JPH02299963A - Antilock control method for 4-wheel drive car - Google Patents

Antilock control method for 4-wheel drive car

Info

Publication number
JPH02299963A
JPH02299963A JP11872289A JP11872289A JPH02299963A JP H02299963 A JPH02299963 A JP H02299963A JP 11872289 A JP11872289 A JP 11872289A JP 11872289 A JP11872289 A JP 11872289A JP H02299963 A JPH02299963 A JP H02299963A
Authority
JP
Japan
Prior art keywords
wheel
speed
speeds
wheel speed
rear wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11872289A
Other languages
Japanese (ja)
Other versions
JP2707318B2 (en
Inventor
Yoshiaki Hirobe
広部 義昭
Haruki Shimanuki
島貫 春樹
Megumi Eguchi
恵 江口
Katsuya Miyake
勝也 三宅
Hideo Akima
秋間 秀夫
Fumitoshi Mori
森 文利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Fujitsu Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd, Fujitsu Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP11872289A priority Critical patent/JP2707318B2/en
Publication of JPH02299963A publication Critical patent/JPH02299963A/en
Application granted granted Critical
Publication of JP2707318B2 publication Critical patent/JP2707318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the occurrence of mutual interference between front and rear wheels related to braking by a method wherein, in a 3-channel antilock control method for a 4-wheel drive car, control of a brake liquid pressure is made on right and left rear wheels such that a wheel speed being the lowermost speed of four wheel speeds is a wheel speed to be controlled. CONSTITUTION:From outputs from wheel speed sensors 1 - 4 mounted to respective wheels, wheel speeds Vw1 - Vw4 are determined by computing circuits 5 - 8, respectively. Left and right front wheel speeds Vw1 and Vw2 produce first and second system speeds Vs1 and Vs2 as they are to send them to second control logic circuits 9 and 10. The lowermost wheel speed of the wheel speeds Vw1 - Vw4 is selected by a low select circuit 11, and is sent as a third system speed, i.e. a rear wheel system speed Vs3, to a third control logic circuit 12. By the control logic circuits 9, 10, and 12, ON and OFF control of a hold valve HV and a decay valve DV is effected such that the system speeds Vs1 - Vs3 are respective wheel speeds to be controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は車両の制動時における車輪のロックを防止する
ためのアンチロック制御方法に関する。 (従来技術) 一般に車両のアンチロック制?1装置は、制動時におけ
る車両の操舵性、走行安定性の確保および制動距離の短
縮を目的として、車輪速度センサで検出された車輪速度
をあられす電気信号にもとづいてブレーキ液圧の制御モ
ードを決定して、常開型電磁弁よりなるホールドパルプ
および常閉型電磁弁よりなるディケイバルブを開閉し、
これによりブレーキ液圧を加圧、保持または減圧するよ
うにマイクロコンピュータを含むコントロールユニット
で制御している。 第3図はこのようなアンチロック制御における車輪速度
Vw、車輪加減速度dVw/dtおよびブレーキ液圧P
wの変化と、ホールドパルプおよびディケイバルブを開
閉するためのホールド信号H3およびディケイ信号DS
を示す制御状態図である。 車両の走行中においてブレーキが操作されていない状態
では、ブレーキ液圧Pwは加圧されておらず、かつホー
ルド信号H3およびディケイ信号DSがともにOFFで
あるから、ホールドパルプは開、ディケイバルブは閉の
状態にあるが、ブレーキ操作に伴ってブレーキ液圧Pw
は時点toから加圧されて急上昇しく通常モード)、こ
、れにより車輪速度Vwは減少して行く、この車輪速度
Vwに対して一定の速度ΔVだけ低い速度差をもって追
従する擬偵車輪速度Vrが設定されており、この擬偵車
輪速度Vrは、車輪の減速度(負の加速度)dVw/d
tが時点t1において所定のしきい値、例えば−IGに
達すると、この時点t1からアンチロック制御が開始さ
れる。この擬像車輪速度V「は時点1+以降は−IGの
減速勾配θをもって直線的に減少して行くように設定さ
れている。そして車輪の減速度dVw/dtが所定の最
大減速度をあられすしきい優−G、、、に達した時点L
2においてホールド信号H3をONにしてホールドパル
プを閉じ、ブレーキ液圧Pwを保持する。 このブレーキ液圧Pwの保持により車輪速度Vwはさら
に減少して、時点t3において車輪速度Vwと擬偵車輪
速度Vrとが等しくなるが、この時点t3においてディ
ケイ信号DSをONにしてディケイバルブを開き、ブレ
ーキ液圧Pwの減圧を開始する。この減圧により、車輪
速度は時点t4におけるローピークを境にして加速に転
しるが、このローピーク時点t4において、ディケイ信
号DSをOFFとし、ディケイバルブを閉じてブレーキ
液圧Pwの減圧を終了してブレーキ液圧Pwを保持する
6時点t7で車輪速度Vwがハイピークに達するが、こ
の時点t7から再びブレーキ液圧Pwの加圧を開始する
。ここでの加圧は、ホールド信号H3を比較的小刻みに
ON・OFFすることにより、ブレーキ液圧Pwの加圧
と保持とを交互に反復し、これによりブレーキ液圧Pw
を緩慢に上昇させて車輪速度Vw4−減少させ、時点t
8(13対応)から再び減圧モードを発生させる。なお
、減圧開始時点t3における車輪速度Vaとローピーク
速度VZとの速度差Yの10%に相当する量だけローピ
ーク速度VZから増加した速度Vb(=Vj+0.IY
) にまで回復した時点t5と、上記速度差Yの80%
に相当する量だけローピーク速度vlから増加した速度
Vc(=VJ+0.8Y)にまで回復した時点t6とが
検出され、時点t7から開始される最初の加圧の期間T
xは、上記時点t5と
(Industrial Application Field) The present invention relates to an anti-lock control method for preventing wheels from locking during braking of a vehicle. (Prior art) Anti-lock system for vehicles in general? 1 device selects a brake fluid pressure control mode based on an electric signal that detects the wheel speed detected by a wheel speed sensor, with the aim of ensuring vehicle steering performance and running stability and shortening braking distance during braking. The decision is made to open and close the hold pulp consisting of a normally open solenoid valve and the decay valve consisting of a normally closed solenoid valve,
As a result, a control unit including a microcomputer controls the brake fluid pressure to be increased, maintained, or decreased. Figure 3 shows wheel speed Vw, wheel acceleration/deceleration dVw/dt, and brake fluid pressure P in such anti-lock control.
Changes in w and the hold signal H3 and decay signal DS for opening and closing the hold pulp and decay valve
FIG. When the brake is not operated while the vehicle is running, the brake fluid pressure Pw is not pressurized and both the hold signal H3 and the decay signal DS are OFF, so the hold pulp is open and the decay valve is closed. However, as the brakes are operated, the brake fluid pressure Pw
is pressurized rapidly from time point to (normal mode), and as a result, the wheel speed Vw decreases.The simulated wheel speed Vr follows this wheel speed Vw with a lower speed difference by a constant speed ΔV. is set, and this false wheel speed Vr is equal to the wheel deceleration (negative acceleration) dVw/d
When t reaches a predetermined threshold value, for example -IG, at time t1, anti-lock control is started from this time t1. This virtual wheel speed V' is set so that it decreases linearly with a deceleration gradient θ of -IG after time 1+.Then, when the wheel deceleration dVw/dt reaches a predetermined maximum deceleration, Kiiyu-G, , the point L when reached
At step 2, the hold signal H3 is turned ON, the hold pulp is closed, and the brake fluid pressure Pw is maintained. By maintaining this brake fluid pressure Pw, the wheel speed Vw further decreases, and at time t3, the wheel speed Vw becomes equal to the false wheel speed Vr, but at this time t3, the decay signal DS is turned ON and the decay valve is opened. , starts reducing the brake fluid pressure Pw. Due to this pressure reduction, the wheel speed shifts to acceleration after reaching a low peak at time t4, but at this low peak time t4, the decay signal DS is turned OFF, the decay valve is closed, and the brake fluid pressure Pw is finished reducing. The wheel speed Vw reaches a high peak at the sixth time point t7 when the brake fluid pressure Pw is maintained, but the brake fluid pressure Pw starts to be increased again from this time point t7. The pressurization here is performed by alternately repeating pressurization and holding of the brake fluid pressure Pw by turning the hold signal H3 on and off in relatively small steps, thereby increasing the brake fluid pressure Pw.
is slowly increased to reduce the wheel speed Vw4-, and at time t
From 8 (corresponding to 13), the decompression mode is generated again. Note that the speed Vb increased from the low peak speed VZ by an amount corresponding to 10% of the speed difference Y between the wheel speed Va and the low peak speed VZ at the time t3 when pressure reduction starts
) and 80% of the above speed difference Y.
A time point t6 is detected when the speed has recovered to the speed Vc (=VJ+0.8Y) increased from the low peak speed vl by an amount corresponding to
x is the above time t5 and

【6との間の期間ΔTにおける平
均加速度(Vc−Vb)/ΔTの算出にもとづく路面摩
擦係数μの判定によって決定され、その後の保持期間ま
たは加圧期間は、これら保持または加圧の直前において
検出された車輪減速度dVw/dLにもとづいて決定さ
れる0以上のようなブレーキ液圧Pwの加圧、保持およ
び減圧の組合せによって、車輪をロックさせることなく
車輪速度Vwを制御して車体速度を減少させることがで
きる。 ところで、上述したアンチロック制御方法を車両に適用
する場合には、一般に左右、前輪に関しては、左前輪、
右前輪の車輪速度をそれぞれ制御対象車輪速度とし、左
右後輪に関しては2つの車輪速度のうち低速側の車輪速
度を選択しくローセレクト)てこれを後輪制御対象車輪
速度として、それぞれ独立的にブレーキ液圧の制御を行
なう3チャンネルアンチロック制御方法が広く用いられ
る。 この場合、前輪駆動車、または後輪駆動車のように、前
後輪が互いに動力的に接続されていない構造をもつ車両
においては、上述のように前輪、後輪を独立的にアンチ
ロック制御しても、前輪、後輪間の制動力に関わる相互
干渉が生じることはない。 ところが、上述した3チャンネルアンチロック制御方法
をそのまま4輪駆動車両に適用した□場合、前後輪間の
制動力に関わる相互干渉が生じ、円滑な制動特性が得ら
れず、いわゆるギクシャク感の存在を否定できないとい
う問題があった。 (発明の目的) そこで本発明は、左右前輪独立、左右後輪セレクトロー
による3チャンネルアンチロック制御方法を4輪駆動車
両に適用した場合における、前後輪間の制動に関わる相
互干渉を減少させることにより、円滑な制動力を得るこ
とができるアンチロック制御方法を提供することを目的
とする。 (発明の構成) そこで本発明は、3チャンネルアンチロック制御方法を
4輪駆動車両に適用する場合において、左右後輪に対し
ては4つの車輪速度のうちの最低、i!!の車輪速度を
制御対象車輪速度としてブレーキ液圧の制御を行なうこ
とを特徴とする。 (実 施 例) 以下図面を参照して本発明の実施例について詳細に説明
する。 第1図は本発明を適用した3系統(3チヤンネル)アン
チロック制御装置を示すブロック図で、車輪速度センサ
l〜4の出力は演算回路5〜8に送られて演算され、各
車輪Vwl〜Vw4をそれぞれあられす信号が得られる
。そして左前輪速度Vwlおよび右前輪速度Vw2はそ
のまま第1系統速度Vslおよび第2系統速度V32と
してそれぞれ第1および第2の制御ロジック回路9.1
0に送られる。 また、左前輪速度Vwl、右前輪速度Vw2、左後輪速
度Vw3および右後輪速度Vw4の4つの車輪速度のう
ちの最低速の車輪速度がローセレクト回路1】によって
選択されて第3系統速度Vs3、すなわち後輪系統速度
として第3の制御ロジック回路12に送られる。各制御
ロジック回路9.10..12では、上記系統速度Vs
l−Vs3をそれぞれ制御対象車輪速度(以下単に[車
輪速度VwJと呼ぶ)として、この車輪速度1/wを基
準としてホールドバルブI(VおよびディケイバルブD
VのON・OFF制御を行なう。 さらに各車輪速度Vwl〜Vw4をあられす信号は擬似
車体速度演算回路13に送られるが、この演算回路13
は、4つの車輪速度Vwl〜Vw4をハイセレクトし、
さらに最速車輪速度に対する追従限界を±1cの範囲に
限定した速度を[12車体速度Vvとして各制御ロジッ
ク回路9.10.12に出力する。 このように、本実施例においては、従来前輪に関しては
左右各々独立した系統速度、後輪に関しては左右2つの
車輪の低速側を選択(ローセレクト)することによって
得た系統速度に基づいて構成されていた3チャンネルア
ンチロック制御方法を改め、第1図に示すブロック図で
明らかなように、左右前輪系統速度Vsl、Vs2の求
め方は従来通りであるが、後輪系統速度Vs3に関して
は、ローセレクト回路11により左右前輪、左右後輪の
4つの車輪速度Vwl〜Vw4のうちの最低速の車輪速
度を選択することにより得ている。 したがって、第2図に示す本発明による制御状部図から
分かるように、後輪の制御は4つの車輪速度のローセレ
クトを行なうことにより、前輪系統に比べ後輪系統の制
御液圧が低く抑制され、前輪から後輪への制動力の伝達
が円滑に行なわれるため、前後輪間の相互干渉が減少す
る。 (発明の効果) 以上の説明から明らかなように、本発明によれば、4輪
駆動車において、左右後輪に対しては、4つの車輪速度
のうちの最低速の車輪速度を制御対象車輪速度としてブ
レーキ液圧の制御を行なうことにより、前輪系統に比べ
後輪系統の制御液圧が低く抑制され、前輪の制動力が円
滑に後輪に伝達されるので、前後輪間の相互干渉が減少
し、ギクシャク感を解消することができる。
It is determined by determining the road surface friction coefficient μ based on the calculation of the average acceleration (Vc-Vb)/ΔT during the period ΔT between The vehicle body speed is controlled by controlling the wheel speed Vw without locking the wheels by a combination of pressurization, holding, and depressurization of the brake fluid pressure Pw, which is determined based on the detected wheel deceleration dVw/dL and is 0 or more. can be reduced. By the way, when applying the above-mentioned anti-lock control method to a vehicle, generally speaking, regarding the left and right front wheels, the left front wheel,
The wheel speed of the front right wheel is set as the wheel speed to be controlled, and for the left and right rear wheels, the lower wheel speed of the two wheel speeds is selected (low select) and this is set as the wheel speed to be controlled for the rear wheels, and each is independently controlled. A three-channel anti-lock control method for controlling brake fluid pressure is widely used. In this case, in vehicles with a structure in which the front and rear wheels are not dynamically connected to each other, such as front-wheel drive vehicles or rear-wheel drive vehicles, anti-lock control is applied to the front and rear wheels independently as described above. However, there is no mutual interference related to braking force between the front and rear wheels. However, when the above-mentioned three-channel anti-lock control method is applied as is to a four-wheel drive vehicle, mutual interference occurs between the front and rear wheels in terms of braking force, making it impossible to obtain smooth braking characteristics, resulting in the presence of a so-called jerky feeling. There was a problem that could not be denied. (Objective of the Invention) Therefore, the present invention aims to reduce mutual interference related to braking between the front and rear wheels when a three-channel anti-lock control method with independent left and right front wheels and select low left and right rear wheels is applied to a four-wheel drive vehicle. An object of the present invention is to provide an anti-lock control method that can obtain smooth braking force. (Structure of the Invention) Therefore, the present invention provides, when applying a 3-channel anti-lock control method to a four-wheel drive vehicle, the lowest of the four wheel speeds for the left and right rear wheels, i! ! The brake fluid pressure is controlled using the wheel speed as the controlled wheel speed. (Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing a three-system (three-channel) anti-lock control device to which the present invention is applied, in which the outputs of wheel speed sensors l to 4 are sent to calculation circuits 5 to 8 and calculated, and each wheel Vwl to A signal is obtained for each of Vw4. Then, the left front wheel speed Vwl and the right front wheel speed Vw2 are directly converted to the first system speed Vsl and the second system speed V32 to the first and second control logic circuits 9.1, respectively.
Sent to 0. In addition, the lowest wheel speed among the four wheel speeds of left front wheel speed Vwl, right front wheel speed Vw2, left rear wheel speed Vw3, and right rear wheel speed Vw4 is selected by the low select circuit 1 and the third system speed is selected. It is sent to the third control logic circuit 12 as Vs3, that is, the rear wheel system speed. Each control logic circuit 9.10. .. 12, the system speed Vs
l-Vs3 are respectively controlled target wheel speeds (hereinafter simply referred to as wheel speeds VwJ), hold valve I (V and decay valve D
Performs ON/OFF control of V. Furthermore, a signal indicating each wheel speed Vwl to Vw4 is sent to the pseudo vehicle speed calculation circuit 13;
High selects the four wheel speeds Vwl to Vw4,
Furthermore, the speed with the follow-up limit for the fastest wheel speed limited to the range of ±1c is outputted to each control logic circuit 9, 10, and 12 as [12 vehicle body speed Vv. As described above, in this embodiment, the system speed is conventionally configured based on independent system speeds for the left and right wheels for the front wheels, and system speeds obtained by selecting the low speed side of the two left and right wheels (low selection) for the rear wheels. As is clear from the block diagram shown in Figure 1, the left and right front wheel system speeds Vsl and Vs2 are determined in the same way as before, but the rear wheel system speed Vs3 is now This is obtained by selecting the lowest wheel speed from the four wheel speeds Vwl to Vw4 of the left and right front wheels and the left and right rear wheels using the selection circuit 11. Therefore, as can be seen from the control diagram according to the present invention shown in FIG. 2, by low selecting the four wheel speeds for rear wheel control, the control fluid pressure of the rear wheel system is suppressed to be lower than that of the front wheel system. Since the braking force is smoothly transmitted from the front wheels to the rear wheels, mutual interference between the front and rear wheels is reduced. (Effects of the Invention) As is clear from the above description, according to the present invention, in a four-wheel drive vehicle, for the left and right rear wheels, the lowest wheel speed among the four wheel speeds is set to the controlled wheel speed. By controlling the brake fluid pressure as a function of speed, the control fluid pressure in the rear wheel system is suppressed to a lower level than that in the front wheel system, and the braking force from the front wheels is smoothly transmitted to the rear wheels, reducing mutual interference between the front and rear wheels. This can reduce the jerkiness and eliminate the jerky feeling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した3系統アンチロツク制御装置
のブロック図、第2図は本発明の説明図、第3図は従来
のアンチロック制御nにおける制御状態図である。 1〜4−車輪速度センサ 5〜8−演算回路 9.10,12−制御ロシック回路 IL−−ローセレクト回路 13−擬似車体速度演算回路
FIG. 1 is a block diagram of a three-system antilock control device to which the present invention is applied, FIG. 2 is an explanatory diagram of the present invention, and FIG. 3 is a control state diagram in conventional antilock control n. 1-4-Wheel speed sensors 5-8-Arithmetic circuit 9.10, 12-Control ROSIC circuit IL--Low select circuit 13-Pseudo vehicle speed arithmetic circuit

Claims (1)

【特許請求の範囲】 左前輪、右前輪および左右後輪に対してそれぞれ独立的
にブレーキ液圧の制御を行なう3チャンネルアンチロッ
ク制御方法を4輪駆動車に適用する場合において、 上記左右後輪に対しては4つの車輪速度のうちの最低速
の車輪速度を制御対象車輪速度としてブレーキ液圧の制
御を行なうことを特徴とする4輪駆動車のアンチロック
制御方法。
[Scope of Claims] When applying a three-channel anti-lock control method to a four-wheel drive vehicle in which brake fluid pressure is independently controlled for the left front wheel, right front wheel, and left and right rear wheels, the left and right rear wheels An anti-lock control method for a four-wheel drive vehicle, characterized in that brake fluid pressure is controlled using the lowest wheel speed among four wheel speeds as the controlled wheel speed.
JP11872289A 1989-05-15 1989-05-15 Anti-lock control method for four-wheel drive vehicle Expired - Lifetime JP2707318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11872289A JP2707318B2 (en) 1989-05-15 1989-05-15 Anti-lock control method for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11872289A JP2707318B2 (en) 1989-05-15 1989-05-15 Anti-lock control method for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH02299963A true JPH02299963A (en) 1990-12-12
JP2707318B2 JP2707318B2 (en) 1998-01-28

Family

ID=14743466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11872289A Expired - Lifetime JP2707318B2 (en) 1989-05-15 1989-05-15 Anti-lock control method for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2707318B2 (en)

Also Published As

Publication number Publication date
JP2707318B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JP2544911B2 (en) Anti-skid control method
JPH0415153A (en) Method for controlling antilocking of vehicle
JP2902409B2 (en) Anti-skid control device
JP2767271B2 (en) Vehicle anti-lock control method
US5157612A (en) Anti-lock control method and apparatus for vehicles
JPH0516784A (en) Anti-lock control method for vehicle
KR0179999B1 (en) Method of controlling the brake pressure in the rear wheel brakes of a double-track vehicle
JP2862904B2 (en) Vehicle anti-lock control method
JP2775481B2 (en) Vehicle anti-lock control method
JP2756833B2 (en) Vehicle anti-lock control method
JP2835963B2 (en) Vehicle anti-lock control device
JPH02299963A (en) Antilock control method for 4-wheel drive car
JP2782365B2 (en) Anti-lock control method for four-wheel drive vehicle
JPH0459458A (en) Antilock control device of vehicle
JP3144557B2 (en) Vehicle anti-lock control method
JP2724862B2 (en) Vehicle anti-lock control method
JP2799738B2 (en) Vehicle anti-lock control method
JP2670791B2 (en) Anti-lock control method
JP2900178B2 (en) Vehicle anti-lock control method
JP2835739B2 (en) Vehicle anti-lock control method
JP2791790B2 (en) Vehicle anti-lock control method
JP2767275B2 (en) Vehicle anti-lock control method
JP2646226B2 (en) Determination method of road surface friction coefficient in antilock control
JP2579478B2 (en) Anti-lock manufacturing method
JP2816978B2 (en) Vehicle anti-lock control method