JPH02299496A - Driving method for brushless dc motor - Google Patents

Driving method for brushless dc motor

Info

Publication number
JPH02299496A
JPH02299496A JP1120014A JP12001489A JPH02299496A JP H02299496 A JPH02299496 A JP H02299496A JP 1120014 A JP1120014 A JP 1120014A JP 12001489 A JP12001489 A JP 12001489A JP H02299496 A JPH02299496 A JP H02299496A
Authority
JP
Japan
Prior art keywords
phase
current
winding
motor
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120014A
Other languages
Japanese (ja)
Inventor
Yoichi Naganuma
永沼 洋一
Yoshiaki Matsuoka
良明 松岡
Hajime Suzuki
肇 鈴木
Susumu Kamio
神尾 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1120014A priority Critical patent/JPH02299496A/en
Publication of JPH02299496A publication Critical patent/JPH02299496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To improve speed-torque characteristic and efficiency considerably by performing control such that the phase difference between the current flowing through a winding and the voltage induced in the winding will be approximately zero at all times. CONSTITUTION:Clock signals CLK1, CLK2 for detecting the rotary position of a DC brushless motor and signals U, V, W for detecting the positions of a permanent magnet in U, V and W phases are inputted through a digital input section. A current phase delay detecting section 3 calculates SIGMAiu*sintheta and SIGMAiu*costheta for every clock timing based on these signals and U phase current iu, then the calculated values are integrated by electrical angle of 2pi and employed for calculation of delay angle psi between induced power (e) and winding current iu. PI control section 5 leads the winding application timing by lambda deg.so that the delay angle psi is zero. When lead angle control is carried out similarly for other phases, the power factor approaches to 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブラシレス直流モータの速度/トルク特性や
効率を改善する為の駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a driving method for improving the speed/torque characteristics and efficiency of a brushless DC motor.

(従来の技術) S61.3.10総合電子出版社発行の゛rDCブラシ
レスモークと制御回路」 (谷腰欣司著)のP、4に記
載されているようにブラシレス直流モータは、機械的整
流機構を回転磁界検出素子及び半導体スイツチング素子
に置換えて、従来の直流モータのもつノイズ、摩耗や保
守等の問題を解消したモータであって、主にAV、FA
、OA機器等比較的速度使用範囲の狭く、小容量の分野
で使用されることが多い。これはモータ効率や発熱等が
それ程問われず、しかも速度〜トルク特性が広範囲に亘
って必要とされていないことによる。
(Prior art) As described in page 4 of "rDC Brushless Smoke and Control Circuit" published by Sogo Denshi Publishing Co., Ltd. (authored by Kinji Tanikoshi), a brushless DC motor uses a mechanical rectification mechanism. This is a motor that eliminates problems such as noise, wear, and maintenance of conventional DC motors by replacing it with a rotating magnetic field detection element and a semiconductor switching element, and is mainly used in AV and FA.
It is often used in fields with a relatively narrow range of speed and small capacity, such as OA equipment. This is because motor efficiency, heat generation, etc. are not so important, and speed-torque characteristics are not required over a wide range.

合手容量と中、大容量の大きな相違点を、理解を簡単に
するため、単相での誘起々電力eとモータ巻線へ印加す
る電圧Vとモータ巻線に流れる電流iのタイミングチャ
ートを第1図に示す。
In order to make it easier to understand the major differences between Amate capacity, medium capacity, and large capacity, here is a timing chart of the single-phase induced electromotive force e, the voltage V applied to the motor winding, and the current i flowing through the motor winding. Shown in Figure 1.

(a)は小容量、(b)は中、大容量の代表的な例であ
る。
(a) is a typical example of small capacity, and (b) is a typical example of medium and large capacity.

(a)の小容量時の誘起々電力eのタイミングと同期す
るように磁極位置を検出するセンサー(例えばホールゼ
ネレータ等の磁気検出素子や光の投下や反射を利用した
光検出素子)を適正位置に設定し、磁極の回転移動や極
性に対応してモータ巻線に印加するタイミングと方向が
決定されたものが印加電圧■である。この印加電圧Vに
よって巻線電流iが流れる。これは(ロ)も同様である
The sensor that detects the magnetic pole position (for example, a magnetic detection element such as a Hall generator, or a photodetection element that uses light emission or reflection) is placed at an appropriate position so as to synchronize with the timing of the induced electromotive force e at the time of small capacity in (a). The applied voltage (2) is the one whose timing and direction to apply to the motor windings are determined according to the rotational movement and polarity of the magnetic poles. This applied voltage V causes a winding current i to flow. This also applies to (b).

小容量(a)の巻線電流iは中、大容量(b)の巻線電
流iに比較し印加電圧■にほぼ等しいタイミングで流れ
ているが(ロ)では遅れ時間が生じている。(a)は小
容量ということでモータ巻線そのものが細くトータルの
モータ巻線抵抗も5〜10Ωというように非常に大きく
、モータ巻線インダクタンスとで決定する巻線時定数も
非常に小さいものが多い。
Compared to the winding current i of medium and large capacities (b), the winding current i of the small capacity (a) flows at almost the same timing as the applied voltage (2), but there is a delay time in (b). (a) has a small capacity, so the motor winding itself is thin, the total motor winding resistance is very large, 5 to 10 Ω, and the winding time constant determined by the motor winding inductance is also very small. many.

一方(b)の中、大容量では比較的大きなトルクを発生
させることから大きな電流を流す必要性より、小容量モ
ータより巻線が太くなり、結果として巻線抵抗が小さく
なり、巻線数、モータ体積等によって決まる巻線インダ
クタンスとの関係で巻線時定数も変化し、一般に大きく
なることが多く、巻線印加電圧■のタイミングより大き
く遅れて電流iは流れる。
On the other hand, in (b), since a large capacity motor generates a relatively large torque, it is necessary to flow a large current, so the windings are thicker than those of a small capacity motor, and as a result, the winding resistance becomes smaller, and the number of turns increases. The winding time constant also changes in relation to the winding inductance, which is determined by the motor volume, etc., and generally becomes larger, so that the current i flows much later than the timing of the winding applied voltage (2).

換言するとモータ出力は誘起々電力eと相電流iの基本
波成分およびこの両者間の位相差より決まる力率によっ
て決定される。従って(a)では誘起々電力eと巻線電
流iがほぼ同相であるため力率4=:lとなり効率が非
常に良い事を示す。又(ロ)では誘起々電力eと巻線電
流iの積が(全て正でなく)負となる個所(時間)が長
く、無効電力の期間が(a)に比較して大きい。この傾
向はより大きな出力、より大きな時定数になるに従って
増加することが多い。故に(b)の方法では投入するエ
ネルギーの割に出力が小さく巻線が熱せられて昇温し無
駄が多いことを示す。
In other words, the motor output is determined by the power factor determined by the induced electric power e, the fundamental wave component of the phase current i, and the phase difference between the two. Therefore, in (a), since the induced electromotive force e and the winding current i are almost in phase, the power factor becomes 4=:l, indicating that the efficiency is very good. Furthermore, in (b), the portion (time) where the product of induced power e and winding current i is negative (rather than positive) is longer, and the period of reactive power is longer than in (a). This tendency often increases with larger outputs and larger time constants. Therefore, in method (b), the output is small compared to the input energy, and the winding is heated and the temperature rises, resulting in a lot of waste.

巻線の発熱によってモータ内部全体が昇温し、時には1
00°C以上になる事もめずらしくなく、磁極位置検出
用素子の耐熱限界を越えることもありうる。又ブラシレ
ス直流モータの場合、磁極位置に対応して印加する巻線
への供給電圧もパルス状のものとなるため巻線電流に高
調波が多く含まれ、この事も発熱の要因となっている。
The heat generated by the windings causes the entire inside of the motor to rise in temperature, sometimes reaching temperatures as high as 1
It is not uncommon for the temperature to exceed 00°C, and it is possible that the temperature exceeds the heat resistance limit of the magnetic pole position detection element. In addition, in the case of brushless DC motors, the voltage applied to the windings corresponding to the magnetic pole position is also pulsed, so the winding current contains many harmonics, which also causes heat generation. .

以上の如く、無効電力区間の減少および高調波電流の除
去の必要性の少ない小容量のブラシレス直流モータでは
これらの対策がとられておらず、高回転、小トルク指向
であり、低回転、高トルク型は極めて少ない。というこ
とでこれらの改良方法としてすでに出願済特許の特願昭
63−75796「ブラシレス直流モータの駆動方法」
で述べているがこの方法でも次の点で問題となる。
As mentioned above, small-capacity brushless DC motors that require less reactive power section reduction and harmonic current removal do not take these measures, and are oriented toward high rotation and low torque. Torque types are extremely rare. Therefore, as a method for improving these, we have already applied for the patent application 1986-75796 "Method of driving a brushless DC motor".
However, this method also has the following problems.

(1)誘起々電力と巻線電流の位相差を検出するための
Δθ(例えば3@)毎のsinカーブ、cosカーブを
作る場合に、永久磁石の円周方向上にN極〜S極区間に
ホールゼネレータ或いは光、磁気的センサーを配して多
数の増幅器を設け、しかもSin、 cosの3°毎の
値にするため抵抗で分配調整してさらに加算するという
複雑な方法で行っていたが、時間と調整が難かしくコス
トがかかる。
(1) When creating a sin curve or cos curve for every Δθ (for example, 3 @) to detect the phase difference between the induced power and the winding current, the N-pole to S-pole section is created in the circumferential direction of the permanent magnet. This was done using a complicated method in which a Hall generator or optical or magnetic sensor was installed, and a large number of amplifiers were installed, and the distribution was adjusted using resistors to obtain the sin and cos values every 3 degrees, and then addition was made. , which is time consuming, difficult to coordinate, and costly.

(2)直径の小さいモータでは永久磁石の直径も小さく
なり円周方向のN極〜S極間の長さが短いため、この間
に必要分解能に適する数のセンサーとして面積、体積が
最少のホールゼネレータを取付ける場合でも限度があり
、又配線の数も多くなり、回転体に近い為、実用上危険
性が高い。
(2) In a motor with a small diameter, the diameter of the permanent magnet is also small, and the length between the N and S poles in the circumferential direction is short. There is a limit to how many wires can be installed, and the number of wiring increases, and since it is close to a rotating body, it is highly dangerous in practice.

(3)前記(2)のセンサーとしてホールゼネレータ等
の磁気的センサー等を使用した場合、大電流の磁界によ
る影響がでるため、ホールゼネレータの動作が不良とな
り、磁石位置の検出が困難となり、sin、 cosカ
ーブが正常でなくなる。
(3) If a magnetic sensor such as a Hall generator is used as the sensor in (2) above, the influence of a large current magnetic field will cause the Hall generator to malfunction, making it difficult to detect the magnet position, and causing sin , the cos curve becomes abnormal.

以上の様に問題があるのが現状である。The current situation is that there are problems as described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のごとく誘起々電力と同位相で巻線印加電圧を供給
すると誘導性負荷の影響で、電流は誘起々電力に対し遅
れ位相となり、無効電力が発生すること、又出力に寄与
しない第2高調波成分以上の電流による発熱(効率)へ
の影響という問題点がある。
As mentioned above, if the voltage applied to the winding is supplied in the same phase as the induced electromotive force, the current will have a phase lag with respect to the induced electromotive force due to the influence of the inductive load, producing reactive power and a second harmonic that does not contribute to the output. There is a problem in that the current greater than the wave component affects heat generation (efficiency).

本発明者等の研究では、前記遅れ位相をなくすこと、即
ち力率を改善することによってブラシレス直流モータの
効率或いは速度〜トルク特性が著しく改善されること、
さらに巻線の高調波電流の除去については、巻線に印加
される方形波交流電圧をパルス幅変調方式にすることに
よって供給ON時間の電圧値が正弦波状に近くなるよう
に、前記位相制御したタイミングで供給することにより
、速度〜トルク特性や発熱(効率)を改善することを目
的とする。
The research conducted by the present inventors has shown that the efficiency or speed-torque characteristics of a brushless DC motor can be significantly improved by eliminating the delayed phase, that is, by improving the power factor.
Furthermore, regarding the removal of harmonic currents in the windings, the square wave AC voltage applied to the windings is pulse width modulated so that the voltage value during the supply ON time becomes close to a sine wave. The purpose is to improve speed-torque characteristics and heat generation (efficiency) by supplying at the right timing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のブラシレス直流モータの駆動方法は、この目的
を達成するため、ブラシレス直流モータの固定子巻線電
流と誘起々電力とほぼ同等な基本波のsin成分とco
s成分信号のそれぞれの積を磁極N−3区間即ち電気角
で2πの間行い、その比より前記巻線電流と誘起々電力
の位相差を検出し、この位相差が常にほぼ0になるよう
に閉ループ制御することによって、誘起々電力に対する
巻線印加電圧の理想的な位相角を求め、印加タイミング
を調整することおよび前記印加電圧タイミングに従って
DCチョッパ方式或いはパルス幅変調方式のいずれかを
その時々の最良方式、目的に合わせて選択された巻線供
給印加電圧を出力することによって理想的な位相角に対
応しかつ高調波成分の少ない巻線電流を提供する駆動方
法を特徴とする。
In order to achieve this objective, the brushless DC motor driving method of the present invention uses a fundamental wave sine component that is approximately equivalent to the stator winding current and induced electromotive force of the brushless DC motor.
The product of each of the s component signals is performed for a period of N-3 magnetic poles, that is, 2π in electrical angle, and the phase difference between the winding current and the induced electromotive force is detected from the ratio, so that this phase difference is always approximately 0. Through closed-loop control, the ideal phase angle of the voltage applied to the winding with respect to the induced power is determined, the application timing is adjusted, and either the DC chopper method or the pulse width modulation method is controlled from time to time according to the applied voltage timing. The present invention is characterized by a driving method that provides a winding current that corresponds to an ideal phase angle and has few harmonic components by outputting a winding supply applied voltage selected according to the purpose.

〔作用〕[Effect]

以下に本発明による巻線印加電圧の切換え時期調整方法
について説明する。
The method for adjusting the switching timing of the voltage applied to a winding according to the present invention will be explained below.

第2図(a)に通常のタイミング時の印加電圧方式での
誘起々電力Eと巻線電流■のベクトル図を示す。℃)は
第1図(b)のような電流iの位相遅れをなくす為、巻
線の印加電圧■をλ6だけ進角して供給し、誘起々電力
Eと巻線電流Iの位相差が(a)のp、−(b)の?。
FIG. 2(a) shows a vector diagram of the induced electromotive force E and the winding current ■ in the applied voltage method at normal timing. ℃), in order to eliminate the phase delay of the current i as shown in Figure 1(b), the voltage applied to the winding is advanced by λ6 and supplied, so that the phase difference between the induced electric power E and the winding current I is p in (a) - (b)? .

と小さくなっているが誘起々電力Eと巻線電流■の位相
差がほぼ0付近までには到っていない状態を示す。この
?を求める手段として第4図の(a)に示すような反射
板或いはスリット(いずれも回転側)とこの白黒レベル
を検出する(b)のセンサーボート(固定側)の組合せ
によりl極内複数個(例えば60,120等多い程分解
能が向上しなめらかな制御が出来る)パルスが得られる
ようにモータ内に配置し磁石のN−3区間(電気角で3
60°)を先のパルスに相当する個数だけのsin信号
と90°位相が異なるcos信号を予め求めてメモリー
テーブルへ格納しておき、パルスが来るたびに取り出せ
るようにしておく。
This shows a state in which the phase difference between the induced electric power E and the winding current (2) has not reached nearly zero, although it has become small. this? As a means of determining this, multiple reflectors or slits (both on the rotating side) as shown in Figure 4 (a) and a sensor boat (on the fixed side) as shown in (b) that detects this black and white level are combined in one pole. (For example, the higher the number, such as 60 or 120, the better the resolution and the smoother the control.) Place the magnet in the motor to obtain pulses in the N-3 section (3 in electrical angle).
60°) and a number of cosine signals having a phase difference of 90° from a sine signal corresponding to the previous pulse are obtained in advance and stored in a memory table so that they can be retrieved each time a pulse arrives.

これらsin信号(e s) 、 、cos信号(ec
)および巻線電流i(高調波成分を含む)は次式で表わ
〜≧−−− される。
These sin signals (e s), , cos signals (ec
) and the winding current i (including harmonic components) are expressed by the following equation.

e、−Σ E、%・sin nθ         ・
・・・・・(1)ec=ΣE、・cosn(θ+T−>
    ・−・−・・(2)i=Σ I、−sin(m
θ+?)     ”・・・(3)と表わされるが、今
e、−iとec−i(電気角で2π毎の積分)なる信号
処理を行なうと ;−ΣE(’ I K ’ C05px (K:I+2
+”’)4π k ・・・・・・(4) となるが、C3が高調波成分を含まないとするとEz=
Es=・・・・・・=0         ・・・・・
・(5)同様に 従って となり、高調波成分を含んだ巻線電流iとes+ecよ
り誘起々電力と巻線電流間の位相差9の検出が可能とな
る。この位相差?が常にほぼ0になるように比例+積分
制御を行うことによって、理想的なずれ角λが求まる。
e, -Σ E,%・sin nθ・
...(1) ec=ΣE, ・cosn(θ+T−>
・−・−・・(2) i=Σ I, −sin(m
θ+? ) ”...(3) Now, if we perform the signal processing of e, -i and ec-i (integration every 2π in electrical angle); -ΣE(' I K ' C05px (K: I+2
+”')4π k (4) However, if C3 does not include harmonic components, Ez=
Es=・・・・・・=0・・・・・・
(5) Similarly, it becomes possible to detect the phase difference 9 between the induced electromotive force and the winding current from the winding current i and es+ec containing harmonic components. This phase difference? The ideal deviation angle λ can be found by performing proportional + integral control so that λ is always approximately 0.

このλ0に対応したU、 V、 W相の供給電圧のスイ
ッチングタイミングが決定されモータ巻線へ電圧が印加
される。
The switching timing of the U, V, and W phase supply voltages corresponding to this λ0 is determined, and the voltages are applied to the motor windings.

この結果、誘起々電力と巻線電流の位相がほぼ同位相と
なり力率が改善され同一供給電圧でも速度〜トルク特性
が大幅に向上する。
As a result, the phase of the induced power and the winding current are almost the same, the power factor is improved, and the speed-torque characteristics are significantly improved even with the same supply voltage.

又、パルス幅変調された電圧を印加した場合は巻線に流
れる高調波成分の比率が高次へ移行し、その結果熱ロス
が減少しモータ全体の効率向上へ寄与する。
Furthermore, when a pulse width modulated voltage is applied, the ratio of harmonic components flowing through the windings shifts to a higher order, resulting in a reduction in heat loss and contributing to an improvement in the efficiency of the entire motor.

このようにブラシレス直流モータのスイッチングを位相
ずれ角λ°だけずらすこと、および巻線印加電圧をPW
M化することによってモータの速度〜トルク特性および
効率を大幅に改善することが可能となる。
In this way, the switching of the brushless DC motor can be shifted by the phase shift angle λ°, and the voltage applied to the winding can be changed to PW.
By converting to M, it becomes possible to significantly improve the speed-torque characteristics and efficiency of the motor.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。第
5図は本発明の実施例を示したものである。
Hereinafter, the present invention will be specifically explained based on Examples. FIG. 5 shows an embodiment of the present invention.

図中12はブラシレス直流モータ、11は永久磁石位置
を検出するための円板であり10はこの円板の白黒レベ
ルの検出を行う反射型センサ一群である。この検出信号
は点線枠Aのマイクロコンピュータボードのディジタル
入力部インタフェースへ入力される。これらの詳細な動
作を第4図(a)。
In the figure, 12 is a brushless DC motor, 11 is a disc for detecting the position of a permanent magnet, and 10 is a group of reflective sensors for detecting the black and white level of this disc. This detection signal is input to the digital input section interface of the microcomputer board indicated by the dotted line box A. These detailed operations are shown in FIG. 4(a).

(ロ)で説明する。This will be explained in (b).

(a)は永久磁石のN極、S極の円周方向の位置に合わ
せて第3図5に相当した反射式円板であり、N極を白側
、S極を黒側としている。これは信号のレベル合せでこ
の方式としている。
(a) is a reflective disc corresponding to that shown in FIG. 3, with the N pole and S pole of the permanent magnet arranged in the circumferential direction, with the N pole on the white side and the S pole on the black side. This method is based on signal level matching.

第4図(a)は6極型のモータ例でありここではS極〜
N極〜S極部の関係のみ示すが実際は円周上に6極N−
3−N−3・・・・・・というように対で形成されてお
り、1極当り機械角で60°毎に分割している。図中2
(白)がN極で3(黒)がS極を示す。又1は極毎に6
0分割され、1つおきに白。
Figure 4(a) is an example of a 6-pole motor, and here the S pole ~
Although only the relationship between the N pole and the S pole is shown, there are actually 6 poles N- on the circumference.
They are formed in pairs such as 3-N-3, and each pole is divided into mechanical angles of 60 degrees. 2 in the diagram
(white) indicates the north pole and 3 (black) indicates the south pole. Also 1 is 6 for each pole
Divided into 0, every other part is white.

黒、白、黒、・・・・・・というふうに表面がコーティ
ングされた光反射型センサーで、パルス状の出力がON
〜OFFが対で30パルス出力されるように設置される
。従って1パルス当り機械角で2°となり、建)のクロ
ック用センサー5(CI)より30パルス、6 (C2
)より30パルス、計60パルス出力される。クロック
用センサー2個を使用している理由は電流位相遅角演算
時に第5図8のsinθ、 COSメモリーテーブルよ
りデータのローディングを電気角で3°毎(機械角で1
度)に行う為のクロック信号であり、第4図2のN極間
で60パルス必要となるが、センサーの視野と距離の関
係で1のN極区間に120分割するとセンサーの仕様上
困難であるためおよび回転数とクロック数によるサンプ
リングタイム即ちマイクロコンピュータの処理速度より
、ここでは60分割とじ30パルス分をセンサー5 (
C1)で、残り30パルス分をセンサー6 (C2)で
発生させる。但しセンサー5とセンサー6は機械角で0
.5 ”の位相差をつけて取付けてあり、第5図1のデ
ィジタル入力部インタフェースで加算処理され、1極当
り60パルスのクロックが出力出来るように対処しであ
る。
A light-reflective sensor whose surface is coated in black, white, black, etc., and a pulsed output is ON.
~OFF is installed so that 30 pulses are output in pairs. Therefore, the mechanical angle is 2 degrees per pulse, and 30 pulses from clock sensor 5 (CI) of 6 (C2
) outputs 30 pulses, a total of 60 pulses. The reason why two clock sensors are used is that when calculating the current phase retard angle, data is loaded every 3 degrees in electrical angle (1 degree in mechanical angle) from sin θ in Figure 5 and COS memory table.
This is a clock signal for the 1st N-pole section in Figure 4, and requires 60 pulses between the N-poles in Figure 4 (2), but due to the field of view and distance of the sensor, it is difficult to divide 120 pulses into 1 N-pole section due to the sensor specifications. Due to the sampling time due to the number of revolutions and clock number, that is, the processing speed of the microcomputer, here we divide it into 60 and divide the 30 pulses into the sensor 5 (
C1), the remaining 30 pulses are generated by sensor 6 (C2). However, sensor 5 and sensor 6 are 0 in mechanical angle.
.. They are installed with a phase difference of 5'', and addition processing is performed by the digital input section interface shown in FIG. 1, so that a clock of 60 pulses can be outputted per pole.

又12のブラシレス直流モータの永久磁石の円周方向の
位置に対応して取付けられている円板第4図(a)の2
 (N極)又は3 (S極)の磁極位置変化を(b)の
センサー8 (V)、  7 (U)、  4 (W)
を機械角で40° (電気角で120°)毎に配置させ
て永久磁石のN−3区間8 (SWタイミング)を検出
するため3ケ、合計5ケの光反射型センサーを配置して
いる。その様子を第3図1Oと9に又第4図(b)に示
す。
In addition, the discs 2 in Fig. 4(a) are attached corresponding to the positions in the circumferential direction of the permanent magnets of the 12 brushless DC motors.
(N pole) or 3 (S pole) sensor 8 (B), 7 (U), 4 (W)
are placed every 40 degrees in mechanical angle (120 degrees in electrical angle), and 3 light reflection sensors are placed in order to detect the N-3 section 8 (SW timing) of the permanent magnet, for a total of 5 light reflection sensors. . The situation is shown in FIGS. 3, 1O and 9, and FIG. 4(b).

第5図のディジタル入力部インタフェースlを経由して
CLKI、CLK2が60パルス/極に変換されてsi
nθ、 cosθメモリーテーブル8および電流位相遅
角検出部3にも入力され、第6図(a)、(ロ)に示す
sinθ、 cosθの各値が(C)のパルスに同期し
て取り出せるように格納されているsinθ、 COS
θメモリーテーブル8よりピックアップされ、電流位相
遅角検出部3へ入力される。又ブラシレス直流モータ1
2の巻線電流のU相の電流をCT型電流センサー13で
検出し、アナログ入力部インタフェース2へ人力され、
さらに電流位相遅角検出部3へ入力される。
CLKI and CLK2 are converted to 60 pulses/pole via the digital input interface l shown in Figure 5.
It is also input to the nθ and cosθ memory table 8 and the current phase retard detection unit 3, so that each value of sinθ and cosθ shown in FIGS. 6(a) and (b) can be retrieved in synchronization with the pulse in (C). Stored sinθ, COS
It is picked up from the θ memory table 8 and input to the current phase retard detection section 3. Also, brushless DC motor 1
The U-phase current of the winding current of No. 2 is detected by the CT type current sensor 13, and is manually input to the analog input section interface 2.
Furthermore, it is input to the current phase retard angle detection section 3.

誘起々電力に対する巻線電流の遅角?を求めるため゛の
演算時間帯(N極〜S極区間)が必要であるため、第4
図(b)のセンサー7のU相オンオフタイミング信号の
第6図(d)も−諸に入力される。そして(4)弐の演
算e、(sinθのiクロック目)と巻線電流iuの積
とe(、(cosのiクロック目)と巻線電流iuの積
を求めU相のN極〜S極間電気角で2πの区間積分され
る。ここでe、およびe、が高調波成分を含まないと仮
定しているので、2π区間全て演算終了した時には(6
)式と(7)式となり、誘起々電力に対する巻線電流の
遅角?は(8)式より求まり、その結果tan pが減
算器26へ入力される。減算器のもう一方の入力には目
標値がセットされている。即ち遅角?=0でtan p
 = 0が目標値として入力される。その結果偏差出力
はΔtan?”” tan p * −tan pとな
り、この偏差分Δtan pがほぼOになるようにPI
制御系5へ入力される。
Retardation of winding current with respect to induced power? In order to find
The U-phase on/off timing signal of the sensor 7 shown in FIG. 6(d) in FIG. (4) Calculate the product e of (i-th clock of sin θ) and winding current iu and the product of e (, (i-th clock of cos) and winding current iu. It is integrated over a 2π interval in terms of the electric angle between the poles.Here, it is assumed that e and e do not include harmonic components, so when the calculation is completed for the entire 2π interval, (6
) and (7), and the winding current is retarded with respect to the induced power? is determined from equation (8), and the result tan p is input to the subtracter 26. A target value is set to the other input of the subtracter. In other words, retard angle? =0 and tan p
= 0 is input as the target value. As a result, the deviation output is Δtan? ""tan p * -tan p, and the PI is adjusted so that this deviation Δtan p becomes approximately O.
It is input to the control system 5.

前述の毎り(4)式および(5)式のΣe、・taとΣ
ec・iuはクロック毎に2πの区間演算、区間終了時
に巻線電流の遅角tan (pが電流位相遅角検出部3
より出力される。従ってPI制御部への偏差Δtan 
pの入力は2π毎に行なわれ、比例+積分制御系によっ
てΔtan p = Oとなるように誘起々電力に対し
てλ°だけ進角するように巻線の印加電圧時期が演算さ
れ、出力制御部6にも2π毎入力される。出力制御部6
はDCチョッパ或いはPWM用のSWタイミングメモリ
ーテーブル7に第6図(d)および(f)の状態で電気
角で3°毎のN=1゜S=0の形式でメモリーされてお
り、N極−60・〜N極〜S極〜S極+60°、合計4
806分161コのデータが格納されている。
As mentioned above, Σe, ta and Σ in equations (4) and (5)
ec・iu is a 2π interval calculation for each clock, and at the end of the interval, the retardation tan of the winding current (p is the current phase retardation detection unit 3
It is output from Therefore, the deviation Δtan to the PI control section
The input of p is performed every 2π, and the timing of the voltage applied to the winding is calculated by the proportional + integral control system so that the induced power is advanced by λ° so that Δtan p = O, and the output control is performed. The signal is also input to section 6 every 2π. Output control section 6
is stored in the SW timing memory table 7 for DC chopper or PWM in the form of N=1°S=0 every 3° electrical angle in the state shown in Fig. 6(d) and (f), and the N pole -60・~N pole~S pole~S pole +60°, total 4
It stores 161 pieces of data for 806 minutes.

これらのデータを使って巻線電圧の印加時期制御を行う
方法を述べる前に全体の制御方策について説明する。
Before describing a method for controlling the winding voltage application timing using these data, the overall control strategy will be explained.

(1)1回の制御出力を行う為に必要な演算区間はN極
(白)の立上りの1回目〜S(黒)の立下り時のクロッ
クパルス区間とする。
(1) The computation period required to perform one control output is the clock pulse period from the first rising of N pole (white) to the falling of S (black).

(2)制御出力のタイミングはN極(白)の立上りとす
る。
(2) The timing of the control output is the rising edge of the N pole (white).

(3)モータが静止している状態は必ずしもU相のセン
サーと永久磁石位置検出用反射板第4図(a)の2の立
上りとは一致してはいない。従ってN極の立上りに回転
するまでは進角制御は行なわず第4図(b)のU、V、
W相のセンサー?、8.4で磁石位置を検出した信号そ
のままをディジタル入力部I/Fl〜イニシャル設定部
4〜ディジタル出力部1/F9経由でSW制御部14ヘ
スイツチング信号が送られ、生の信号でモータを回転さ
せる。
(3) When the motor is stationary, the U-phase sensor and the permanent magnet position detection reflector do not necessarily coincide with the rise of 2 in FIG. 4(a). Therefore, advance angle control is not performed until the rotation occurs at the rising edge of the N pole, and U, V in Fig. 4(b),
W phase sensor? , 8.4 The signal that detected the magnet position is directly sent to the SW control unit 14 via the digital input unit I/Fl ~ initial setting unit 4 ~ digital output unit 1/F9, and the raw signal rotates the motor. let

(4)クロック用センサー第4図(ロ)のC1,C2の
5.6は光学式センサーの光発射角、視野範囲、距離に
応じて分解能が変化しくa)の外側の反射板の白、黒の
機械角を必要以上に狭(するとパルスとして検出不可と
なる為、モータの直径が小さくなった時はC1(5)の
センサーの取付は位置に対し機械角で0.5°電気角で
1.5°ずらせて配置し第5図のディジタル入力部1/
F1でN極内60等分パルスを又S極内60等分パルス
を作ることとするが、モータの直径が大きい時はセンサ
ー1つで反射パネルよりN、S極毎に60パルス発生さ
せることとする。
(4) Clock sensor 5.6 of C1 and C2 in Figure 4 (b) has a resolution that changes depending on the light emission angle, viewing range, and distance of the optical sensor. Make the black mechanical angle narrower than necessary (this will make it impossible to detect it as a pulse, so when the diameter of the motor becomes small, install the C1 (5) sensor at a mechanical angle of 0.5 degrees electrical angle relative to the position). The digital input section 1/
In F1, we will create 60 equally divided pulses in the north pole and 60 equally divided pulses in the south pole, but if the diameter of the motor is large, one sensor will generate 60 pulses for each north and south pole from the reflective panel. shall be.

次に実際の進角制御について詳述する。Next, actual advance angle control will be explained in detail.

第5図の永久磁石位置にはりつけである反射板とクロッ
ク用反射板11(詳細は第4図(a)の1又は2,3に
示す)およびセンサー取付ボード第4図(b)との組合
せよりU、V、W相の永久磁石位置とクロックタイミン
グが検出され、第5図のディジタル入力部1/Flへ入
力される。第6図の(ロ)および(C)に示す、又第5
図のブラシレス直流モータのU相巻線電流をCT型セン
サー13で電流を検出し、アナログ入力部1/F2へ入
力される。
A combination of a reflector attached to the permanent magnet position in Figure 5, a clock reflector 11 (details are shown in 1, 2, and 3 in Figure 4(a)), and a sensor mounting board in Figure 4(b). The permanent magnet positions and clock timings of the U, V, and W phases are detected and input to the digital input section 1/Fl in FIG. 5. As shown in (B) and (C) of Figure 6,
The U-phase winding current of the brushless DC motor shown in the figure is detected by a CT type sensor 13 and input to the analog input section 1/F2.

ブラシレス直流モータ12より検出されたクロックCL
KIおよび2はディジタル入力部17Fで2倍周期パル
スに処理され、N極、S極区間共に30パルスが60パ
ルス発生となり、U相永久磁石タイミングとU相巻線電
流とともに電流位相遅角検出部3へ入力される。ここで
はU相のN極の立上りからS極の立下りまでクロックの
タイミング毎にΣi u * sinθおよびΣi 、
 * cosθの計算が行なわれ、電気角で2π分積分
されて(8)式により遅角pがtan pの形で求めら
れる。このpは誘起々電力eと巻線電流i、との遅れ角
であり、位相制御によって史=0即ちtan p = 
Oとなるように比例十積分(PI)制御部5で巻線印加
タイミングをλ°進角して供給する。この供給の方法は
出力制御部6で進角λ°に相当するチョッパ・PWM用
SWタイミングメモリーテーブル7内の現在ポイントか
らの偏差位置(kコ)を計算しテーブル7内の現在ポイ
ントX3にコ進んだポイントのデータをロードし、ディ
ジタル出力部1/F9へ出力するが、実際は3相Y結線
であるため残りの■、W相はU相の位相に対して±2/
3πづれた位置のデータも同時メモリーテーブル7より
ピックアップする。この出力をクロック毎に繰り返し、
S極(黒)の立下りまで行う。2π区間終了後(8)式
により遅角p (tan p )を求めて前記事項を繰
り返し演算し、進角されたタイミングで巻線に電圧が印
加される。
Clock CL detected from brushless DC motor 12
KI and 2 are processed into double period pulses by the digital input section 17F, and 30 pulses become 60 pulses in both the N-pole and S-pole sections. 3. Here, Σi u * sin θ and Σi, at each clock timing from the rising of the N pole of the U phase to the falling of the S pole,
* Cos θ is calculated and integrated by 2π in electrical angle, and the retard angle p is obtained in the form of tan p using equation (8). This p is the delay angle between the induced electromotive force e and the winding current i, and by phase control, history = 0, that is, tan p =
The proportional-integral (PI) control unit 5 advances the winding application timing by λ° so that the winding voltage is applied to the winding. This supply method is to calculate the deviation position (k) from the current point in the chopper/PWM SW timing memory table 7 corresponding to the advance angle λ° in the output control unit 6, and then input it to the current point X3 in the table 7. The data of the advanced point is loaded and output to the digital output section 1/F9, but since it is actually a 3-phase Y connection, the remaining ■ and W phases are ±2/2/2 with respect to the phase of the U phase.
Data at positions shifted by 3π are also picked up from the memory table 7 at the same time. Repeat this output every clock,
Repeat until the S pole (black) falls. After the end of the 2π interval, the retard angle p (tan p ) is calculated using equation (8), the above-mentioned items are repeatedly calculated, and a voltage is applied to the winding at the advanced timing.

これらを繰返すことによって、制御始動時は誘起々電力
eと巻線U相電流11の位相が誘導性負荷のため遅れて
力率が低いが、回転が進行するにつれその遅れ角度も減
少し、やがて比例積分制御系によって偏差角がほぼOに
なるように制御される。
By repeating these steps, when the control is started, the phase of the induced electric power e and the winding U-phase current 11 is delayed due to the inductive load, resulting in a low power factor, but as the rotation progresses, the delay angle also decreases, and eventually The deviation angle is controlled to be approximately O by a proportional-integral control system.

従ってSW制御部14にはU相の誘起々電力eに対しλ
°だけ進角した巻線印加タイミングパルスが又■、W相
には±2/3π位相のづれた印加タイミングパルスが同
時に入力される。又3つのタイミングパルスと共に正/
逆転信号も入力され、ペースドライバー15のU、V、
WおよびU、V。
Therefore, the SW control unit 14 has λ for the U-phase induced power e.
The winding application timing pulse advanced by .degree. is also simultaneously inputted to the W phase, and the application timing pulse whose phase is shifted by ±2/3π is simultaneously inputted to the W phase. Also positive/with three timing pulses
A reverse signal is also input, and pace driver 15's U, V,
W and U, V.

Wのいずれかが選択されてパワーブリッジ部16へ入力
され、第7図のU、V、W相のアッパー(Upper)
かロワー(Lower )かが選択されてモータコイル
へ進角されたタイミングで電圧が印加され、モータが回
転し第51110および11の反射板位置が移動し、前
述した動作を2π毎繰返し演算することになる。
One of W is selected and input to the power bridge section 16, and the upper (Upper) of the U, V, and W phases in FIG.
or Lower is selected and a voltage is applied to the motor coil at the timing when the angle is advanced, the motor rotates, the positions of the 51110th and 11th reflectors move, and the above-mentioned operation is repeated every 2π. become.

又、直流電圧の供給方法として2通り考慮している。Furthermore, two methods of supplying DC voltage are being considered.

1つはPWM(パルス幅変調)方式、他の1つはDCチ
ョッパ方式である。これらは第5図の連動5W18.1
9で選択し、5W19からの選択信号により出力制御部
6へ入力されて7のDCチッッパ、PWM用のいずれか
のSWタイミングメモリーテーブルを選択し、進角制御
時はλ°に相−当しだ進角位置のデータを先どりしてデ
ィジタル出力部I/F9〜SW制御部14へSWパルス
が供給される。PWM時のパルス幅列の1例を第6図(
f)に示す(f)の信号は第7図のU相のアッパー側の
トランジスタT R+ +のタイミングチャート(進角
していない通常の印加タイミング)例であり、ロワー側
のトランジスタTR,、は(d)のN極区間は全てオフ
となる。V、W、相はり相の位相に対して±2/3πの
位相がづれた状態でアッパーおよびロワーのトランジス
タTR,□T Rz tはU相と同じ取扱いとなる。
One is a PWM (pulse width modulation) method, and the other is a DC chopper method. These are the interlocking 5W18.1 in Figure 5.
9, and the selection signal from 5W19 is input to the output control unit 6 to select either the DC chipper or PWM SW timing memory table at 7, which corresponds to λ° during advance angle control. The SW pulse is supplied to the digital output unit I/F 9 to the SW control unit 14 with the advance angle position data in advance. An example of a pulse width train during PWM is shown in Figure 6 (
The signal (f) shown in (f) is an example of the timing chart (normal application timing, not advanced) of the upper side transistor TR+ of the U phase in FIG. 7, and the lower side transistor TR, . All of the N-pole sections in (d) are turned off. The upper and lower transistors TR and □T Rz t are handled in the same way as the U phase in a state where the phases are shifted by ±2/3π with respect to the phases of the V, W, and beam phases.

一方DCチョッパは点線枠Cのデエーティコントロール
24のボリュームで直流電源17の電圧(一定値)をチ
ロツピングしパルス状の電圧をコイルおよびコンデンサ
ーで一定電圧(フィルタリング)にして第6図(ロ)の
ような電圧パルスを印加することになる。これらPWM
、DCチョッパ方式は目的に応じて選択する。
On the other hand, the DC chopper titrates the voltage (constant value) of the DC power supply 17 with the volume of the duty control 24 shown in the dotted line frame C, and converts the pulsed voltage into a constant voltage (filtering) with the coil and capacitor as shown in Fig. 6 (b). A voltage pulse like this will be applied. These PWM
, the DC chopper method is selected depending on the purpose.

以上述べた様に誘起々電力eに対し巻線相電流1、を遅
れなく巻線に電圧を印加することによって力率cosφ
!=ilとなり、効率が大幅に向上した。
As mentioned above, by applying the voltage to the winding without delay to the winding phase current 1 for the induced power e, the power factor cosφ
! =il, and the efficiency was greatly improved.

第8図はDCチョッパ方式におけるloKW級ブラシレ
スDCモータの速度〜トルク特性の実施例であり、実線
が進角制御有を、破線は進角制御熱を示す。図から明ら
かなように電圧が大きい程その効果は大きく、負荷を大
きくするに従って必要トルクが増大し、それに伴って大
電流が必要となるため無効電力が大きくなり、進角制御
有無の効果の差が増大することによる。
FIG. 8 shows an example of the speed-torque characteristics of a loKW class brushless DC motor in the DC chopper system, where the solid line indicates the advance angle control is present, and the broken line indicates the advance angle control heat. As is clear from the figure, the larger the voltage, the greater the effect; as the load increases, the required torque increases, and as a result, a large current is required, resulting in a larger reactive power. Due to the increase in

第9図は第8図の速度〜トルク特性測定時の効率比較を
示したものであり、実線が進角制御有、点線が進角制御
熱を表す。進角制御有時がはるかに効率が高い。
FIG. 9 shows a comparison of efficiency when measuring the speed-torque characteristics in FIG. 8, where the solid line represents the advance angle control and the dotted line represents the advance angle control heat. Efficiency is much higher with lead angle control.

以上のように高調波成分を含んだU相電流と同相の誘起
々電力のsin信号信号色cos信号信号上り誘起々電
力と巻線電流との位相差?を検出し常時この?ζ0にな
るように比例+積分制御を構成することによって巻線印
加電圧と誘起々電力の理想的な進角λを求めることがで
きる。
As mentioned above, the phase difference between the U-phase current containing harmonic components and the in-phase induced electromotive force sine signal color cos signal signal and the upstream induced electromotive force and the winding current? Is this always detected? By configuring proportional+integral control so that ζ0 is achieved, the ideal advance angle λ of the winding applied voltage and induced electromotive force can be determined.

故に誘起々電力の位相と巻線電流との位相づれがほぼO
で力率cos pζ1となり、第8図、第9図に示すよ
うに速度〜トルク特性および効率〜トルク特性が大幅に
改善された。
Therefore, the phase difference between the induced power and the winding current is approximately O.
The power factor became cos pζ1, and as shown in FIGS. 8 and 9, the speed-torque characteristics and the efficiency-torque characteristics were significantly improved.

なお、■相、W相についてもU相と同様な考え方で行っ
ているので、詳細については省略する。
Note that the ■ phase and the W phase are also carried out using the same concept as the U phase, so the details will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明においては巻線に流す電流と
該巻線の誘起々電力との位相差が常にほぼOとなるよう
に制御することによって、巻線に印加する電圧の切換時
期、即ちスイッチングタイミングを調整しかつ方形波お
よびPWMいずれの方式でも使用できる。
As described above, in the present invention, by controlling the phase difference between the current flowing through the winding and the induced electromotive force of the winding to be approximately O at all times, the switching timing of the voltage applied to the winding can be adjusted. That is, the switching timing can be adjusted and both square wave and PWM methods can be used.

従って第8図に示すように通常のブラシレス直流モータ
の駆動方法の点線(制御無)では電圧が大きくなるに従
ってトルク増大とともに急激に回転数が減少し、一般の
直流機のような速度〜トルク特性が得られないが位相差
制御を行う事によって速度〜トルク特性(実線)は電圧
毎にほぼ平行直線の特性となり、通常の直流機のような
速度制御が可能となる。換言すると同一トルク、同一速
度を保つにも少ない電圧又は電流で達成出来ることを意
味し、熱によるロスが減少しモータ全体の効率が向上す
ることになる。
Therefore, as shown in Fig. 8, in the dotted line (no control) of the normal brushless DC motor drive method, as the voltage increases, the torque increases and the rotation speed decreases rapidly, and the speed-torque characteristic is similar to that of a general DC motor. However, by performing phase difference control, the speed-torque characteristic (solid line) becomes a nearly parallel straight line characteristic for each voltage, and speed control like a normal DC machine is possible. In other words, it means that maintaining the same torque and speed can be achieved with less voltage or current, which reduces heat loss and improves the overall efficiency of the motor.

従って本発明による時、速度〜トルク特性及び効率が大
きく改善され、広い範囲な速度変動、負荷変動を要求さ
れる用途に使用する場合、その効果は極めて大きい。
Therefore, according to the present invention, the speed-torque characteristics and efficiency are greatly improved, and the effect is extremely large when used in applications requiring wide range of speed fluctuations and load fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は小容量のブラシレス直流モータの電圧、
電流の位相差を、又(ロ)は中容量以上の電圧、電流の
位相差例を示すグラフ、 第2図(a)は誘起々電力eに対し進角なし時の印加タ
イミングのベクトル図、(b)は電流位相遅れが多少残
っているが進角している時のベクトル図を示す。 第3図は本実施例ブラシレス直流モータの断面図、。 第4図(a)は第3図5を拡大したクロック発生用反射
板の、(b)は永久磁石位置検出用ボードの拡大図、 第5図は進角制御用ブロック線図、 第6図(a)、(b)は第5図8のsinθ、 cos
θメモリーテーブルの状態を時間軸に連続的に表現した
図、(C)は電気毎で3°毎のクロックの状態を又(d
)は永久磁石位置検出タイミング、(e)とλ°だけ進
角した時の印加電圧タイミング、(f)はPWM時のS
Wタイミングを示す図、 第7図はY結線された巻線とそれを駆動するためのパワ
ーブリッジ部を示す回路図、 第8図は進角制御有/無時の速度〜トルク特性比較を示
すグラフ、 第9図は第8図の試験時の効率〜トルク特性比較を示す
説明図である。 出 願 人 新日本製鐵株式会社 代理人弁理士  青  柳      稔4  5  
 □ 第3図 回置ねI:(−へ日) 蒙悟訃 乞 手続補正書(方式) 1、事件の表示 平成1年特許願第120014号 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 代表者  齋  藤     裕 4、代  理  人   〒101    fi’ 0
3(863)02206、補正により増加する請求項の
数  な し7、補正の対象  図 面
Figure 1 (a) shows the voltage of a small capacity brushless DC motor,
Figure 2 (a) is a vector diagram of the application timing when there is no lead angle for the induced power e, (b) shows a vector diagram when the current phase lag remains to some extent but the angle is advanced. FIG. 3 is a sectional view of the brushless DC motor of this embodiment. Figure 4 (a) is an enlarged view of the clock generation reflector plate from Figure 3 and Figure 5, (b) is an enlarged view of the permanent magnet position detection board, Figure 5 is a block diagram for advance angle control, Figure 6 (a) and (b) are sin θ and cos in FIG.
θ A diagram that continuously represents the state of the memory table on the time axis.
) is the permanent magnet position detection timing, (e) is the applied voltage timing when advanced by λ°, and (f) is the S during PWM.
Figure 7 is a circuit diagram showing the W timing, Figure 7 is a circuit diagram showing the Y-connected windings and the power bridge section for driving them, Figure 8 is a comparison of speed-torque characteristics with and without advance angle control. The graph in FIG. 9 is an explanatory diagram showing a comparison of efficiency and torque characteristics during the test in FIG. 8. Applicant Nippon Steel Corporation Representative Patent Attorney Minoru Aoyagi 4 5
□ Figure 3 Rotation I: (-to day) Meng Gofan Request for amendment (method) 1. Indication of the case 1999 Patent Application No. 120014 Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Yutaka Saito 4, Agent 101 fi' 0
3 (863) 02206, Number of claims increased by amendment None 7, Subject of amendment Drawings

Claims (1)

【特許請求の範囲】[Claims]  1.ブラシレス直流モータの永久磁石の円周方向にお
ける磁極位置に対応して取付けられたエンコーダ(Nφ
1はN極、S極検出用、Nφ2は電流位相遅れ演算タイ
ミングクロック検出用の金属板)をU,V,W相毎の磁
極位置用およびタイミングクロック用の光学式センサー
にて白黒ラベルを検出し、全極数の中N極とS極を1対
(電気角で2π)としこの区間に所要のクロック数を発
生出来るように構成せしめ、クロック毎に予め求められ
た誘起々電力と同相のサイン値およびコサイン値をテー
ブルより取出し、高周波成分を含んだU相電流をおのお
の掛けて積分し、1区間全て演算が終了した時点で電流
位相遅れ角度を求め、これを2π周期毎に計算し、その
時の位相遅れ角度を比例+積分制御系で位相遅れが常時
ほぼ0になるように、予め用意した誘起々電力と同相の
巻線印加電圧用スイッチングメモリーテーブル(パルス
幅変調(PWM)用とDCチョッパー用2種類を用途に
応じて使用)より進角した状態即ちクロックの最小分解
能に換算した個数だけ位相をずらした位置のU相データ
(V,W相はU相に対しさらに±2/3π位置がずれた
データ)を取出しスイッチング制御部へ出力することに
より誘起々電力の位相に対し各相の基本波電流の遅れが
減少し力率がほぼ1となってモータ全体の効率を大幅に
改善することを特徴とするブラシレス直流モータの駆動
方法。
1. An encoder (Nφ
1 is for N pole and S pole detection, Nφ2 is a metal plate for detecting current phase delay calculation timing clock), and black and white labels are detected by optical sensors for magnetic pole position and timing clock for each U, V, W phase. Among the total number of poles, a pair of N and S poles (2π in electrical angle) is configured so that the required number of clocks can be generated in this section, and the in-phase induced power calculated in advance for each clock is The sine value and cosine value are taken out from the table, each is multiplied by the U-phase current containing high frequency components, and integrated. When the calculation for one section is completed, the current phase delay angle is determined, and this is calculated every 2π period. To ensure that the phase lag angle at that time is always almost 0 using a proportional + integral control system, we have prepared a switching memory table (for pulse width modulation (PWM) and DC U phase data at a position where the phase is shifted by the number of pieces converted to the minimum resolution of the clock (V and W phases are further ±2/3π with respect to the U phase). By extracting the misaligned data and outputting it to the switching control unit, the delay of the fundamental wave current of each phase with respect to the phase of the induced power is reduced, the power factor becomes almost 1, and the efficiency of the entire motor is greatly improved. A method for driving a brushless DC motor, characterized by:
JP1120014A 1989-05-12 1989-05-12 Driving method for brushless dc motor Pending JPH02299496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120014A JPH02299496A (en) 1989-05-12 1989-05-12 Driving method for brushless dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120014A JPH02299496A (en) 1989-05-12 1989-05-12 Driving method for brushless dc motor

Publications (1)

Publication Number Publication Date
JPH02299496A true JPH02299496A (en) 1990-12-11

Family

ID=14775767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120014A Pending JPH02299496A (en) 1989-05-12 1989-05-12 Driving method for brushless dc motor

Country Status (1)

Country Link
JP (1) JPH02299496A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670580A (en) * 1992-04-13 1994-03-11 Smith & Nephew Dyonics Inc Control system of brushless motor
JPH07163176A (en) * 1993-10-12 1995-06-23 Smith & Nephew Dyonics Inc Full digital control system for motor with armature
WO1996003797A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Motor apparatus capable of obtaining high efficiency and motor control method
KR100319137B1 (en) * 2000-01-06 2001-12-29 구자홍 Method and apparatus for speed control of a brushless DC motor
CN103580558A (en) * 2012-08-10 2014-02-12 金华英科尔电机有限公司 Control device and method based on phase angle of phase current of direct-current brushless motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670580A (en) * 1992-04-13 1994-03-11 Smith & Nephew Dyonics Inc Control system of brushless motor
JPH07163176A (en) * 1993-10-12 1995-06-23 Smith & Nephew Dyonics Inc Full digital control system for motor with armature
WO1996003797A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Motor apparatus capable of obtaining high efficiency and motor control method
CN1063887C (en) * 1994-07-25 2001-03-28 大金工业株式会社 High efficiency motor apparatus and method for controlling same
KR100319137B1 (en) * 2000-01-06 2001-12-29 구자홍 Method and apparatus for speed control of a brushless DC motor
CN103580558A (en) * 2012-08-10 2014-02-12 金华英科尔电机有限公司 Control device and method based on phase angle of phase current of direct-current brushless motor

Similar Documents

Publication Publication Date Title
US6465975B1 (en) Method and system for controlling torque in permanent magnet brushless electric motors
KR100222384B1 (en) Control method and apparatus of rotating magnet type multiphase synchronous motor
EP3357156B1 (en) Linear hall effect sensors for multi-phase permanent magnet motors with pwm drive
JP4847060B2 (en) AC motor drive device and control method thereof
JP2875529B2 (en) Drive device for sensorless brushless motor
JP3397007B2 (en) Brushless motor
JP4801772B2 (en) Brushless motor control device and brushless motor control method
US6051946A (en) Electrical angle detection apparatus, method of detecting electrical angle, and motor control apparatus
JPH06503464A (en) Device and method for compensating torque ripple in a permanent magnet motor
JP2005323490A (en) Permanent magnet synchronous motor device and controller
JP2013068639A (en) Method and device for measuring current
JPS5850119B2 (en) Control device for commutatorless motor
US7990090B2 (en) Method for determining the position of a rotor of a synchronous machine having at least one excitation winding
JPH0947066A (en) Controller for permanent magnet type synchronous motor
EP1250608A1 (en) Load angle determination for electrical motors
CN108450052B (en) Method for controlling a synchronous machine with permanent magnets and corresponding device
JPH02299496A (en) Driving method for brushless dc motor
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JPS605789A (en) Ac servo motor
JPH01248987A (en) Driving method for brushless dc motor
JP2011055586A (en) Motor drive control circuit
JP2674024B2 (en) Servo controller
EP4220936A1 (en) Control method for a permanent magnet synchronous machine using low resolution sensors
CN110785923A (en) Motor control device and motor control method
US20210159830A1 (en) Motor position calibration