JPH0229932B2 - KAENDENRYUKENSHUTSUSOCHI - Google Patents

KAENDENRYUKENSHUTSUSOCHI

Info

Publication number
JPH0229932B2
JPH0229932B2 JP5999584A JP5999584A JPH0229932B2 JP H0229932 B2 JPH0229932 B2 JP H0229932B2 JP 5999584 A JP5999584 A JP 5999584A JP 5999584 A JP5999584 A JP 5999584A JP H0229932 B2 JPH0229932 B2 JP H0229932B2
Authority
JP
Japan
Prior art keywords
flame
resistor
burner
current
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5999584A
Other languages
Japanese (ja)
Other versions
JPS59189215A (en
Inventor
Shinichi Nakane
Naoyoshi Maehara
Takashi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5999584A priority Critical patent/JPH0229932B2/en
Publication of JPS59189215A publication Critical patent/JPS59189215A/en
Publication of JPH0229932B2 publication Critical patent/JPH0229932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は、ガス、石油等を燃料とする燃焼機器
の酸欠燃焼状態をフレームロツドにて検知する火
炎電流検出装置に関し、フレームロツドを取り付
けたバーナを本体及び他のバーナから電気的に絶
縁すると共に、燃焼時には干渉によつて火炎電流
に影響のある他のバーナを含めた直列閉回路を構
成することにより、前述火炎電流検出装置を実現
しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame current detection device that uses a flame rod to detect oxygen-deficient combustion in combustion equipment that uses gas, oil, etc. as fuel. The flame current detection device described above is intended to be realized by configuring a series closed circuit that includes other burners that are electrically insulated and that affect the flame current through interference during combustion.

従来の火炎電流検出装置には、フレームロツド
を取り付けたバーナが本体及び他バーナと同電位
であつたり、フレームロツドを取り付けたバーナ
が絶縁されてはいるが、火炎電流検知回路として
は単一電源で他バーナからの火炎干渉をそのまま
受けた構成のものがあつたが、燃料の種類、特に
ガスにおいては、同一ガス種でも成分のばらつき
が大きい上に、種類も多く、ガスにおける元ガス
圧の変動等で、酸欠時の異常燃焼状態を検知する
ための火炎電流レベル設定が同一ガス種でも不可
能なものがあつた。
In conventional flame current detection devices, the burner to which the flame rod is attached is at the same potential as the main body and other burners, or the burner to which the flame rod is attached is insulated. There was a configuration that received flame interference from the burner as it was, but the type of fuel, especially gas, has large variations in composition even for the same gas type, and there are many types, and fluctuations in the source gas pressure etc. In some cases, it was impossible to set the flame current level to detect abnormal combustion conditions during oxygen deficiency, even for the same gas type.

本発明は、他バーナの燃焼火炎による影響を適
切に応用することで、上記従来の欠点を解消する
ものである。
The present invention solves the above-mentioned conventional drawbacks by appropriately applying the influence of combustion flames of other burners.

以下に本発明の実施例を第1図から第4図に基
づいて説明する。
Embodiments of the present invention will be described below based on FIGS. 1 to 4.

第1図は、本発明の火炎電流検出装置を用いた
ガス燃焼機器のブロツク構成図で、火炎電流検出
素子フレームロツド1が取り付けられたバーナ2
は、機器本体からも、また、他のバーナ3からも
電気的に絶縁されている。燃焼火炎の信号は、第
1、第2の電源を含む第1、第2直列閉回路部4
に入力され、ガス電磁弁5を制御するための駆動
部6に伝達される。7は絶縁されたバーナ2用の
ガバナ、8は他のバーナ3用の燃焼量可変ガバナ
である。本実施例では、他バーナ3を本体と同電
位にしてあるが、バーナ2と同様に絶縁した構成
にしても本発明の目的は達せられる。
FIG. 1 is a block diagram of a gas combustion equipment using the flame current detection device of the present invention.
is electrically insulated from the main body of the device and from other burners 3. The signal of the combustion flame is transmitted to the first and second series closed circuit sections 4 including the first and second power sources.
and is transmitted to the drive section 6 for controlling the gas solenoid valve 5. 7 is an insulated governor for burner 2, and 8 is a variable combustion amount governor for other burners 3. In this embodiment, the other burners 3 are set at the same potential as the main body, but the object of the present invention can also be achieved even if the burners 3 are insulated like the burners 2.

次に第2図で、本発明の構成の具体的な説明を
行う。火炎電気信号を略等価回路に置き換える
と、前記フレームロツド1とバーナ2間では、フ
レームロツド側からバーナへ大部分の電流が流れ
る方向に抵抗9、ダイオード10が接続され、ま
た、火炎干渉によつてフレームロツドが取り付け
られていないバーナ3へも、フレームロツド1側
からバーナ3方向に、抵抗11、ダイオード12
が接続された状態で表わすことが出来る。これら
の等価回路に対し、第1の直列閉回路は、第1の
電源13と、電流制限用抵抗R114と、火炎電
流信号取出用抵抗R315及び平滑コンデンサC1
16の並列回路と、前述抵抗9、ダイオード10
で形成されている。第2の直列閉回路は、第2の
電源17と、あるインピーダンス素子としての抵
抗R218と、交流分伝達用コンデンサC219、
及び、前記抵抗R114、R315とコンデンサC1
16の回路部と、火炎等価回路抵抗11、ダイオ
ード12で形成されている。酸欠等を判定すべき
火炎電流信号は、抵抗R315の両端から取り出
されるので、第1の直列閉回路中のフレーム抵抗
9の影響を大きく受けることは当然であるが、実
際の機器設計上干渉を受けた他バーナでのフレー
ム抵抗11を含む第2の直列閉回路の影響も適切
に受け、以下に述べるような特性を作り出してい
る。第2の直列閉回路には、抵抗R114を含ま
なくても本発明の特性は得られる。第2の直列回
路の影響度合は以下で説明する。
Next, referring to FIG. 2, a detailed explanation of the configuration of the present invention will be given. If the flame electrical signal is replaced with a substantially equivalent circuit, a resistor 9 and a diode 10 are connected between the flame rod 1 and the burner 2 in the direction in which most of the current flows from the flame rod side to the burner. Also, connect a resistor 11 and a diode 12 from the flame rod 1 side to the burner 3 where it is not attached.
can be represented as connected. In contrast to these equivalent circuits, the first series closed circuit includes the first power supply 13, the current limiting resistor R 1 14, the flame current signal extraction resistor R 3 15, and the smoothing capacitor C 1
16 parallel circuits, the aforementioned resistor 9, and diode 10
It is formed of. The second series closed circuit includes a second power supply 17, a resistor R 2 18 as an impedance element, an AC component transmission capacitor C 2 19,
and the resistor R 1 14, R 3 15 and capacitor C 1
It is formed of 16 circuit parts, a flame equivalent circuit resistance 11, and a diode 12. Since the flame current signal for determining oxygen deficiency, etc. is taken out from both ends of the resistor R 3 15, it is natural that it is greatly influenced by the flame resistor 9 in the first series closed circuit, but the actual equipment design The influence of the second series closed circuit including the frame resistance 11 in the other burner which has been subjected to the above interference is also appropriately affected, producing the characteristics described below. The characteristics of the present invention can be obtained even if the second series closed circuit does not include the resistor R 1 14. The degree of influence of the second series circuit will be explained below.

次に、第3図では、各種火炎電流検知装置の構
成における酸素濃度と火炎電流の関係を示してい
る。図中のaは、第2の直列閉回路構成を全く取
り去つた状態の特性で、絶縁されたバーナ2のみ
の火炎電流特性である。この構成も、他バーナ3
の火炎干渉を受けているが、全体的に電流レベル
が低い。bは、第2の直列閉回路を取り去つたも
のであるが、他のバーナ3をバーナ2と同電位に
するか、又は、バーナ2の絶縁を取りはずした構
成であり、他のバーナ3の火炎影響をそのまま信
号として取り出す方法である。bの場合、aに比
して全体的に電流レベルが高くなつているのは当
然である。このような従来の特性では、以下第4
図の項で説明する酸欠レベル設定用の許容範囲
Δife(Δife=λfe2−ife1)が取れないような燃料種

ある。そこで、本発明のような構成でO2濃度に
対する火炎電流変化を大きくし、第3図cのよう
な傾斜の大きな特性を得て、酸欠レベル設定を可
能にする。ここで、火炎電流変化の傾斜は、フレ
ーム抵抗9,11と、第2の直列閉回路中の抵抗
R218の各絶対値の相対関係に依存する。酸素
濃度が21%と高い中は特にフレームロツドを取り
付けた第1のバーナ側のフレーム抵抗9が小さ
く、火炎電流検出抵抗R315に発生する電圧降
下は第1の直列閉回路電流i1に大きく依存するの
で、cの火炎電流値もbに比べて著しくは低下し
ない。ところが、酸欠状態に近づくに従い、火炎
は拡散燃焼気味になり、バーナ間相互の火炎干渉
の影響を受け易くなるのである。その上、前記酸
欠状態では、第1のバーナ火炎に対するフレーム
抵抗9も、他のバーナとの干渉火炎に対するフレ
ーム抵抗11も、その絶対値が大きく、火炎電流
検出抵抗R315に発生する電圧降下には、第2
の直列閉回路電流i2の寄与率が高まる。それ故、
酸素濃度に対するフレーム抵抗11の変化値(例
えば、数十KΩ〜数MΩ)に対して、抵抗18の
寄与率を適切に与えれば、火炎電流の絶対値はb
の特性に比べて低いが、酸素濃度が正常時から酸
欠状態に至るまでの火炎電流変化特性の傾斜は、
cを大きくすることができる。それ故、以降、第
4図で説明するような酸欠判定しベルを設定する
ことが可能となるのである。コンデンサC219
は、第2の電源17の検知電圧に対する直流分カ
ツトの役割をしているが、無くても本特性は得ら
れる。
Next, FIG. 3 shows the relationship between oxygen concentration and flame current in the configurations of various flame current detection devices. In the figure, a shows the characteristic in a state where the second series closed circuit configuration is completely removed, and is the flame current characteristic of only the insulated burner 2. This configuration also applies to the other burner 3.
flame interference, but the overall current level is low. b is a configuration in which the second series closed circuit is removed, but the other burners 3 are set to the same potential as burner 2, or the insulation of burner 2 is removed; This method extracts the flame effect directly as a signal. In case b, it is natural that the current level is higher overall than in case a. With such conventional characteristics, the fourth
There are some fuel types for which the tolerance range Δi fe (Δi fefe2 −i fe1 ) for setting the oxygen deficiency level described in the section of the figure cannot be achieved. Therefore, with the configuration of the present invention, the change in flame current with respect to O 2 concentration is increased, a characteristic with a large slope as shown in FIG. 3c is obtained, and the oxygen deficiency level can be set. Here, the slope of the flame current change is determined by the flame resistances 9 and 11 and the resistance in the second series closed circuit.
It depends on the relative relationship of each absolute value of R 2 18. When the oxygen concentration is as high as 21%, the flame resistance 9 on the first burner side to which the flame rod is attached is particularly small, and the voltage drop occurring across the flame current detection resistor R315 is large compared to the first series closed circuit current i1 . Therefore, the flame current value of c does not decrease significantly compared to b. However, as the oxygen-deficient state approaches, the flame tends to become diffuse combustion, and the burners become susceptible to mutual flame interference. Moreover, in the oxygen-deficient state, both the flame resistance 9 to the first burner flame and the flame resistance 11 to interference flames with other burners have large absolute values, and the voltage generated in the flame current detection resistor R 3 15 is large. For the descent, the second
The contribution rate of the series closed circuit current i 2 increases. Therefore,
If the contribution rate of the resistance 18 is appropriately given to the change value of the flame resistance 11 with respect to the oxygen concentration (for example, several tens of kilohms to several megaohms), the absolute value of the flame current will be b.
Although it is lower than the characteristics of
c can be increased. Therefore, from now on, it becomes possible to determine the oxygen deficiency and set the alarm as explained in FIG. Capacitor C 2 19
acts as a direct current cutter for the detection voltage of the second power supply 17, but this characteristic can be obtained even without it.

第4図では、実際の機器(特にガスを燃料とす
るもの)において酸欠レベル設定を行う際の、火
炎電流許容範囲Δifeの説明を行つている。Q1及び
Q2は同一ガス種(例えば都市ガス6B)内での
成分ばらつき、及びガバナを通した後でも受ける
元圧ばらつきを含んだ、酸素濃度に対する火炎電
流ばらつきの両端特性を示しており、Q1は最大、
Q2は最小側である。酸欠状態の燃焼で、機器か
らCOやCO2等がある量発生し出すO2濃度を、本
例では16%とし、その時のQ1の電流値はife1であ
る。また、実際の閉め切つた室内で燃焼機器を使
用した場合に数時間で容易に達し得るO2濃度を、
19.5%と仮設定し、この時のO2の電流値はife2
ある。第4図からも明らかなように、諸要素のば
らつきを含めた燃焼の最大側では、正常燃焼状態
での火炎電流は、前記ife2より大きい。また、燃
焼の最小側では、異常燃焼状態、すなわち、酸素
濃度16%付近での火炎電流は、前記ife1よりも小
さい。それ故、同図に示した各火炎電流値ife1
ife2の差、すなわち、 Δife=ife2−ife1が所定値以上で、しかも、正の
値であるとき、異常燃焼状態を正常燃焼状態と識
別して検出することの出来る構成が実現可能であ
る。それは同一ガス種では、レベルを1点に定め
ておくことにより、成分ばらつきやガス圧ばらつ
きを吸収し得るからである。第3図のaでは、全
体的なレベルが低いために、Δifeが取れても設計
上のノイズマージンが小さいという不都合が生ず
る。それに比べて、本発明のcのように、全体の
電流レベルを引き上げ、しかも傾斜を大きくする
ことでΔife自体に余裕度が生ずるのである。
FIG. 4 explains the allowable flame current range Δi fe when setting the oxygen deficiency level in an actual device (particularly one that uses gas as fuel). Q1 and
Q 2 shows the two-end characteristics of the flame current variation with respect to oxygen concentration, including the composition variation within the same gas type (for example, city gas 6B) and the source pressure variation even after passing through the governor, and Q 1 maximum,
Q 2 is the minimum side. In this example, the O 2 concentration at which a certain amount of CO, CO 2 , etc. is generated from the equipment due to oxygen-deficient combustion is 16%, and the current value of Q 1 at that time is i fe1 . In addition, the O 2 concentration that can be easily reached in a few hours when using combustion equipment in an actual closed room is
It is tentatively set to 19.5%, and the O 2 current value at this time is i fe2 . As is clear from FIG. 4, on the maximum side of combustion, including variations in various elements, the flame current in a normal combustion state is larger than the above i fe2 . Further, on the minimum side of combustion, the flame current in an abnormal combustion state, that is, around 16% oxygen concentration, is smaller than ife1 . Therefore, each flame current value i fe1 shown in the same figure
When the difference in i fe2 , that is, Δi fe = i fe2 −i fe1 , is greater than a predetermined value and is a positive value, it is possible to realize a configuration that can distinguish and detect an abnormal combustion state from a normal combustion state. It is. This is because for the same gas type, by setting the level at one point, variations in components and gas pressure can be absorbed. In case a of FIG. 3, since the overall level is low, even if Δi fe can be obtained, the disadvantage is that the design noise margin is small. In comparison, by raising the overall current level and increasing the slope as in c of the present invention, a margin is created in Δi fe itself.

第5図では、実際の回路構成を用いた本発明の
他の実施例を示している。商用電源20から、ト
ランス21を通して、前述第1、第2の電源1
3,17を作つている。22は整流用ダイオード
ブリツジで、電磁弁5の駆動部6を含む制御回路
23の直流電源を形成している。第2図と同一番
号のものは、同一構成部品を示している。
FIG. 5 shows another embodiment of the invention using an actual circuit configuration. A commercial power source 20 is connected to the first and second power sources 1 through a transformer 21.
3,17 is being made. Reference numeral 22 denotes a rectifying diode bridge, which forms a DC power source for the control circuit 23 including the drive section 6 of the electromagnetic valve 5. The same numbers as in FIG. 2 indicate the same components.

以上の説明から明らかなように、本発明の火炎
電流検出装置は、通常燃焼時にはフレームロツド
を取り付けた側のバーナ火炎と、他バーナの火災
干渉による影響を利用して検知電圧を大きく取
り、また酸欠異常燃焼時には、第2の直列回路中
の抵抗R218とフレーム抵抗11によつてi2を小
さくし、第3図cで示したようにO2濃度に対す
る火炎電流変化の大きな特性が得られるので、燃
料の種類に依らず酸欠レベル設定のための火炎電
流範囲Δifeを確保することが可能となり、燃焼機
器への組み込みで安全装置としての役割を果たす
ことが出来るのである。
As is clear from the above description, the flame current detection device of the present invention uses the influence of the burner flame on the side to which the flame rod is attached and the fire interference of other burners during normal combustion to increase the detection voltage. At the time of abnormal combustion, i 2 is made small by the resistance R 2 18 and the flame resistance 11 in the second series circuit, and as shown in Fig. 3c, a characteristic in which the flame current changes greatly with respect to the O 2 concentration is obtained. Therefore, it is possible to secure the flame current range Δi fe for setting the oxygen deficiency level regardless of the type of fuel, and it can serve as a safety device when incorporated into combustion equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における火炎電流検
出装置を用いたガス燃焼機器のブロツク構成図、
第2図は本発明の具体回路図、第3図は酸素濃度
と火炎電流の関係を示す図、第4図は酸欠レベル
設定範囲Δifeを示す特性図、第5図は本発明の他
の実施列による回路構成図である。 1……フレームロツド、2……フレームロツド
が取り付けられた絶縁バーナ、3……他のバー
ナ、13……第1の電源、14……電流制限用抵
抗R1、15……火炎電流信号取出用抵抗R3、1
6……平滑コンデンサC1、17……第2の電源、
18……あるインピーダンス素子としての抵抗
R2
FIG. 1 is a block diagram of a gas combustion equipment using a flame current detection device according to an embodiment of the present invention;
Fig. 2 is a specific circuit diagram of the present invention, Fig. 3 is a diagram showing the relationship between oxygen concentration and flame current, Fig. 4 is a characteristic diagram showing the oxygen deficiency level setting range Δi fe , and Fig. 5 is a diagram showing the relationship between oxygen concentration and flame current. FIG. 1...Flame rod, 2...Insulated burner to which flame rod is attached, 3...Other burners, 13...First power supply, 14...Resistor for current limiting R 1 , 15... Resistor for taking out flame current signal R 3 , 1
6... Smoothing capacitor C 1 , 17... Second power supply,
18...Resistance as a certain impedance element
R2 .

Claims (1)

【特許請求の範囲】[Claims] 1 複数のバーナを含む燃焼機器において、第1
の電源と、電流制限用抵抗と、火炎電流信号取出
用抵抗及び前記火炎電流信号取出用抵抗と並列に
接続された平滑コンデンサとの並列回路と、火炎
電流検出用素子としてのフレームロツドと、機器
本体及び他のバーナから電気的に絶縁された上に
前記フレームロツドが取り付けられた第1のバー
ナからなる第1の直列閉回路と、第2の電源と、
インピーダンス素子と、前記電流制限用抵抗、前
記火炎電流信号取出用抵抗及び平滑コンデンサの
並列回路と、前記フレームロツドと、前記第1の
バーナ以外の他のバーナとからなる第2の直列閉
回路とからなることを特徴とする火炎電流検出装
置。
1 In combustion equipment including multiple burners, the first
A parallel circuit consisting of a power source, a current limiting resistor, a flame current signal extracting resistor, and a smoothing capacitor connected in parallel with the flame current signal extracting resistor, a flame rod as a flame current detecting element, and the main body of the device. and a first series closed circuit comprising a first burner electrically insulated from the other burners and to which the flame rod is mounted; and a second power source;
A second series closed circuit consisting of an impedance element, a parallel circuit of the current limiting resistor, the flame current signal extraction resistor, and a smoothing capacitor, the flame rod, and a burner other than the first burner. A flame current detection device characterized by:
JP5999584A 1984-03-27 1984-03-27 KAENDENRYUKENSHUTSUSOCHI Expired - Lifetime JPH0229932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5999584A JPH0229932B2 (en) 1984-03-27 1984-03-27 KAENDENRYUKENSHUTSUSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5999584A JPH0229932B2 (en) 1984-03-27 1984-03-27 KAENDENRYUKENSHUTSUSOCHI

Publications (2)

Publication Number Publication Date
JPS59189215A JPS59189215A (en) 1984-10-26
JPH0229932B2 true JPH0229932B2 (en) 1990-07-03

Family

ID=13129257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5999584A Expired - Lifetime JPH0229932B2 (en) 1984-03-27 1984-03-27 KAENDENRYUKENSHUTSUSOCHI

Country Status (1)

Country Link
JP (1) JPH0229932B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861402A1 (en) * 1995-11-13 1998-09-02 Gas Research Institute Flame ionization control apparatus and method
US6299433B1 (en) 1999-11-05 2001-10-09 Gas Research Institute Burner control
US7241135B2 (en) 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner

Also Published As

Publication number Publication date
JPS59189215A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
US5365223A (en) Fail-safe condition sensing circuit
US5472336A (en) Flame rectification sensor employing pulsed excitation
US5439374A (en) Multi-level flame curent sensing circuit
CA1111912A (en) High resistance ground fault detector
EP2265867B1 (en) Improved method and device to detect the flame in a burner operating on a solid, liquid or gaseous combustible
US20060257802A1 (en) Flame sensing system
EP0071067B1 (en) Combustion control device
JPH0338530B2 (en)
US6985080B2 (en) Flame sense circuit and method with analog output
JPH0229932B2 (en) KAENDENRYUKENSHUTSUSOCHI
EP0050345A1 (en) Fuel burner control system
CA1123934A (en) Safe start check circuit
US2429764A (en) Electric fence indicator
JPS625014A (en) Combustion detecting system
JPS6226688Y2 (en)
JPS6038542A (en) Automatic ventilating fan
JPS62142922A (en) Combustion sensing circuit
WO2007132484A1 (en) A device for measuring flame intensity
JPH0713532B2 (en) Combustion detection circuit
JPS6130038Y2 (en)
JPH0231289B2 (en) KAENDENRYUKENSHUTSUSOCHI
JPS629808B2 (en)
JPH0210346B2 (en)
JPS6321090B2 (en)
KR960041946A (en) Dehumidification method using boiler