使用することはおおいに問
題がある。
FIG. 4 shows that SF6 decomposed gas is generated in a closed container by a large current arc with an SF6 gas pressure of 4a-tlll, a current duration of 60 sec, and a cycle of 10 discharges and 3-5m groups at 1-hour intervals. It shows the change in insulation resistance of epoxy resin casting materials containing each filler. However, the discharge time indicates the accumulated @ interval. As can be seen from the figure, the system filled with silica powder and glass fiber is affected by decomposition gas and has a significant drop in insulation resistance. These compositions have excellent thermal shock resistance and characteristics within the a range, but S
Its use as an insulating material in F6 gas is highly problematic.

そこで、注型材料をSF6ガス中で使用可能とする1つ
の方法は、SF5分解ガスに強いて充填材を選定するこ
とである。
Therefore, one method of making the casting material usable in SF6 gas is to select a filler that is resistant to SF5 decomposition gas.

アルミナ粉末(Aで203 )、Ca F。Alumina powder (203 in A), CaF.

Ca S04等がこれにあたるが、機械的な特性面から
Ca F、Ca SO4等は実用性に乏しい。このうち
、アルミナ粉末は、第4図に示すようにSF6分解ガス
に強く、機械的特性もCa F。
This includes Ca S04, etc., but Ca F, Ca SO4, etc. are not practical in terms of mechanical properties. Among these, alumina powder is resistant to SF6 decomposition gas, as shown in Figure 4, and has mechanical properties similar to those of CaF.

Ca 804等に比べて優れているため、SF6ガス用
の充填材として広く使用されてきた。
Since it is superior to Ca 804 etc., it has been widely used as a filler for SF6 gas.

(発明が解決しようとする課題) しかしながら、アルミナ粉末充填系も、シリカ粉末充填
系、ガラスIIi維充填系に比較すると、脆くかつ機械
的強度および耐熱衝撃性がかなり劣る。
(Problems to be Solved by the Invention) However, the alumina powder-filled system is also brittle and considerably inferior in mechanical strength and thermal shock resistance when compared to the silica powder-filled system and the glass IIi fiber-filled system.

−例として、次の組成のもののそれぞれの特性を第1表
に示す。
- By way of example, the properties of each of the following compositions are shown in Table 1.

組成−1 ビスフェノール型エポキシ樹脂 100重量部酸無水物
系硬化剤        85重量部アルミナ粉末  
       400重母部硬化促進剤       
    0.5重量部組成−2 ビスフェノール型エポキシ樹脂 100重量部酸無水物
系硬化剤        85重量部シリカ粉末 ガラス繊維 硬化促進剤 第  1 表 200重但部 200重量部 0.5@量部 第   2   表 また、曲げ強さの試験方法は、JISに7203に準拠
し、耐クラツク指数は、第2表に示す試験条件で熱衝撃
試験を行った。
Composition-1 Bisphenol type epoxy resin 100 parts by weight Acid anhydride curing agent 85 parts by weight Alumina powder
400 heavy mass curing accelerator
0.5 parts by weight Composition - 2 Bisphenol type epoxy resin 100 parts by weight Acid anhydride curing agent 85 parts by weight Silica powder Glass fiber curing accelerator No. 1 Table 200 parts by weight 200 parts by weight 0.5 @ parts by weight Table 2 The bending strength test method was based on JIS 7203, and the crack resistance index was determined by a thermal shock test under the test conditions shown in Table 2.

(以下 余白) *1単位は℃   *2単位はmin    *3  
硬化後室温に放置a、試験注型物を、決められた至温で
、決められた時間冷熱試験を繰り返す。試験が進むにつ
れて、冷熱試験の温度幅は徐々に増加する。
(Margin below) *1 unit is °C *2 unit is min *3
After curing, the test casting is left at room temperature a, and the cold test is repeated at a predetermined maximum temperature for a predetermined period of time. As the test progresses, the temperature range of the thermal test gradually increases.

低温は、ドライアイスで希望する温度まで冷却したIP
Aを入れた冷却槽で、高くまたは暖)潟は、窄温又は加
熱炉で得られる。
Low temperature is IP cooled to the desired temperature with dry ice.
In a cooling tank containing A, a high or warm) lagoon is obtained in a confinement or heating furnace.

b、試験注型物を試験するための繰返しサイクル、試験
の順序及び時間は上の表に記す。すべての温度は±2℃
以内に保持されなければならない。
b. The repetition cycle, test order and time for testing the test castings are given in the table above. All temperatures are ±2℃
must be kept within.

以上のように、SF6ガス中で使用可能であり、かつ機
械的強度及び耐熱衝撃性に優れた樹脂モールド部品を得
るには、種々の難点がある。
As described above, there are various difficulties in obtaining resin molded parts that can be used in SF6 gas and have excellent mechanical strength and thermal shock resistance.

本発明は、SF6ガス中で使用しても電気的特性が低下
することなく、かつ機械的特性及び耐熱衝撃性に優れた
樹脂モールド部品を提供することを目的とする。
An object of the present invention is to provide a resin molded component that does not deteriorate in electrical properties even when used in SF6 gas and has excellent mechanical properties and thermal shock resistance.

[発明の構成] (課題を解決するための手段) 本発明は、樹脂モールド部品において、注型樹脂の表面
にSF6分解ガスに強いアルミナ系無機質充填材を塗布
して、1#以下の被膜を形成し、更にその表面にエポキ
シ樹脂のコーティング被膜を形成することを特徴とする
ものでおる。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides resin molded parts by applying an alumina-based inorganic filler that is resistant to SF6 decomposition gas to the surface of the casting resin to form a coating of 1# or less. It is characterized by forming a coating film of epoxy resin on the surface.

(作 用) 注型樹脂の表面にSF6分解ガスに強い無機質の被膜と
樹脂層が形成されているから、SF6分解ガスから内部
の注型樹脂を保護すると同時に沿面の電気絶縁性を確保
する。又、樹脂モールド部品全体の機械的特性は、注型
樹脂が分担する。
(Function) Since an inorganic coating and a resin layer that are resistant to SF6 decomposition gas are formed on the surface of the casting resin, it protects the internal casting resin from SF6 decomposition gas and at the same time ensures electrical insulation along the surface. Furthermore, the mechanical properties of the entire resin molded part are shared by the casting resin.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明による樹脂モールド部品の一実施例で
あるレジン碍子の断面図であり、第2図は、第1図のA
部の拡大図である。レジン碍子1は前記した 組成−2
の材料を用いて注型により製作され、外周面に凹凸部を
設けた注型樹脂2と、この注型樹脂2の両端部に埋込ま
れ、図示しないねじ穴を有する金属インサート3と、注
型樹脂2の外表面に形成した耐SF6分解ガス性を有す
るアルミナ系無機質被膜4と、このアルミナ系無機質被
膜4の表面に形成した無機質充填材を含まないエポキシ
コーティング被膜5から構成されている。
FIG. 1 is a cross-sectional view of a resin insulator which is an embodiment of the resin molded part according to the present invention, and FIG. 2 is a cross-sectional view of A of FIG.
FIG. Resin insulator 1 has the above composition-2
A casting resin 2 manufactured by casting using a material of 2 and having an uneven surface on its outer peripheral surface, a metal insert 3 embedded in both ends of the casting resin 2 and having a screw hole (not shown), It consists of an alumina-based inorganic film 4 having SF6 decomposition gas resistance formed on the outer surface of the mold resin 2, and an epoxy coating film 5 containing no inorganic filler formed on the surface of this alumina-based inorganic film 4.

次に、アルミナ系無機質被膜4とエポキシコーティング
被膜5の製造方法を説明する。
Next, a method for manufacturing the alumina-based inorganic film 4 and the epoxy coating film 5 will be explained.

前記した組成−2の材料を用い、注型によって得られた
注型樹脂2の表面を有機溶剤により脱脂し、サンドブラ
ストによる表面粗しを行う。その表面にアルコールを溶
媒とするアルミナ系無機質充填材であるニュータックN
−1100(品用白煉瓦社の商品名)を、厚さ1.0.
以下にスプレーガンによって、塗りむらができないよう
に塗布する。
Using the material of Composition-2 described above, the surface of the casting resin 2 obtained by casting is degreased with an organic solvent, and the surface is roughened by sandblasting. Nutac N is an alumina-based inorganic filler that uses alcohol as a solvent on its surface.
-1100 (product name of Shinyo Shirorenga Co., Ltd.) with a thickness of 1.0.
Apply the following using a spray gun to avoid uneven coating.

厚さが1.0.以上になると被膜表面に微細な亀裂が発
生しやすい。
The thickness is 1.0. If the temperature exceeds that level, fine cracks are likely to occur on the surface of the coating.

アルミナ系無機質充填材の接着強さは、第3図に示すよ
うに被着体の表面粗さが粗いほど高くなる傾向がみられ
る。そこで、これを考慮して注型樹脂2の表面粗さは1
40期以上とした。
As shown in FIG. 3, the adhesive strength of the alumina-based inorganic filler tends to increase as the surface roughness of the adherend increases. Therefore, taking this into consideration, the surface roughness of the casting resin 2 is set to 1.
40 terms or more.

なお、乾燥条件は、室温×約1Hrで指触乾燥するか、
本実施例では120°C×10分以上とした。
The drying conditions are: dry to the touch at room temperature x approximately 1 hour;
In this example, the temperature was set at 120°C for 10 minutes or more.

このようにして得られたアルミナ系無機質被膜4は、ち
密であり、そのままでも使用可能であるが、機器への取
付は時等に他の物体に接触しアルミナ系無機質被膜4を
破損する恐れがあることから、被膜保護をするために更
に、その表面にビスフェノール型エポキシ樹脂であるア
ラルダイトCY232(日本チバガイギ社の商品名> 
 100FI部、アミン系硬化剤であるハードナー H
’1’951(日本チバガイギ社の商品名)10重量部
の配合物を塗布し、エポキシコーティング被膜5を形成
する。配合物の塗布には刷毛を用い、乾燥条件は60’
C1Hr以上とした。こうすることにより、アルミナ系
無機質被膜4は外部から保護される。
The alumina-based inorganic coating 4 thus obtained is dense and can be used as is, but when attached to equipment, there is a risk that it may come into contact with other objects and damage the alumina-based inorganic coating 4. Therefore, in order to protect the film, a bisphenol type epoxy resin, Araldite CY232 (trade name of Nippon Ciba-Geigi Co., Ltd.) is added to the surface of the film.
100FI part, hardener H which is an amine hardener
10 parts by weight of '1'951 (trade name of Nippon Ciba Geigi Co., Ltd.) is applied to form an epoxy coating film 5. A brush was used to apply the formulation, and the drying conditions were 60'.
C1Hr or more. By doing so, the alumina-based inorganic coating 4 is protected from the outside.

上記したアルミナ系無機質充填材でおるニュータック 
N−1100の硬化物は、セラミックスに近い特性を有
してあり、その被膜はち密で耐SF6ガスに対して優れ
ている。このように、アルミナ系無機質被膜4により、
ガラス繊維及びシリカ粉末を含む注型樹脂2がSF6分
解ガスに直接ざらされることがないため機械的特性が低
下することはない。
New tack made with the above alumina-based inorganic filler
The cured product of N-1100 has properties close to those of ceramics, and its coating is dense and has excellent resistance to SF6 gas. In this way, with the alumina-based inorganic coating 4,
Since the casting resin 2 containing glass fibers and silica powder is not directly exposed to SF6 decomposition gas, its mechanical properties do not deteriorate.

次に、上記実施例によるレジン碍子と従来のアルミナ粉
末充填系注型材料により製作したレジン碍子の特性比較
を行う。
Next, the characteristics of the resin insulator according to the above embodiment and the resin insulator manufactured using a conventional alumina powder-filled casting material will be compared.

まず、表面抵抗は、両者共に初期10150以上であり
、これを約0.I Vo1%のSF6分解ガスを含む3
. OKgf/cm2ゲージ圧のSF6ガス中に10日
間放置しても両者共に1013Ω以上を保持していた。
First, the initial surface resistance of both is 10150 or more, which is about 0. 3 containing SF6 decomposition gas with I Vo1%
.. Even after being left in SF6 gas at OKgf/cm2 gauge pressure for 10 days, both maintained a resistance of 1013Ω or more.

次に、0℃で1時間、  100℃で1時間の液相冷熱
サイクルを10回行い、前後の曲げ強度を求めた。
Next, a liquid phase cooling/heating cycle of 1 hour at 0°C and 1 hour at 100°C was performed 10 times, and the bending strength before and after was determined.

曲げ試験は、JISの規定による片持ちばり形の負荷方
式で、レジン碍子の先?a50mに静的曲げ負荷を加え
、その破壊荷重を求めるものである。従来のアルミナ粉
末充填系注型材料によるレジン碍子と上記実施例による
レジン碍子の初期の破壊強度は、3個の平均で640K
(Jf 、  880Kgfであったが、冷熱サイクル
後は従来の注型材料によるレジン碍子の破壊強度が平均
420KQfと低下し、耐荷重値である600Kgfを
下回った。しかし、上記実施例によるレジン碍子は、冷
熱サイクル後も800にg4とほとんど変化がなかった
。又、冷熱サイクル後の目視による外観検査で、アルミ
ナ系無機質被膜4.エポキシコーティング被膜5にふく
れ、亀裂、剥離の発生は認められなかった。
The bending test was performed using a cantilever beam loading method in accordance with JIS regulations, and the tip of the resin insulator was used. A static bending load is applied to a50m, and the breaking load is determined. The initial breaking strength of the resin insulator made of the conventional alumina powder-filled casting material and the resin insulator of the above example was 640K on average of the three pieces.
(Jf was 880 Kgf, but after the cooling/heating cycle, the breaking strength of the resin insulator made of the conventional casting material decreased to an average of 420 KQf, which was lower than the load capacity of 600 Kgf. However, the resin insulator according to the above example There was almost no change in g4 from 800 even after the cooling/heating cycle.In addition, visual inspection after the cooling/heating cycle revealed no blistering, cracking, or peeling of the alumina-based inorganic coating 4 or epoxy coating 5. .

「発明の効果] 以上説明したように、本発明によれば、機械的強度の高
い樹脂組成の注型物の表面にアルミナ系無機質被膜とエ
ポキシコーティング被膜を形成することにより、SF6
分解ガスによっても特性低下を生ずることがなく、機械
的、熱的特性にも優れた樹脂モールド部品を提供するこ
とができる。
"Effects of the Invention" As explained above, according to the present invention, SF6
It is possible to provide a resin molded part that does not suffer from deterioration of properties even by decomposed gas and has excellent mechanical and thermal properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のレジン碍子の構成を示す断
面図、第2図は第1図のA部の拡大図、第3図は本発明
の一実施例に用いたアルミナ系無機質充填材の被着体表
面粗さと接着強さの関係を示す線図、第4図は各種充填
材をパラメータとしたSF5分解ガス中でのエポキシ注
型品の絶縁抵抗の変化を示す線図である。 1・・・レジン碍子、  2・・・注型樹脂3・・・金
属インサート 4・・・アルミナ系fi機質被膜 5・・・エポキシコーティング被膜 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図 第4図 表&1#−? (、um) 第3図
Fig. 1 is a sectional view showing the structure of a resin insulator according to an embodiment of the present invention, Fig. 2 is an enlarged view of part A in Fig. 1, and Fig. 3 is an alumina-based inorganic insulator used in an embodiment of the present invention. A diagram showing the relationship between the surface roughness of the adherend and adhesive strength of the filler. Figure 4 is a diagram showing the change in insulation resistance of an epoxy cast product in SF5 decomposition gas using various fillers as parameters. be. 1...Resin insulator, 2...Casting resin 3...Metal insert 4...Alumina-based fi organic coating 5...Epoxy coating Agent Patent attorney Nori Chika Ken Yudo Daishimaru Ken Figure 1 Figure 2 Figure 4 Chart &1#-? (,um) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 樹脂モールド部品において、注型樹脂の表面にアルミナ
を主成分とする厚さ1.0mm以下の無機質被膜を形成
し、更にその表面にエポキシ樹脂コーティング被膜を形
成したことを特徴とする樹脂モールド部品。
A resin molded part, characterized in that an inorganic film containing alumina as a main component and having a thickness of 1.0 mm or less is formed on the surface of a casting resin, and an epoxy resin coating film is further formed on the surface.
JP17920288A 1988-07-20 1988-07-20 Resign mold parts Pending JPH0230017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17920288A JPH0230017A (en) 1988-07-20 1988-07-20 Resign mold parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17920288A JPH0230017A (en) 1988-07-20 1988-07-20 Resign mold parts

Publications (1)

Publication Number Publication Date
JPH0230017A true JPH0230017A (en) 1990-01-31

Family

ID=16061713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17920288A Pending JPH0230017A (en) 1988-07-20 1988-07-20 Resign mold parts

Country Status (1)

Country Link
JP (1) JPH0230017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099355A (en) * 1989-10-02 1992-03-24 Ricoh Company, Ltd. Optical element having heat control means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099355A (en) * 1989-10-02 1992-03-24 Ricoh Company, Ltd. Optical element having heat control means

Similar Documents

Publication Publication Date Title
Looms Insulators for high voltages
US5029969A (en) Optical fiber composite insulator and method of producing the same
JPH0230017A (en) Resign mold parts
US4830919A (en) Composition for forming a protective coating on carbon-carbon substrates and article
JP2004039634A (en) Spark plug, spark plug insulator, and method of manufacturing spark plug
US4503128A (en) Thermally sprayable ceramics
US4503093A (en) Thermally sprayable ceramics
US2945776A (en) Potting composition and process
KR970007704B1 (en) Explosion preventing porcelain hollow insulator
US3189476A (en) Metallizing process for ceramics
CA1297933C (en) Replaceable high current draw out fuseholder
JPH01246723A (en) Resin mold part for high voltage insulation and its manufacture
HU192883B (en) Process for the heat-insulation of industrial furnace roofs
CA2212255C (en) Insulator with cement compound and method for its production
US2744839A (en) Coated electrical apparatus and method of making the same
JP3207720B2 (en) Resin molded component and method of manufacturing the same
Minkner et al. Insulation for High Voltage Equipment
JP6975098B2 (en) Solid insulation switches and railcars
JP3428203B2 (en) Epoxy resin composition for sulfur hexafluoride gas insulation equipment
JPS6254208B2 (en)
JP3241034U (en) power resistor
JP3285693B2 (en) Manufacturing method of cast molding
KR100345732B1 (en) Coating method for thermal barrier
JPH0770412A (en) Epoxide resin composition for sulfur hexafluoride gas insulator
JPH034406A (en) Resin mold electric equipment for outdoor use