JPH0229958B2 - - Google Patents

Info

Publication number
JPH0229958B2
JPH0229958B2 JP56084321A JP8432181A JPH0229958B2 JP H0229958 B2 JPH0229958 B2 JP H0229958B2 JP 56084321 A JP56084321 A JP 56084321A JP 8432181 A JP8432181 A JP 8432181A JP H0229958 B2 JPH0229958 B2 JP H0229958B2
Authority
JP
Japan
Prior art keywords
gas
refractory
refractories
hole
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56084321A
Other languages
Japanese (ja)
Other versions
JPS57200533A (en
Inventor
Shigeto Kimura
Teruyuki Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP8432181A priority Critical patent/JPS57200533A/en
Priority to GB08215692A priority patent/GB2102926B/en
Priority to AU84306/82A priority patent/AU544858B2/en
Priority to IT8221656A priority patent/IT1151433B/en
Priority to KR828202464A priority patent/KR860000753B1/en
Priority to FR8209594A priority patent/FR2507208B1/en
Priority to BR8203236A priority patent/BR8203236A/en
Priority to BE2/59730A priority patent/BE893384A/en
Priority to US06/384,346 priority patent/US4438907A/en
Priority to CA000404455A priority patent/CA1200095A/en
Publication of JPS57200533A publication Critical patent/JPS57200533A/en
Publication of JPH0229958B2 publication Critical patent/JPH0229958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製鋼炉用のガス吹込耐火物及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas-injected refractory for steelmaking furnaces and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、転炉をはじめとする製鋼炉において、精
練処理、脱ガス、撹拌などの目的のため、主とし
て庭部にガス吹込耐火物を設け、溶融金属中に各
種ガスを吹き込むことが知られている。
Conventionally, in steelmaking furnaces such as converters, it has been known to install gas-injected refractories mainly in the garden area to inject various gases into the molten metal for purposes such as scouring, degassing, and stirring. .

このようなガス吹込耐火物を用いた製鋼炉にお
けるガス吹込では、次のような条件が必要とされ
る。
Gas injection in a steelmaking furnace using such gas-injected refractories requires the following conditions.

必要とされるガスを安定して吹き込むことが
可能であること(漏れのないこと) ノズルの溶損が少なく製鋼炉の耐火物の寿命
と同程度に耐用が有ること 製鋼炉であるため、比較的大流量でガスを流
せること ガス種の選択範囲が広く、安価なガスの適用
も可能であること 従来、ガス吹込耐火物としては以下のものが知
られている。
It must be possible to stably inject the required gas (no leakage).The nozzle must have little corrosion and wear and tear and have a lifespan comparable to the lifespan of the refractories in a steelmaking furnace.As it is a steelmaking furnace, it must be comparable. Ability to flow gas at a target high flow rate A wide selection range of gas types and the possibility of applying inexpensive gases Conventionally, the following are known as gas-injected refractories.

(1) 使用される耐火物の原料粒度を調整し、成形
焼成して製造される多孔質構造の耐火物。
(1) A refractory with a porous structure that is manufactured by adjusting the particle size of the raw material of the refractory used and molding and firing it.

(2) 焼成中に焼失する材料と粒度調整された耐火
物原料を混合し、成形、焼成した多孔質構造の
耐火物。
(2) A refractory with a porous structure that is made by mixing materials that are burnt away during firing and refractory raw materials whose particle size has been adjusted, then forming and firing.

(3) 取鍋用のガス吹込耐火物として、耐火性材料
に紙、木などの可燃性の細長い材料を埋め込ん
で成形し、焼成により上記材料を焼失させるこ
とにより、使用面からその背部まで直線的に貫
通する通孔を形成させた耐火物。
(3) Gas-injected refractories for ladles are made by embedding combustible elongated materials such as paper or wood in a fire-resistant material, and then burning out the materials to create a straight line from the surface of use to the back of the material. A refractory material with a through hole formed through it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの耐火物には次のような問題が
ある。
However, these refractories have the following problems.

まず、(1)、(2)の場合、ガスの通気方向を一定方
向に製造することは困難であり、その耐火物の通
気方向はランダムである。このため希望するガス
の吐出面およびガスの供給面以外の面、つまり側
面は非多孔質の耐火物あるいはシール材などにて
ガスの吐出を止める必要がある。またこれらの方
法で製造された多孔質耐火物は粒度の調整によつ
て多孔質としているためガスの吐出量に制限があ
り、大容量の通気性を得ることは困難である。更
に構造上ガス通過孔の形は一定でなく、かつ大小
がある。このためガス吹込圧力の増減によつてガ
スの通過する部分が変化し、安定な吐出条件を得
ることが困難であるとともに、耐火物全体が多孔
質であることと合せて溶融金属などによる損傷が
大きく、長寿命を得ることができない。
First, in the cases of (1) and (2), it is difficult to manufacture the refractory with a constant direction of gas ventilation, and the direction of ventilation of the refractory is random. For this reason, it is necessary to stop gas discharge from surfaces other than the desired gas discharge surface and gas supply surface, that is, the side surfaces, using non-porous refractories or sealing materials. Further, since the porous refractories manufactured by these methods are made porous by adjusting the particle size, there is a limit to the amount of gas discharged, and it is difficult to obtain a large amount of air permeability. Furthermore, due to the structure, the shape of the gas passage holes is not constant and varies in size. For this reason, the part through which the gas passes changes as the gas blowing pressure increases or decreases, making it difficult to obtain stable discharge conditions.In addition, since the entire refractory is porous, it is susceptible to damage from molten metal, etc. It is too large and cannot have a long life.

一方、上記(3)の耐火物は、上述したような問題
点は解決できるものの、次のような大きな問題を
有している。
On the other hand, although the above-mentioned refractory material (3) can solve the above-mentioned problems, it has the following major problems.

(イ) 耐火物材料は、成形した場合、内部に亀裂が
生じることが避けられず、加えて使用時に繰り
返し受ける熱履歴のため新たに亀裂を生ずる。
このような亀裂は当然通孔の内面にも生じ、こ
の亀裂からガスがリークする。特に、製鋼炉の
場合ガス吹込耐火物は炉の寿命分だけ使用(転
炉の場合1000〜3000回程度の使用)されるた
め、通孔内面に新たに生じる亀裂によるガスリ
ークの問題は取鍋等に較べはるかに大きい。取
鍋の場合には1回使用毎に補修が可能であり、
また同じく耐火物の交換も可能である。また、
耐火物はそれ自体通気性があるため、亀裂以外
の通孔内面からのガスリークも避けられない。
このようなガスリークはガスの無駄となるばか
りでなく、炉側の耐火物の隙間を伝つて漏れ出
し、耐火物を傷める原因ともなり、溶融金属内
に吹き込まれない場合には、冶金的にも何ら効
果はない。
(a) When refractory materials are molded, it is inevitable that cracks will occur internally, and additionally, new cracks will occur due to the heat history that they undergo repeatedly during use.
Such cracks naturally occur on the inner surface of the through hole, and gas leaks from these cracks. In particular, in the case of steelmaking furnaces, gas-injected refractories are used for the lifespan of the furnace (approximately 1,000 to 3,000 uses in the case of converters), so the problem of gas leakage due to new cracks forming on the inner surface of the through hole can be caused by ladle, etc. much larger than. In the case of a ladle, it is possible to repair it after each use.
It is also possible to replace the refractories. Also,
Since refractories themselves are breathable, gas leaks from the inner surfaces of holes other than cracks are unavoidable.
Such gas leaks not only waste gas, but also leak through gaps in the refractories on the furnace side, causing damage to the refractories. It has no effect.

(ロ) 耐火物の熱膨張、収縮により通孔が変形し、
そのガス通気性に支障をきたす場合がある。上
述したように製鋼炉のガス吹込耐火物は、炉の
寿命分だけ繰り返し使用されるため、熱膨張、
収縮の繰返しにより通孔のガスの通りに大きな
支障を生じるおそれがある。
(b) Through holes become deformed due to thermal expansion and contraction of refractories.
The gas permeability may be affected. As mentioned above, gas-injected refractories in steelmaking furnaces are used repeatedly over the life of the furnace, so thermal expansion,
Repeated shrinkage may cause a major problem in the passage of gas through the holes.

(ハ) 第4図に示すように、通孔7にガスを流すた
めに鉄皮8を取付け空気溜め9を作る必要があ
るが、、鉄皮8と耐火物6との間をどのように
シールしても、その隙間からのガスリークが避
けられない。特に、鉄皮と耐火物の熱膨張差に
より大きな隙間が生じてしまい、大量のガスリ
ークを生じる。
(c) As shown in Fig. 4, in order to flow gas through the through hole 7, it is necessary to attach the iron skin 8 and create an air reservoir 9. Even if it is sealed, gas leaks from the gap cannot be avoided. In particular, a large gap is created due to the difference in thermal expansion between the steel shell and the refractory, resulting in a large amount of gas leakage.

また、第4図に示すように鉄皮8が容易に溶
損し、そこからガスリークを生じる。
Moreover, as shown in FIG. 4, the iron skin 8 is easily melted and damaged, causing gas leakage therefrom.

製鋼炉では取鍋に較ベガス供給量及びガス圧
力がはるかに高いことから、以上のようなガス
リークは製鋼炉の場合大きな問題となる。
Since the gas supply amount and gas pressure in a steelmaking furnace are much higher than in a ladle, the above-mentioned gas leakage becomes a big problem in a steelmaking furnace.

(ニ) 酸化性ガス(CO2、空気、酸素等)が使用さ
れると、耐火物中の炭素、バインダー、MgO、
CaO等と反応して通孔の内面が損傷し、耐火物
を早期に損耗させてしまう。このため、事実
上、不活性ガスしか使用できない。
(d) When oxidizing gases (CO 2 , air, oxygen, etc.) are used, carbon, binder, MgO,
Reacts with CaO, etc. and damages the inner surface of the through hole, causing premature wear of the refractory. Therefore, in reality, only inert gas can be used.

また、このような耐火物の製造法自体にも次の
ような問題がある。
Furthermore, the method of manufacturing such refractories itself has the following problems.

(イ) 紙、木などの焼失する材料の強度は一般的に
低いため、成形時の加圧により容易に変形し、
焼成後形成される貫通孔を一定径とすることが
困難である。
(b) Materials that are destroyed by fire, such as paper and wood, generally have low strength, so they are easily deformed by pressure during molding.
It is difficult to make the through holes formed after firing have a constant diameter.

(ロ) 焼失材料は焼成時に揮発成分やガスが発生す
るため、焼成時に亀裂が発生したり、焼失時に
残渣が生じ、完全な貫通孔を得ることが困難で
ある。特にこの技術は、取鍋等のガス吹込の少
ない耐火物を対象として開発されたものであ
り、転炉底部に使用するような大型(長さが長
い)形状での製造は極めて困難である。
(b) Since volatile components and gases are generated from burnt-out materials during firing, cracks occur during firing and residues are generated when burnt-out, making it difficult to obtain perfect through-holes. In particular, this technology was developed for refractories that require little gas injection, such as ladles, and is extremely difficult to manufacture in large (long) shapes such as those used at the bottom of a converter.

(ハ) 焼失材料を使用して通孔を設けるため必ず焼
失温度以上に焼成する必要があり、不焼成耐火
物や焼成しないキヤスタブルなどの鋳込み品に
適用することができない。
(c) Since the holes are formed using burnout material, it must be fired to a temperature higher than the burnout temperature, and it cannot be applied to cast products such as unfired refractories and unfired castables.

(ニ) これらの問題のために一定面積にできるだけ
多くの均一な通孔を設け、大容量のガス吹込量
を得たいという要望に対して制限がある。
(d) Because of these problems, there are restrictions on the desire to provide as many uniform holes as possible in a given area and obtain a large amount of gas blown.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者等はこのような従来の諸問題を解決す
べく種々の研究の結果、本発明の開発に成功した
ものであり、本発明の特徴とするところは、耐火
物内に内径が0.1〜5mmの直管状の金属管を多数
配し、該金属管により、使用面から背部に至る多
数の貫通孔を形成したことにある。
The inventors of the present invention have successfully developed the present invention as a result of various researches to solve these conventional problems.The feature of the present invention is that the inner diameter of A large number of 5 mm straight metal tubes are arranged, and a large number of through holes are formed from the use surface to the back.

また、本発明の他の特徴は、このような耐火物
の製造法に係り、内径が0.1〜5mmの直管状の金
属管を成型枠内に配設し、外成型枠内に非多孔質
耐火材を充填して加圧成形または鋳込成形し、前
記金属管により使用面から背部に至る多数の貫通
孔を有する耐火物を得るようにしたことにある。
In addition, another feature of the present invention relates to a method for producing such a refractory, in which a straight metal tube with an inner diameter of 0.1 to 5 mm is placed in a molding frame, and a non-porous refractory material is placed in the outer molding frame. The present invention is to obtain a refractory having a large number of through holes extending from the use surface to the back using the metal tube by filling the refractory with a material and performing pressure molding or casting.

耐火物中の貫通孔の横断面形状は円形、楕円形
または多角形等とすることができるが、その径は
溶融金属中でのバブリング効果等よりみて0.1〜
5mmが適当であり、このため上記金属管の内径は
0.1〜5mmの範囲のものとする。
The cross-sectional shape of the through-hole in the refractory can be circular, elliptical, polygonal, etc., but the diameter should be 0.1 to 100% in view of the bubbling effect in the molten metal, etc.
5mm is appropriate, so the inner diameter of the above metal tube is
It shall be in the range of 0.1 to 5 mm.

これを具体的に説明すると、製鋼炉(転炉)に
適用するガス吹込耐火物を通して吹き込まれるガ
ス量は、0.02Nm3/min.t〜2.00Nm3/min.tと大
流量である。これは、短時間に溶銑(〔C〕=4.5
%)から溶鋼(〔C〕<0.10%)へと精練させるた
めに溶鋼を強撹拌させ、精練用酸素と溶鋼、スラ
グと溶鋼の反応を促進させぬ必要があるからであ
る。また、製鋼炉(転炉)に要求されるガス吹込
耐火物の寿命は炉一代であつて、その使用回数は
1000〜3000回にも及び、このため、その耐火物の
長さも500〜1500mmとなつている。したがつて、
製鋼炉におけるガス吹込耐火物は、大流量の通気
性が必要であり、また耐火物の長さが長いことか
ら圧力も必然的に高くなる。そして、このような
ガス吹込耐火物では大流量のガスを流すため、貫
通孔の径が0.1mm未満では配管抵抗が大きくなつ
て200Kg/cm2以上のガス圧が必要となり、このよ
うな高いガス圧は工業的にも不利なものとなる。
To explain this specifically, the amount of gas injected through the gas-injected refractory applied to a steelmaking furnace (converter) is a large flow rate of 0.02Nm 3 /min.t to 2.00Nm 3 /min.t. This allows hot metal ([C] = 4.5
%) to molten steel ([C]<0.10%), it is necessary to strongly stir the molten steel and avoid promoting the reactions between the refining oxygen and the molten steel, and between the slag and the molten steel. In addition, the lifespan of gas-injected refractories required for steelmaking furnaces (converters) is one lifetime, and the number of times they are used is limited to
It can be used 1,000 to 3,000 times, and for this reason, the length of the refractory is 500 to 1,500 mm. Therefore,
Gas-injected refractories in steelmaking furnaces require a large amount of air permeability, and since the length of the refractories is long, the pressure is inevitably high. In addition, in such gas-injected refractories, a large flow of gas flows, so if the diameter of the through hole is less than 0.1 mm, the piping resistance increases and a gas pressure of 200 kg/cm 2 or more is required. The pressure is also disadvantageous industrially.

また、貫通孔はその径が大きい方が大流量のガ
スを流す上では有利であるが、大き過ぎると溶鋼
が侵入し、貫通孔を閉塞してしまう。移動して使
用され、その移動中はガス底吹きを中止せざるを
得ない取鍋に対し、製鋼炉は固定位置で使用され
るため溶鋼の入つている間は断えずガスを流すこ
とが可能であり、このため上記貫通孔の径はある
程度大きくすることができる。しかし、径が5mm
を超えると常時ガスを流しつづけていても貫通孔
内に徐々に溶鋼が侵入して、最後には閉塞してし
まう。このため貫通孔の径は5mmをその上限とす
る。
Furthermore, it is advantageous for a through hole to have a large diameter in order to allow a large amount of gas to flow through the hole, but if the diameter is too large, molten steel will enter and block the through hole. Unlike ladles that are moved and used, and during which the gas bottom blowing has to be stopped, steelmaking furnaces are used in a fixed position, so gas cannot be continuously flowed while the steel is filled with molten steel. Therefore, the diameter of the through hole can be increased to some extent. However, the diameter is 5mm
If this value is exceeded, molten steel will gradually enter the through hole even if the gas is kept flowing at all times, and it will eventually become clogged. Therefore, the upper limit of the diameter of the through hole is 5 mm.

〔作用〕[Effect]

本考案の耐火物は、主として炉底部に取付けら
れる。貫通孔を形成する各金属管は、耐火物背部
側において空気溜め用のボツクスに接続され、こ
の空気溜めを通じ、貫通孔にガス供給される。
The refractory of the present invention is mainly attached to the bottom of the furnace. Each metal tube forming the through hole is connected to an air reservoir box on the back side of the refractory, and gas is supplied to the through hole through this air reservoir.

貫通孔内壁は金属管であるため、ガスは孔内面
からのリークを生じることなく炉内に流される。
また同様の理由で、耐火物に亀裂が発生したり、
耐火物の熱膨張、収縮が繰り返されても、貫通孔
内面からのガスリークや貫通孔の変形等が防止さ
れ、貫通孔の通気性が確保される。
Since the inner wall of the through hole is a metal tube, gas is allowed to flow into the furnace without leaking from the inner surface of the hole.
Also, for similar reasons, cracks may occur in refractories,
Even if the refractory undergoes repeated thermal expansion and contraction, gas leakage from the inner surface of the through hole, deformation of the through hole, etc. are prevented, and ventilation of the through hole is ensured.

また、貫通孔を形成する各金属管は、その内部
を流通するガスにより冷却されるため、その溶損
も適切に抑えられる。
Further, since each metal tube forming the through hole is cooled by the gas flowing inside the tube, its melting loss can be appropriately suppressed.

〔実施例〕〔Example〕

第1図及び第2図は本発明のガス吹込耐火物の
一例を示すもので、1は非多孔質耐火材料、2は
耐火物の使用面、3は同じく背面である。
FIGS. 1 and 2 show an example of the gas-injected refractory of the present invention, in which 1 is a non-porous refractory material, 2 is the use side of the refractory, and 3 is the back side.

耐火物材料1内にはその使用面2から背面3に
かけて直管状多数の金属管5が配され、この金属
管5により多数の貫通孔4が形成されている。
A large number of straight metal tubes 5 are disposed within the refractory material 1 from the use surface 2 to the back surface 3, and a large number of through holes 4 are formed by the metal tubes 5.

このような耐火物を製造する場合、上記金属管
5を成型枠内に配設し、非多孔質耐火物材料1を
充填して加圧成形または鋳込成形するものであ
る。
When manufacturing such a refractory, the metal tube 5 is placed in a molding frame, filled with the non-porous refractory material 1, and pressure-formed or cast-molded.

加圧成形手段としては、成型枠内に初めに少量
の耐火性煉土を充填して加圧し、しかる後貫通孔
形成部たる金属管を所定間隔に配置し、その上に
さらに前記煉土を充填して加圧する方法を繰り返
し行う多段加圧成型方式が好ましい手段である
が、別法として、金属管が加圧時の煉土の移動と
共に移行するように該金属管両端の保持方法を配
慮した1回の加圧方式で行うこともできる。
As a pressure forming means, a small amount of refractory clay is first filled into a molding frame and pressurized, then metal pipes serving as through hole forming portions are arranged at predetermined intervals, and the clay is further placed on top of the metal pipes. A preferred method is a multi-stage pressure molding method in which filling and pressurization are repeated, but as an alternative method, consideration should be given to the method of holding both ends of the metal tube so that the metal tube moves with the movement of the clay during pressurization. It is also possible to apply pressure once.

このようにして製造された成形体は使用する耐
火性煉土の種類によつて焼成し又は焼成すること
なく製品とする。
The molded body thus produced is made into a product with or without firing depending on the type of refractory clay used.

耐火性煉土の代りにキヤスタブル耐火物等の鋳
込み材料を使用する場合には、第3図に示すよう
に、予め鋳込枠10内に複数本の金属管4を、そ
の上下を固定金具13等を用いて配設し、鋳込み
枠10内に鋳込み材料12を流し込み、振動、成
型する。鋳込み完了後所定時間養生或いは乾燥さ
せる。
When using a casting material such as castable refractory instead of refractory clay, as shown in FIG. The casting material 12 is poured into the casting flask 10, vibrated, and molded. After casting is completed, it is cured or dried for a predetermined period of time.

以上特定の数例について本発明を説明したが、
本発明はこれら具体的に限定されるものではな
く、本発明の要旨内における変更、改変は勿論本
発明に包含されるものである。
Although the present invention has been described above with respect to several specific examples,
The present invention is not specifically limited to these, and changes and modifications within the gist of the present invention are, of course, included in the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明の製鋼炉用ガス吹込耐火物に
よれば、次のような効果が得られる。
According to the gas-injected refractory for steelmaking furnaces of the present invention described above, the following effects can be obtained.

(イ) 貫通孔が金属管内壁により形成されるため、
耐火物に亀裂が生じても貫通孔内面からのガス
リークを適切に防止できる。特に、製鋼炉では
耐火物は1000回以上も繰り返し使用されるが、
このような使用によつてうける熱履歴により新
たな亀裂が生じても、ガスリークを生じさせる
ことなく安定的にガスを流すことができる。
(b) Since the through hole is formed by the inner wall of the metal tube,
Even if cracks occur in the refractory, gas leakage from the inner surface of the through hole can be appropriately prevented. In particular, refractories are used repeatedly over 1000 times in steelmaking furnaces.
Even if new cracks occur due to the thermal history caused by such use, gas can flow stably without causing gas leaks.

(ロ) 貫通孔が金属管により形成されるため、上記
したような繰り返し使用により耐火物が熱膨
張・収縮を繰り返しても、貫通孔に変形を生じ
ることなく、ガス通気性を安定的に確保するこ
とができる。
(b) Since the through-hole is formed from a metal tube, even if the refractory undergoes repeated thermal expansion and contraction due to repeated use as described above, the through-hole will not deform, ensuring stable gas permeability. can do.

(ハ) 貫通孔を形成する金属管を直接空気溜め用の
ボツクスに接続することができるため、第4図
に示すような、回りに鉄皮を巻く構造を採つた
場合に伴うガスリークを完全に防止することが
できる。
(c) Since the metal pipe forming the through hole can be directly connected to the air reservoir box, gas leaks that would otherwise occur when a steel shell is wrapped around the structure as shown in Figure 4 can be completely eliminated. It can be prevented.

(ニ) また、貫通孔を形成する金属管はガスにより
常に冷却されるため、溶損が適切に抑えられ、
ガス吹込耐火物の寿命を維持、確保することが
できる。
(d) In addition, since the metal tube that forms the through hole is constantly cooled by gas, melting damage can be appropriately suppressed.
The lifespan of gas-injected refractories can be maintained and ensured.

(ホ) 貫通孔が金属管で形成されるため、酸化性ガ
スを通しても内部から耐火物が溶損するような
ことがなく、底吹きガス種の選択に制限がな
い。
(e) Since the through-hole is formed of a metal tube, the refractory will not be eroded from inside even when an oxidizing gas is passed through it, and there are no restrictions on the selection of bottom-blown gas types.

また、本発明の製造法によれば、次のような効
果が得られる。
Further, according to the manufacturing method of the present invention, the following effects can be obtained.

(イ) 金属管は成型時の加圧によつても変形しない
ため、溶融金属接触面から背部まで直線的に貫
通する一定径の通孔を多数安定的に形成させる
ことができる。
(a) Since the metal tube does not deform even when pressurized during molding, it is possible to stably form a large number of through holes with a constant diameter that penetrate linearly from the molten metal contact surface to the back.

(ロ) 焼成耐火物だけでなく、不焼成の耐火物も製
造することができる。
(b) Not only fired refractories but also unfired refractories can be manufactured.

(ハ) 金属管の内径と本数を調整することが可能で
あり、大通気量の製鋼炉用ガス吹込耐火物を得
ることができる。
(c) It is possible to adjust the inner diameter and number of metal tubes, and it is possible to obtain a gas-injected refractory for steelmaking furnaces with a large ventilation rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明のガス吹込耐火物の
一実施例を示すもので、第1図は平面図、第2図
は第1図中−線に沿う断面図である。第3図
は本発明の製造法の一実施例を示す説明図であ
る。第4図は従来の取鍋用ガス吹込耐火物の断面
図である。 図において、1は非多孔質耐火材料、2は使用
面、3は背面、4は貫通孔、5は金属管、10は
鋳込枠である。
1 and 2 show an embodiment of the gas-injected refractory of the present invention, in which FIG. 1 is a plan view and FIG. 2 is a sectional view taken along the line - in FIG. 1. FIG. 3 is an explanatory diagram showing an embodiment of the manufacturing method of the present invention. FIG. 4 is a sectional view of a conventional gas-injected refractory for a ladle. In the figure, 1 is a non-porous refractory material, 2 is a use surface, 3 is a back surface, 4 is a through hole, 5 is a metal pipe, and 10 is a casting flask.

Claims (1)

【特許請求の範囲】 1 耐火物内に内径が0.1〜5mmの直管状の金属
管を多数配し、該金属管により、使用面から背部
に至る多数の貫通孔を形成してなる製鋼炉用ガス
吹込耐火物。 2 内径が0.1〜5mmの直管状の金属管を成型枠
内に配設し、該成型枠内に非多孔質耐火材料を充
填して加圧成形または鋳込成形し、前記金属管に
より使用面から背部に至る多数の貫通孔を有する
耐火物を得ることを特徴とする製鋼炉用ガス吹込
耐火物の製造法。
[Scope of Claims] 1. A steelmaking furnace in which a large number of straight metal tubes with an inner diameter of 0.1 to 5 mm are arranged in a refractory, and a large number of through holes extending from the use surface to the back are formed by the metal tubes. Gas-blown refractories. 2. A straight metal tube with an inner diameter of 0.1 to 5 mm is placed in a molding frame, and the molding frame is filled with a non-porous refractory material and pressure formed or cast. 1. A method for producing a gas-injected refractory for a steelmaking furnace, the method comprising obtaining a refractory having a large number of through holes extending from the top to the back.
JP8432181A 1981-06-03 1981-06-03 Gas blowing refractory material and preparation thereof Granted JPS57200533A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP8432181A JPS57200533A (en) 1981-06-03 1981-06-03 Gas blowing refractory material and preparation thereof
GB08215692A GB2102926B (en) 1981-06-03 1982-05-28 Gas blowing nozzle, and production and usage thereof
AU84306/82A AU544858B2 (en) 1981-06-03 1982-05-28 Gas blowing nozzle
IT8221656A IT1151433B (en) 1981-06-03 1982-06-02 UGELLA FOR GAS INSUFFLATION, PRODUCTION AND USE OF THE SAME
KR828202464A KR860000753B1 (en) 1981-06-03 1982-06-02 Gas blowing nozzle and production and usage thereof
FR8209594A FR2507208B1 (en) 1981-06-03 1982-06-02 GAS INSUFFLATION NOZZLE FOR THE REFINING OF A MOLTEN METAL, ITS MANUFACTURE AND ITS USE
BR8203236A BR8203236A (en) 1981-06-03 1982-06-02 NOZZLE PROCESS FOR THE PRODUCTION OF A NOZZLE AND CLEARANCE PROCESS
BE2/59730A BE893384A (en) 1981-06-03 1982-06-02 GAS BLOWING NOZZLE, ITS MANUFACTURE AND ITS USE
US06/384,346 US4438907A (en) 1981-06-03 1982-06-02 Gas blowing nozzle, and production and usage thereof
CA000404455A CA1200095A (en) 1981-06-03 1982-06-03 Gas blowing nozzle, and production and usage thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8432181A JPS57200533A (en) 1981-06-03 1981-06-03 Gas blowing refractory material and preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3093441A Division JPH0649892B2 (en) 1991-03-30 1991-03-30 Manufacturing method of gas blown refractory moldings for steelmaking furnaces

Publications (2)

Publication Number Publication Date
JPS57200533A JPS57200533A (en) 1982-12-08
JPH0229958B2 true JPH0229958B2 (en) 1990-07-03

Family

ID=13827239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8432181A Granted JPS57200533A (en) 1981-06-03 1981-06-03 Gas blowing refractory material and preparation thereof

Country Status (2)

Country Link
JP (1) JPS57200533A (en)
BE (1) BE893384A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167716A (en) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> Nozzle for injection of gas and its manufacture
JPS59118822A (en) * 1982-12-24 1984-07-09 Kawasaki Refract Co Ltd Gas blowing nozzle for vessel containing molten metal
JPS61276912A (en) * 1986-03-29 1986-12-06 Nippon Steel Corp Operating method for top and bottom blown converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149750A (en) * 1979-05-11 1980-11-21 Kawasaki Steel Corp Gas blowing plug for molten metal vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149750A (en) * 1979-05-11 1980-11-21 Kawasaki Steel Corp Gas blowing plug for molten metal vessel

Also Published As

Publication number Publication date
BE893384A (en) 1982-10-01
JPS57200533A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
KR860000753B1 (en) Gas blowing nozzle and production and usage thereof
JPS6368260A (en) Refractory mounting part
US5004495A (en) Method for producing ultra clean steel
JPH0229958B2 (en)
US4792070A (en) Tubes for casting molten metal
US4465514A (en) Method of producing steel by the LD process
JPH04218611A (en) Manufacture of gas injecting refractory formed body for steelmaking furnace
US20040100004A1 (en) Refractory plug or brick for injecting gas into molten metal
US5286004A (en) Low porosity-high density radial burst refractory plug with constant flow
US3084924A (en) Comolded magnesite-chromite tuyere
JP5491815B2 (en) Immersion pipe for refining equipment
JP2000500527A (en) Fireproof molded plate with gas duct
JPH02104454A (en) Nozzle for continuous casting
JPS6324008A (en) Gas blowing plug
JPH04314817A (en) Stirring device for gas blowing into metallurgical vessel
US3343827A (en) Taphole for a metallurgical vessel
JP3719605B2 (en) Construction method of uncoated refractories for lance pipes by horizontal casting.
CA2156988C (en) Gas injection nozzle for pouring liquid metal
RU2061056C1 (en) Equipment to melt metal scrap and for off-the furnace processing of molten metal by blow of gases
JPS6028680Y2 (en) Gas injection lance for molten metal processing
JPH0140890B2 (en)
JP2004107742A (en) Structure for constructing refractory in rh-degassing vessel bottom, rh-degassing vessel and method for manufacturing refractory block
JPS61213314A (en) Repairing method for gas blowing tuyere of vessel for refining
JPS62263915A (en) Gas blowing lance for treating molten metal
JP2002097515A (en) Porous plug