JPH02299167A - Solid electrolyte type fuel cell stack - Google Patents

Solid electrolyte type fuel cell stack

Info

Publication number
JPH02299167A
JPH02299167A JP1119986A JP11998689A JPH02299167A JP H02299167 A JPH02299167 A JP H02299167A JP 1119986 A JP1119986 A JP 1119986A JP 11998689 A JP11998689 A JP 11998689A JP H02299167 A JPH02299167 A JP H02299167A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode layer
layer
cell stack
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1119986A
Other languages
Japanese (ja)
Other versions
JP2927816B2 (en
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1119986A priority Critical patent/JP2927816B2/en
Publication of JPH02299167A publication Critical patent/JPH02299167A/en
Application granted granted Critical
Publication of JP2927816B2 publication Critical patent/JP2927816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To facilitate the serial connection and parallel connection of stacks together and simply obtain the external output by providing a slit at the depth reaching the first electrode layer from the surface, and forming an output terminal layer at the preset thickness on the first electrode layer in the slit. CONSTITUTION:A slit 27 extended with the fixed width in the direction parallel with the axis of a support pipe 21 is formed on a fuel cell unit 25 formed on one end side of a solid electrolyte type fuel cell stack 20 at the depth reaching the surface of the innermost air electrode layer 22 by scraping the outermost fuel electrode layer 24 and the intermediate solid electrolyte layer 23. An output terminal layer 28 made of a raw material nearly similar to that of an interconnector 26 is formed on the air electrode layer 22 of the slit 27 at the noncontact state with the fuel electrode layer 24 so that its end section on the cell outer periphery side is kept at the same height as the outer periphery of the outermost fuel electrode layer 24 or the height slightly protruded to the outside. The external output is easily obtained. The serial connection and parallel connection can be optionally performed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、1本の円筒状支持管の外周に、複数の燃料
電池単体を、直列に接続した状態に形成した固体電解質
型燃料電池スタックに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a solid oxide fuel cell stack in which a plurality of individual fuel cells are connected in series around the outer periphery of a single cylindrical support tube. It is.

従来の技術 固体電解質型燃料電池を構成する各燃料電池単体から生
じる電圧は約1Vと低電圧で実用的でないため、複数の
燃料電池単体を直列に接続して所定の電圧とするととも
に、高出力とするために並列にも接続する必要がある。
Conventional technology The voltage generated from each fuel cell that makes up a solid oxide fuel cell is about 1V, which is too low to be practical. In order to do this, it is necessary to connect them in parallel as well.

複数の燃料電池単体を直列に接続する方式としては、第
4図に示す内部直列式と第5図に示す外部直列式とがあ
る。
Methods for connecting a plurality of single fuel cells in series include an internal series system shown in FIG. 4 and an external series system shown in FIG. 5.

先ず内部直列式は、多孔質で円筒状の支持管1の外周に
、第1電極層2、固体電解質層3、第2電極層4の順に
積層して形成された燃料電池単体5を、支持管1の軸方
向に所定の長さでかつ隣接する燃料電池単体5.5間に
間隙をそれぞれ設けて複数形成され、これら各燃料電池
単体5は、相互の間隙内にインターコネクタ6を設けて
、隣接する一方の燃料電池単体5の第1電極層2と他方
の燃料電池単体5の第2電極層4とをそれぞれ直列に接
続されている。そして、支持管1の両端部には、一方の
端部(第4図において左端)に形成された燃料電池単体
5の第1電極層2に導通された第1出力リード部7が支
持管1の外周に形成されるとともに、他方の端部には、
その端部に形成された燃料電池単体5の第2N極114
に導通された第2出力リード部8がそれぞれ形成され、
全体として一本の棒状のいわゆる燃料電池スタック9を
形成している。
First, in the internal series type, a fuel cell unit 5 formed by laminating a first electrode layer 2, a solid electrolyte layer 3, and a second electrode layer 4 in this order is supported on the outer periphery of a porous cylindrical support tube 1. A plurality of fuel cell units 5 and 5 are formed with a predetermined length in the axial direction of the tube 1 and gaps are provided between adjacent fuel cell units 5 and 5, and each of these fuel cell units 5 is provided with an interconnector 6 in the mutual gap. , the first electrode layer 2 of one adjacent fuel cell unit 5 and the second electrode layer 4 of the other fuel cell unit 5 are connected in series. A first output lead part 7 connected to the first electrode layer 2 of the fuel cell unit 5 formed at one end (the left end in FIG. 4) of the support tube 1 is connected to both ends of the support tube 1. is formed on the outer periphery of the , and at the other end,
The second N pole 114 of the fuel cell unit 5 formed at the end thereof
A second output lead portion 8 electrically connected to the second output lead portion 8 is formed, respectively.
As a whole, a so-called fuel cell stack 9 having a rod shape is formed.

一方、外部直列式に接続して用いる燃料電池単体15は
、多孔質で円筒状の支持管11の外周に、第1電極層1
2、固体電解質層13、第2電極層14の順に積層した
構造となっており、この各燃料電池単体15の外周の一
部(第5図においてそれぞれの上部)には、表面から第
1電極1112まで達する深さのスリット16が軸線と
平行に全長に亘って形成されており、このスリット16
内にはインターコネクタ17が、前記第1電極1112
に接続されるとともに第2電極層14とは非接触状態に
設けられている。
On the other hand, in the fuel cell unit 15 used by external series connection, the first electrode layer 1
2. It has a structure in which a solid electrolyte layer 13 and a second electrode layer 14 are laminated in this order, and a part of the outer periphery (the upper part of each in FIG. 5) of each fuel cell unit 15 is covered with a first electrode from the surface. A slit 16 with a depth of up to 1112 mm is formed parallel to the axis over the entire length, and this slit 16
An interconnector 17 is located inside the first electrode 1112.
While being connected to the second electrode layer 14, the second electrode layer 14 is provided in a non-contact state.

そして、複数の燃料電池単体15をそれぞれ平行に配列
して、互いに隣接する各燃料電池単体15.15の一方
のインターコネクタ17の先端を、他方の燃料電池単体
15の外周の第2電極層14に、直接または導電性フェ
ルト等の緩衝材18を介在させて当接させて直列に接続
している。
Then, the plurality of fuel cells 15 are arranged in parallel, and the tip of one interconnector 17 of each adjacent fuel cell unit 15.15 is connected to the second electrode layer 14 on the outer periphery of the other fuel cell unit 15. They are connected in series by being brought into contact with each other directly or with a buffer material 18 such as conductive felt interposed therebetween.

発明が解決しようとする課題 しかし、前述した従来の燃料電池単体を直列に接続する
形式のうち、前者の内部直列式の場合の燃料電池スタッ
ク9の出力電圧は、1本の円筒状支持管上に形成できる
燃料電池単体5の数によって決定されるもので、各燃料
電池単体5の必要最小限の長さおよび支持1i!1の製
造可能な長さによって制限され、最大出力が決まってい
た。
Problem to be Solved by the Invention However, among the conventional types of connecting individual fuel cells in series, the output voltage of the fuel cell stack 9 in the former internal series type is the same as that of the single cylindrical support tube. It is determined by the number of single fuel cells 5 that can be formed in a single fuel cell unit 5, and the required minimum length and support 1i! of each single fuel cell unit 5! The maximum output was determined by the length that could be manufactured.

また、燃料電池スタック9から外部出力させるためには
、支持管の両端部に、出力端子である第1出力リード部
7と第2出力リード部8とを設ける必要があり、両川力
リード部7.8の分だけ電気の流れるパスが長くなり、
内部抵抗が増すとともに、両川力リード部7.8の長さ
だけ、支持管1の有効長が短くなり、形成できる燃料電
池単体5の数が削減されるという問題があった。さらに
、出力電圧を高めるために、燃料電池スタック9同士を
直列に接続しようとした場合には、燃料電池スタック9
の両端に形成された第1出力リード部7と、他の燃料電
池スタック9の第2出力リード部8とを外部配線によっ
て接続する必要があり、接続作業が煩雑となるという問
題があった。
In addition, in order to output externally from the fuel cell stack 9, it is necessary to provide a first output lead part 7 and a second output lead part 8, which are output terminals, at both ends of the support tube. The path through which electricity flows becomes longer by .8,
There was a problem in that as the internal resistance increased, the effective length of the support tube 1 became shorter by the length of the Ryogawa force lead portion 7.8, and the number of fuel cells 5 that could be formed was reduced. Furthermore, when trying to connect the fuel cell stacks 9 in series to increase the output voltage, the fuel cell stacks 9
It is necessary to connect the first output lead part 7 formed at both ends of the fuel cell stack 9 to the second output lead part 8 of the other fuel cell stack 9 by external wiring, which poses a problem in that the connection work becomes complicated.

一方、後者の外部直列式の場合には、支持管11の全長
を燃料電池単体15として無駄なく使用できるが、1本
の支持!11上に1個の燃料電池単体15を形成するた
め1本当りの出力電圧が約1Vと低い。そのため、所望
の電圧を取り出すには多数の燃料電池単体15を直列に
接続しなければならず、燃料電池単体15の集合体が大
型化するという問題があった。
On the other hand, in the case of the latter external series type, the entire length of the support tube 11 can be used as a single fuel cell 15 without waste, but only one support tube! Since one single fuel cell 15 is formed on the fuel cell 11, the output voltage per fuel cell is as low as about 1V. Therefore, in order to extract a desired voltage, it is necessary to connect a large number of fuel cells 15 in series, resulting in a problem that the assembly of fuel cells 15 becomes large.

この発明は上記事情に鑑みなされたもので、内部直列式
の燃料電池スタックで、スタック相互の直列接続および
並列接続が容易であるとともに、外部出力が簡便に行な
える固体電解質型燃料電池スタックを提供することを目
的としている。
The present invention has been made in view of the above circumstances, and provides a solid oxide fuel cell stack that is an internal series fuel cell stack that allows for easy series and parallel connections between stacks, as well as easy external output. It is intended to.

課題を解決するための手段 この発明は、上記の目的を達成するために、円筒状の支
持管の外周に、内側から第1電極層、固体電解質層、第
2電極層の順に積層した燃料電池単体を、軸方向に所定
の長さでかつ隣接する燃料電池単体間に間隙を設けて複
数形成するとともに、軸方向に互いに隣接する一方の燃
料電池単体の第1電極層と他方の燃料電池単体の第2電
極層とを接続する導電性接続体を支持管の外周の各間隙
内に形成して直列に接続した固体電解質型燃料電池スタ
ックにおいて、前記直列に接続された複数の燃料電池単
体のうちの少なくとも支持管の一端に形成された燃料電
池単体は、その表面から第1電極層まで達する深さのス
リットが設けられるとともに、このスリット内の第1電
極層上に出力端子層が所定の厚さに形成されていること
を特徴としている。
Means for Solving the Problems In order to achieve the above object, the present invention provides a fuel cell in which a first electrode layer, a solid electrolyte layer, and a second electrode layer are laminated in this order from the inside on the outer periphery of a cylindrical support tube. A plurality of fuel cell units are formed with a predetermined length in the axial direction and a gap is provided between adjacent fuel cell units, and a first electrode layer of one fuel cell unit and the other fuel cell unit are adjacent to each other in the axial direction. In a solid oxide fuel cell stack in which a conductive connector is formed in each gap on the outer periphery of a support tube and connected in series, the plurality of fuel cells connected in series are connected to the second electrode layer. The single fuel cell formed at least at one end of the support tube is provided with a slit deep enough to reach from the surface to the first electrode layer, and an output terminal layer is formed on the first electrode layer in this slit in a predetermined manner. It is characterized by being formed thickly.

作   用 上記のように、固体電解質型燃料電池スタックを、1本
の支持管の外周に、複数の燃料電池単体を導電性接続体
で相互間を直列に接続した状態に形成するとともに、端
部に形成された燃料電池単体の外周面には、その最内側
の第1電極層に接続してスリット内に設けられた出力端
子層の一部が、最外側の第2電極層と非接触状態に配設
されていることから、外部出力が容易となり、また、こ
の固体電解質型燃料電池スタック同士を直列に複数接続
する場合には、端部に形成された前記出力端子層が、隣
接する他の固体電解質型燃料電池スタックの端部の燃料
電池単体の第2電極層にそれぞれ接触するように、出力
端子層の位賃が、例えば左右交互となるようにして、互
いに接近させて平行に配列すると、各燃料電池単体の出
力端子層が、それぞれ隣接する別の固体電解質型燃料電
池スタックの端部の第21極層に当接して容易に直列接
続される。また出力リード部を介さずに直接的に接続で
きるため、内部抵抗による電力ロスが低減される。
Function As described above, a solid oxide fuel cell stack is formed around the outer periphery of one support tube by connecting a plurality of individual fuel cells in series with each other using conductive connectors, and A part of the output terminal layer provided in the slit connected to the innermost first electrode layer is in a non-contact state with the outermost second electrode layer on the outer peripheral surface of the single fuel cell formed in Since the output terminal layer is disposed at the end, external output is facilitated, and when a plurality of these solid oxide fuel cell stacks are connected in series, the output terminal layer formed at the end is connected to the adjacent The output terminal layers are arranged close to each other and parallel to each other, for example, alternately on the left and right sides, so as to contact the second electrode layers of the single fuel cells at the ends of the solid oxide fuel cell stack. Then, the output terminal layer of each single fuel cell comes into contact with the 21st pole layer at the end of another adjacent solid oxide fuel cell stack, and is easily connected in series. Furthermore, since it can be directly connected without going through the output lead section, power loss due to internal resistance is reduced.

また、固体電解質型燃料電池スタックの両端にそれぞれ
設ければ、各端部の燃料電池単体の第2電極層と出力端
子層とを、択一的に使用することにより直列接続および
並列接続を任意に行なうことができ、また直並列接続も
容易となり、所望の高電圧および高出力が容易に得られ
る。
Furthermore, if they are provided at both ends of the solid oxide fuel cell stack, the second electrode layer and output terminal layer of the single fuel cell at each end can be used alternatively, allowing for arbitrary series and parallel connections. Moreover, series-parallel connection is also easy, and desired high voltage and high output can be easily obtained.

実施例 以下、この発明の一実施例を第1図ないし第3図に基づ
いて説明する。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 to 3.

固体電解質型燃料電池スタック2oは、1本の長尺な円
筒状の支持管21の外周に、内側がら空気電極層22、
固体電解質層23、燃料電極層24の順に積層した燃料
電池単体25を、支持管21の軸方向に所定の長さでか
つ隣接する燃料電池単体25.25間に所定の間隙を設
けて複数形成するとともに、軸方向に互いに隣接する各
燃料電池単体25のうちの一方の燃料電池単体25の空
気電極層22と、他方の燃料電池単体25の燃料電極層
24とを接続するようにインターコネクタ26が支持管
21の外周の各間隙内に形成されて、各燃料電池単体2
5を直列に接続して1本の棒状に形成されている。
The solid oxide fuel cell stack 2o has an air electrode layer 22 on the outer periphery of one long cylindrical support tube 21, and an air electrode layer 22 on the inside.
A plurality of fuel cell units 25 are formed in which a solid electrolyte layer 23 and a fuel electrode layer 24 are laminated in this order, with a predetermined length in the axial direction of the support tube 21 and with a predetermined gap between adjacent fuel cell units 25 and 25. At the same time, an interconnector 26 is connected to connect the air electrode layer 22 of one of the fuel cell units 25 adjacent to each other in the axial direction and the fuel electrode layer 24 of the other fuel cell unit 25. are formed in each gap on the outer periphery of the support tube 21, and each fuel cell unit 2
5 are connected in series to form one rod shape.

また前記支持管21には、機械的強度が大きく、またガ
ス透過性に優れるとともに軽量な、例えばアルミナ管や
カルシア安定化ジルコニア管(C3Z)等が用いられて
おり、この支持!!21の外周に形成された各燃料電池
単体25の最内層の空気電極層22は、高温酸化雰囲気
中で化学的に安定するとともに、高い導電性でかつガス
透過性に優れた、例えばベロアスカイト型ランタン系複
合酸化物で形成されている。また前記固体電解質層23
には、酸素イオンの選択透過性を有し、ガスを透過さぜ
ない緻密構造の、例えばイツトリア安定化ジルコニア(
YSZ)等が使用され、さらに、最外側の燃料電極層2
4は、多孔質で電子導電性に帰れた、例えばニッケルあ
るいはニッケルとジルコニアとのサーメット等から形成
されている。
Further, the support tube 21 is made of an alumina tube, a calcia stabilized zirconia tube (C3Z), etc., which has high mechanical strength, excellent gas permeability, and is lightweight. ! The innermost air electrode layer 22 of each fuel cell unit 25 formed on the outer periphery of the fuel cell 21 is made of, for example, velorskite, which is chemically stable in a high-temperature oxidizing atmosphere, has high conductivity, and has excellent gas permeability. It is made of a type lanthanum-based composite oxide. Further, the solid electrolyte layer 23
For example, yttria-stabilized zirconia (
YSZ) etc., and furthermore, the outermost fuel electrode layer 2
4 is made of porous and electronically conductive material such as cermet of nickel or nickel and zirconia.

また前記インターコネクタ21.il化還元雰囲気中で
化学的に安定するとともに、高い電子導電性を有する、
ニッケル系合金やプロブスカイト型ランタン系複合酸化
物(例えばLaCr03)等で形成されている。
Further, the interconnector 21. It is chemically stable in an il-oxidizing reducing atmosphere and has high electronic conductivity.
It is formed of a nickel-based alloy, a provskite-type lanthanum-based composite oxide (for example, LaCr03), or the like.

そして、固体電解質型燃料電池スタック20の一端側(
第1図において左端側)に形成された燃料電池単体25
には、最外側の燃料電極層24と中間の固体電解質層2
6とを削って、最内層の空気電極層22の表面に達する
深さで、かつ支持管21の軸線と平行な方向に一定の幅
で延びるスリット27が形成されており、このスリット
27内の前記空気電極層22上には、前記インターコネ
クタ26とほぼ同様の素材からなる出力端子層28が、
燃料電極層24と非接触状態でかつその電池外周側端部
(第2図において上端)が、最外層の燃料電極層24の
外周面と同じ高さが、またはこれより若干外側に突出す
る高さに形成されている。
One end side of the solid oxide fuel cell stack 20 (
Single fuel cell 25 formed on the left end side in Fig. 1
includes an outermost fuel electrode layer 24 and an intermediate solid electrolyte layer 2.
6 is cut to form a slit 27 that has a depth that reaches the surface of the innermost air electrode layer 22 and that extends with a constant width in a direction parallel to the axis of the support tube 21. On the air electrode layer 22, an output terminal layer 28 made of substantially the same material as the interconnector 26 is provided.
A height that is in a non-contact state with the fuel electrode layer 24 and whose outer peripheral end of the cell (the upper end in FIG. 2) is at the same height as the outer peripheral surface of the outermost fuel electrode layer 24 or slightly protrudes outward from this. It is formed.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池スタック20は、ケーシング(図
示せず)内に収納された状態で使用され、円筒状の支持
管21の内側の空間に酸素あるいは空気が供給されると
ともに、直列に接続された各燃料電池単体25の周囲の
ケーシング内の空間に、水素(H2)あるいは−酸化炭
素(Co)等の燃料ガスが供給されると、各燃料電池単
体25毎に、それぞれ固体電解質23を挟んだ両側の雰
囲気の酸素濃度を平衡させるように、固体電解質層23
を介して酸化・還元反応が起きて電気が生じる。
The solid oxide fuel cell stack 20 is used while being housed in a casing (not shown), and oxygen or air is supplied to the space inside the cylindrical support tube 21, which is connected in series. When a fuel gas such as hydrogen (H2) or -carbon oxide (Co) is supplied to the space inside the casing around each fuel cell unit 25, a solid electrolyte 23 is sandwiched between each fuel cell unit 25. The solid electrolyte layer 23 is arranged so as to balance the oxygen concentration in the atmosphere on both sides.
Oxidation and reduction reactions occur through the ions, producing electricity.

そして各燃料電池単体26に生じた電気は、それぞれイ
ンターコネクタ26を介して直列に接続されているため
、一端の燃料電池単体25の空気電極層22に接続した
出力端子118と、他端の燃料電池単体25の燃料電極
層24とが、固体電解質型燃料電池スタック20全体の
陽極と陰極となり、直列に接続されて形成されている燃
料電池単体25の数だけ加算された電圧として出力され
る。
Since the electricity generated in each fuel cell unit 26 is connected in series via the interconnector 26, the output terminal 118 connected to the air electrode layer 22 of the fuel cell unit 25 at one end, and the fuel cell unit 25 at the other end. The fuel electrode layer 24 of the cell unit 25 serves as the anode and cathode of the entire solid oxide fuel cell stack 20, and the voltage is output as the sum of the number of fuel cell units 25 connected in series.

また、さらに高電圧を得るために、固体電解質型燃料電
池スタック20同士を直列に接続する場合には、各固体
電解質型燃料電池スタック2oの一端に形成された燃料
電池単体25の出力端子層28が、それぞれ隣接する他
の固体電解質型燃料電池スタック20の端部に形成され
た燃料電池単体25の燃料電極WA24に接触するよう
に、各固体電解質型燃料電池スタック20の前記出力端
子層28の位置が、例えば左右交互となるようにして、
互いに接近させて平行に配列すると、各燃料電池単体2
8の出力端子層28が、それぞれ隣接する別の固体電解
質型燃料電池スタック20の端部の燃料電池単体25の
燃料電極層24に当接して容易に接続され、接続のため
の外部配線等を用いずに、所望の電圧を得るために必要
な数だけ固体電解質型燃料電池スタック20を容易に接
続することができる(第3図参照)。
In addition, when connecting the solid oxide fuel cell stacks 20 in series to obtain an even higher voltage, the output terminal layer 28 of the fuel cell unit 25 formed at one end of each solid oxide fuel cell stack 2o of the output terminal layer 28 of each solid oxide fuel cell stack 20 so as to contact the fuel electrode WA24 of the fuel cell unit 25 formed at the end of each adjacent other solid oxide fuel cell stack 20. For example, the positions should be alternated on the left and right,
When arranged close to each other in parallel, each fuel cell unit 2
The eight output terminal layers 28 are easily connected by contacting the fuel electrode layer 24 of the fuel cell unit 25 at the end of another adjacent solid oxide fuel cell stack 20, and external wiring etc. for connection are easily connected. As many solid oxide fuel cell stacks 20 as necessary to obtain a desired voltage can be easily connected without using the solid oxide fuel cell stack 20 (see FIG. 3).

また、固体電解質型燃料電池スタックの両端にそれぞれ
形成された燃料電池単体25.25の両方に、それぞれ
出力端子層28を形成することもでき、この場合には、
固体電解質型燃料電池スタック20の両端の極性を任意
に選択することが可能となり、また両端の燃料電池単体
25.25上に形成する出力端子M28の位置および数
を適宜決定することにより、固体電解質型燃料電池スタ
ック20の向きを左右交互に配列する等の配慮が不要と
なり、また固体電解質型燃料電池スタック20同士を直
列に接続する場合もまた並列に接続する場合も、前記出
力端子層28を、隣接の固体電解質型燃料電池スタック
20の燃料電極層24と出力端子1128のどちらに接
触させるかにより接続方式を選択でき、固体電解質型燃
料電池スタック20の集合体の全体としての直並列接続
も容易となる。
Further, the output terminal layer 28 can be formed on both of the fuel cell units 25 and 25 formed at both ends of the solid oxide fuel cell stack, respectively. In this case,
It becomes possible to arbitrarily select the polarity at both ends of the solid electrolyte fuel cell stack 20, and by appropriately determining the position and number of the output terminals M28 formed on the fuel cell units 25 and 25 at both ends, the solid electrolyte There is no need to consider arranging the orientation of the solid oxide fuel cell stacks 20 alternately on the left and right sides, and when connecting the solid oxide fuel cell stacks 20 in series or in parallel, the output terminal layer 28 is The connection method can be selected depending on whether the fuel electrode layer 24 or the output terminal 1128 of the adjacent solid oxide fuel cell stack 20 is to be contacted, and the series-parallel connection of the entire assembly of the solid oxide fuel cell stacks 20 is also possible. It becomes easier.

なお、上記実施例においては、固体電解質型燃料電池ス
タック20の端部に形成された燃料電池単体25に出力
端子層28を設けた場合について説明したが、固体電解
質型燃料電池スタック20の中間部に形成された燃料電
池単体25に出力端子層28を形成することもできる。
In addition, in the above embodiment, the case where the output terminal layer 28 was provided on the fuel cell unit 25 formed at the end of the solid oxide fuel cell stack 20 was explained, but the output terminal layer 28 was provided in the middle part of the solid oxide fuel cell stack 20. The output terminal layer 28 can also be formed on the single fuel cell 25 formed in the fuel cell unit 25 .

また、上記実施例においては、固体電解質23の内側に
空気電極層22を、外側に燃料電極層24を形成した固
体電解質型燃料電池スタック20の場合について説明し
たが、固体電解質の内側に燃料電極を、外側に空気電極
を形成した固体電解質型燃料電池スタックの場合にも同
様に実施することができる。
In addition, in the above embodiment, the solid oxide fuel cell stack 20 has the air electrode layer 22 formed inside the solid electrolyte 23 and the fuel electrode layer 24 formed outside the solid electrolyte 23, but the fuel electrode layer 22 is formed inside the solid electrolyte 23. This can be similarly carried out in the case of a solid oxide fuel cell stack in which an air electrode is formed on the outside.

発明の詳細 な説明したようにこの発明は、円筒状の支持管の外周に
、内側から順に第1電極層、固体電解質層、第2電極層
の31!!!tかうなる複数の燃料電池単体を、相互間
にインターコネクタを設けて直列に接続した固体電解質
型燃料電池スタックにおいて、前記複数の燃料電池単体
のうちの少なくとも支持管の一端に形成された燃料電池
単体に、第1電極層まで達する深さのスリットを形成し
てここに出力端子層を形成したので、固体電解質型燃料
電池スタックの両端に従来設けていた出力リード部が不
要となり、支持管の全長を有効に利用でき、1本の支持
管上に形成可能な燃料電池単体の数が増加するので、ス
タック当りの出力電圧を高めることができる。また、出
力リード部が不要となるため、内部抵抗による電力ロス
を低減することができる。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention includes a first electrode layer, a solid electrolyte layer, and a second electrode layer arranged on the outer periphery of a cylindrical support tube in order from the inside. ! ! In a solid oxide fuel cell stack in which a plurality of fuel cells of the following types are connected in series with an interconnector provided between them, the fuel cell is formed at at least one end of a support tube of the plurality of fuel cells. Since a slit deep enough to reach the first electrode layer is formed in the single unit and the output terminal layer is formed there, the output lead parts that were conventionally provided at both ends of the solid oxide fuel cell stack are no longer required, and the support tube Since the total length can be used effectively and the number of single fuel cells that can be formed on one support tube increases, the output voltage per stack can be increased. Furthermore, since an output lead section is not required, power loss due to internal resistance can be reduced.

また、固体電解質型燃料電池スタック同士を直列に接続
する場合には、各固体電解質型燃料電池スタックの一端
の出力端子層が、それぞれ隣接する他の固体電解質型燃
料電池スタックの端部の燃料電池単体の外周の第2電極
層に接触するように配列するだけで、外部配線等を用い
ることなく容易に接続でき、また固体電解質型燃料電池
スタック同士の並列接続も容易となるので、所望の電圧
を容易に得ることができる。
In addition, when solid oxide fuel cell stacks are connected in series, the output terminal layer at one end of each solid oxide fuel cell stack is connected to the fuel cell at the end of each adjacent solid oxide fuel cell stack. By simply arranging them so that they are in contact with the second electrode layer on the outer periphery of the unit, connection can be easily made without using external wiring, etc. Also, solid oxide fuel cell stacks can be easily connected in parallel, so that the desired voltage can be achieved. can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の一実施例を示すもので
、第1図は固体電解質型燃料電池スタックの斜視図、第
2図は同じく断面側面図、第3図はスタック間の直列接
続を示す模式図、第4図および第5図はそれぞれ従来例
を示すもので、第4図は内部直列式の燃料電池の接続方
法を示す断面側面図、第5図は外部直列式の接続方法を
示す断面正面図である。 20・・・固体電解質型燃料電池スタック、 21・・
・支持管、 22・・・空気電極層、 23・・・固体
電解質層、 24・・・燃料電極層、 25・・・燃料
電池単体、 26・・・インターコネクタ、 27・・
・スリット、 28・・・出力端子層。
1 to 3 show one embodiment of the present invention, in which FIG. 1 is a perspective view of a solid oxide fuel cell stack, FIG. 2 is a cross-sectional side view, and FIG. 3 is a series connection between stacks. Schematic diagrams showing connections, Figures 4 and 5 respectively show conventional examples. Figure 4 is a cross-sectional side view showing how to connect an internal series fuel cell, and Figure 5 shows an external series connection. FIG. 3 is a cross-sectional front view showing the method. 20...Solid electrolyte fuel cell stack, 21...
- Support tube, 22... Air electrode layer, 23... Solid electrolyte layer, 24... Fuel electrode layer, 25... Fuel cell unit, 26... Interconnector, 27...
・Slit, 28...output terminal layer.

Claims (1)

【特許請求の範囲】[Claims] 円筒状の支持管の外周に、内側から第1電極層、固体電
解質層、第2電極層の順に積層した燃料電池単体を、軸
方向に所定の長さでかつ隣接する燃料電池単体間に間隙
を設けて複数形成するとともに、軸方向に互いに隣接す
る一方の燃料電池単体の第1電極層と他方の燃料電池単
体の第2電極層とを接続する導電性接続体を支持管の外
周の各間隙内に形成して直列に接続した固体電解質型燃
料電池スタックにおいて、前記直列に接続された複数の
燃料電池単体のうちの少なくとも支持管の一端に形成さ
れた燃料電池単体は、その表面から第1電極層まで達す
る深さのスリットが設けられるとともに、このスリット
内の第1電極層上に出力端子層が所定の厚さに形成され
ていることを特徴とする固体電解質型燃料電池スタック
A fuel cell unit in which a first electrode layer, a solid electrolyte layer, and a second electrode layer are stacked in this order from the inside is placed around the outer periphery of a cylindrical support tube, with a predetermined length in the axial direction and a gap between adjacent fuel cell units. A plurality of conductive connectors are provided on the outer periphery of the support tube to connect the first electrode layer of one single fuel cell and the second electrode layer of the other single fuel cell that are adjacent to each other in the axial direction. In a solid oxide fuel cell stack formed in a gap and connected in series, the fuel cell unit formed at least at one end of the support tube among the plurality of series-connected fuel cells A solid oxide fuel cell stack characterized in that a slit is provided with a depth reaching one electrode layer, and an output terminal layer is formed to a predetermined thickness on a first electrode layer within the slit.
JP1119986A 1989-05-12 1989-05-12 Solid oxide fuel cell stack Expired - Fee Related JP2927816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119986A JP2927816B2 (en) 1989-05-12 1989-05-12 Solid oxide fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119986A JP2927816B2 (en) 1989-05-12 1989-05-12 Solid oxide fuel cell stack

Publications (2)

Publication Number Publication Date
JPH02299167A true JPH02299167A (en) 1990-12-11
JP2927816B2 JP2927816B2 (en) 1999-07-28

Family

ID=14775080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119986A Expired - Fee Related JP2927816B2 (en) 1989-05-12 1989-05-12 Solid oxide fuel cell stack

Country Status (1)

Country Link
JP (1) JP2927816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013892A1 (en) * 1996-09-26 1998-04-02 Wolfgang Winkler Fuel cell installation with tubular high temperature fuel cells
KR101346727B1 (en) * 2010-04-23 2014-01-24 주식회사 포스비 Tube Type Solid Oxide Fuel Cell Stacks and their Manufacturing Methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188867A (en) * 1985-02-13 1986-08-22 ウエスチングハウス エレクトリック コ−ポレ−ション High temperature electrochemical fuel battery
JPS63178459A (en) * 1987-01-20 1988-07-22 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188867A (en) * 1985-02-13 1986-08-22 ウエスチングハウス エレクトリック コ−ポレ−ション High temperature electrochemical fuel battery
JPS63178459A (en) * 1987-01-20 1988-07-22 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013892A1 (en) * 1996-09-26 1998-04-02 Wolfgang Winkler Fuel cell installation with tubular high temperature fuel cells
KR101346727B1 (en) * 2010-04-23 2014-01-24 주식회사 포스비 Tube Type Solid Oxide Fuel Cell Stacks and their Manufacturing Methods

Also Published As

Publication number Publication date
JP2927816B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US4791035A (en) Cell and current collector felt arrangement for solid oxide electrochemical cell combinations
US5770326A (en) Monolithic mass and energy transfer cell
US8389180B2 (en) Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof
JPH0159705B2 (en)
US20060269822A1 (en) Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
EP3270450A1 (en) Fuel cell stack
JP5117600B2 (en) Fuel cell structure
JP4883733B1 (en) Fuel cell structure
JPH02299167A (en) Solid electrolyte type fuel cell stack
JP6169932B2 (en) Solid oxide fuel cell
JP6626660B2 (en) Cell stack, module and module housing device
JP5062786B1 (en) Fuel cell structure
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JP2933227B2 (en) Solid oxide fuel cell module
JP5959404B2 (en) Fuel cell stack unit
JP6972307B2 (en) Solid oxide fuel cell
JP5417551B2 (en) Fuel cell structure
JP2013093177A (en) Fuel cell structure
US11495820B2 (en) Fuel battery cell and cell stack device
JP6795828B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell module
JP6282324B1 (en) Fuel cell
EP3787081A1 (en) Solid oxide fuel battery cell
JP2799878B2 (en) Structure of solid oxide fuel cell
JP3217908B2 (en) Structure of solid oxide fuel cell
JPH0613089A (en) Solid electrolytic fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees