JPH02298933A - Image forming device with distance detecting means - Google Patents

Image forming device with distance detecting means

Info

Publication number
JPH02298933A
JPH02298933A JP11999989A JP11999989A JPH02298933A JP H02298933 A JPH02298933 A JP H02298933A JP 11999989 A JP11999989 A JP 11999989A JP 11999989 A JP11999989 A JP 11999989A JP H02298933 A JPH02298933 A JP H02298933A
Authority
JP
Japan
Prior art keywords
light
document
image forming
light receiving
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11999989A
Other languages
Japanese (ja)
Inventor
Takehiko Nakai
武彦 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11999989A priority Critical patent/JPH02298933A/en
Publication of JPH02298933A publication Critical patent/JPH02298933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable Magnification In Projection-Type Copying Machines (AREA)
  • Optical Systems Of Projection Type Copiers (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To accurately detect the quantity of flotation of a document and to accurately project and form image information on the surface of a photosensitive body by arranging a light projection means and a photodetection means so that their optical axes cross each other at right tangles. CONSTITUTION:The optical axis 101 of the projection means 103 and the optical axis 102 of the photodetecting means 104 are made to cross each other almost at right angles and the image formation magnification on the surface of the sheet document is made constant. At this time, when the sheet document is mounted on the surface of contact glass 2, the luminous flux from a light emission member 4 passes through an optical axis A and is converged on a reference point 6a on the surface of a light receiving element 6. When a bodily document is mounted, on the other hand, the luminous flux passes through an optical path B in a center flotation area and is converged on a point 6b on the surface of the element 6. The point 6b shifts from the position 6a by a distance (x). This distance (x) varies as compared with the quantity (y) of flotation of the document 1 from the glass 2 sine the image formation magnification of an image forming means 5 is constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は距離検出手段を有した画像形成装置に関し、特
に原稿台面上に載置した画像情報として例えば背を閉じ
である厚物のブック系のHMAのように一部に窪んだ領
域を有する原稿であっても該原稿面上の画像情報を精度
良く感光体等の所定面上に投影形成することのできる例
えば複写機等に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an image forming apparatus having a distance detecting means, and in particular to a thick book type with a closed back as image information placed on a document table. Even if the document has a partially depressed area, such as HMA, image information on the surface of the document can be projected and formed on a predetermined surface such as a photoreceptor with high precision, and is suitable for, for example, a copying machine. It is.

(従来の技術) 従来より複写機等の画像形成装置においては原稿台(コ
ンタクトガラス)面上に載置した原稿を光源か−らの光
束によって走査し、該原稿面からの反射光束を用いて投
影レンズにより感光体表面上に該原稿面上の画像情報を
投影形成している。
(Prior Art) Conventionally, in image forming apparatuses such as copying machines, a document placed on a document table (contact glass) is scanned by a light beam from a light source, and a light beam reflected from the document surface is used to scan the document. Image information on the document surface is projected onto the surface of the photoreceptor by a projection lens.

このような画像形成装置に用いられる投影レンズは広画
角、高解像度、そして短焦点距離であることが要望され
、一般にこのときの投影結像の際の焦点深度は1mm程
度と極めて浅い。
The projection lens used in such an image forming apparatus is required to have a wide angle of view, high resolution, and short focal length, and generally, the depth of focus during projection imaging is extremely shallow at about 1 mm.

この為、鮮明な画像を得るには原稿台を構成するコンタ
クトガラス面上に原稿面を密着させて載置する必要があ
る。
Therefore, in order to obtain a clear image, it is necessary to place the original in close contact with the contact glass surface that constitutes the original table.

例えば見開きの書籍等のように中央部のとじ部が浮き上
がるブック系の原稿の画像情報を感光体面上に形成しよ
うとすると浮き上がり部分が黒く複写されたり不鮮明に
なってくる。
For example, when attempting to form image information on a photoreceptor surface for a book-type original such as a two-page spread book in which the central binding part is raised, the raised part is copied black or becomes unclear.

特に部厚いもの程、又新しいもの程、コンタクトガラス
からの浮き上がり量が多くなり、不鮮明部の幅や黒いス
ジの幅が広くなってくる傾向がある。
In particular, the thicker the contact glass or the newer the contact glass, the more it lifts up from the contact glass, and the width of the blurred part and the width of the black streak tend to become wider.

従来より浮き上がり部分を原稿圧板の上から押圧し、浮
き上がり量を少なくして複写したりしているが不鮮明部
や黒いスジの幅を完全になくすことは出来ず、原稿のと
じ部分が破れやすくなり、又原稿を傷めてしまうという
問題があった。
Conventionally, the raised area is pressed from above the document pressure plate to reduce the amount of raised part and the copy is made, but it is not possible to completely eliminate the blurred area and the width of the black line, and the binding part of the original is prone to tearing. , and there was also the problem of damaging the manuscript.

このような浮き上がり部分の黒スジをなくす方法として
、従来より浮き上がり部分に相当する部分を感光体の画
像面においてイレースすることが行なわれている。
As a method of eliminating such black streaks in raised portions, a conventional method has been to erase portions corresponding to the raised portions on the image surface of the photoreceptor.

しかしながらこの方法は黒スジを消去することはできる
が浮き上がり程度によっては必要な文字等の画像情報ま
でも消去してしまうという問題があった。
However, although this method can erase black lines, there is a problem in that depending on the degree of raisedness, even necessary image information such as characters may be erased.

(発明が解決しようとする問題点) これに対して例えば特開昭61−264857号公報や
特開昭62−257141号公報では浮き上がりのある
ブック系の原稿を用いた場合、該原稿のコンタクトガラ
スからの浮き上がり量を距離検出手段で検出し、該浮き
上がり量に応じてレンズやミラー等の光学要素を駆動さ
せ、常に感光体面上に焦点の合った画像を形成するよう
にした画像形成装置を提案している。
(Problems to be Solved by the Invention) On the other hand, for example, in JP-A-61-264857 and JP-A-62-257141, when a book-type original with raised surfaces is used, the contact glass of the original We propose an image forming apparatus that detects the amount of lifting from the photoreceptor using a distance detection means, drives optical elements such as lenses and mirrors according to the amount of lifting, and constantly forms a focused image on the surface of the photoreceptor. are doing.

第4図は同公報で提案されている画像形成装置に右ける
距離検出手段の要部概略図である。
FIG. 4 is a schematic diagram of the main part of the distance detecting means in the image forming apparatus proposed in the publication.

同図においてはコンタクトガラス等の原稿台2の表面2
aに載置した原441の原稿面1bの浮き上がりfft
yを光源4からの光束を投光レンズ3で原稿面1bに投
光し、yrC槁面1bからの反射光束を受光レンズ5に
より受光素子6面上に結像している。そして受光素子1
面上に右ける反射光束の結像位置を検出することにより
浮き上がりff1yを求めている。
In the figure, the surface 2 of the document table 2 is made of contact glass, etc.
Lifting of the original surface 1b of the original 441 placed on a fft
A light beam from a light source 4 is projected onto the document surface 1b by a light projecting lens 3, and a reflected light beam from the YrC surface 1b is imaged by a light receiving lens 5 onto a surface of a light receiving element 6. and light receiving element 1
The elevation ff1y is determined by detecting the imaging position of the reflected light beam on the surface.

しかしながら原稿面1bからの反射光束の受光素子6面
上の結像状態(スポット径)は浮き上がり量によって種
々と変化し、受光素子6面上に右ける反射光束の結像位
置から浮き上がり(lyを精度良く求めることは大変難
しいと、いう問題点があった。
However, the image formation state (spot diameter) of the reflected light beam from the document surface 1b on the light receiving element 6 surface changes variously depending on the amount of lift, and the image formation position (ly) of the reflected light beam on the right side of the light receiving element 6 surface varies. There was a problem in that it was very difficult to obtain it accurately.

又特開昭60−117230号公報では第5図に示すよ
うに原稿台(コンタクトガラス)2面上の位置2alと
原稿面1bの浮き上がり部1blの双方が受光素子6面
上に結像するように各要素を設定している。
Further, in Japanese Patent Application Laid-Open No. 60-117230, as shown in FIG. Each element is set to .

同公報では原稿台2面上の位置2alは結像倍率β1で
受光素子6面上に結像し、又原稿面1bの浮き上がり部
1blは結像倍率β1とは異った結像倍率β2で受光素
子6面上に結像している。
In the publication, a position 2al on the surface of the document table 2 forms an image on the light receiving element 6 surface at an imaging magnification β1, and a raised portion 1bl on the document surface 1b forms an image at an imaging magnification β2 different from the imaging magnification β1. The image is formed on the 6th surface of the light receiving element.

この為、原稿台面2aからの浮き上がりtityと原稿
面1bからの反射光束の受光素子6面上における結像位
置の変化fixとの関係は第6図に示すように非線形と
なる。この為、受光素子6からの出力信号に基づいて各
光学要素を駆動させてピント合わせなする際、各光学要
素を非線形に駆動させねばならずその駆動部及び制御部
の構成が複雑化してくるという問題点があった。
Therefore, the relationship between the uplift tity from the document table surface 2a and the change fix in the imaging position of the reflected light beam from the document surface 1b on the light receiving element 6 surface is non-linear as shown in FIG. For this reason, when each optical element is driven and focused based on the output signal from the light-receiving element 6, each optical element must be driven non-linearly, which complicates the configuration of the driving section and control section. There was a problem.

又原稿台面(コンタクトガラス)からの正反射光が受光
素子6面上に入射しS/N比を低下させるという問題点
があった。
Further, there is a problem in that specularly reflected light from the surface of the document table (contact glass) is incident on the surface of the light receiving element 6, reducing the S/N ratio.

本発明はi槁白面上に載置する原稿へ光束を投光する投
光手段と原稿面からの反射光束を受光する受光手段との
光学的配置を適切に設定することにより、原稿のコンタ
クトガラスからの浮き上がり量(距離)を精度良く検出
し、原稿面全体の画像情報を感光体面上に精度良く投影
形成することができる距離検出手段を有した画像形成装
置の提供を目的とする。又投光手段の投光条件を適切に
設定し、コンタクトガラスからの正反射光が受光素子面
上に入射するのを防止し、S/N比の高い高精度の検出
が可能な距離検出手段を有した画像形成装置の提供を目
的とする。
The present invention has been developed by appropriately setting the optical arrangement of a light projecting means for projecting a light beam onto a document placed on a white surface and a light receiving means for receiving a light beam reflected from the surface of the document. An object of the present invention is to provide an image forming apparatus having a distance detecting means capable of accurately detecting the amount of lift (distance) from the surface of a document and projecting image information of the entire document surface onto a photoreceptor surface with high precision. Further, the distance detecting means is capable of appropriately setting the light emitting conditions of the light projecting means, preventing specularly reflected light from the contact glass from entering the light receiving element surface, and enabling highly accurate detection with a high S/N ratio. An object of the present invention is to provide an image forming apparatus having the following features.

(問題点を解決するための手段) 本発明の距離検出手段を有した画像形成装置は、原稿台
面上に載置した原稿を投影手段により像担持体面上に投
影する際、投光手段からの光束を該原稿台面に対して斜
方向より投光し、該原稿面からの反射光束を受光手段で
受光し、該受光手段面上における該反射光束の入射位置
に基づく信号を用いて演算手段により該原稿台面から該
原稿面までの距離を求め、該演算手段からの信号に基づ
いて該投影手段の一部を光学的に変位させて結像関係を
調整するようにした画像形成装置であって、該投光手段
と受光手段を各々の光軸が互いに直交するように配置し
たことを特徴としている。
(Means for Solving the Problems) An image forming apparatus having a distance detecting means of the present invention is provided with an image forming apparatus having a distance detecting means of the present invention, when an original placed on an original platen is projected onto an image carrier surface by a projection means. A light beam is projected obliquely onto the document table surface, a light receiver receives the reflected light beam from the document surface, and a calculation means uses a signal based on the incident position of the reflected light beam on the light receiver surface. An image forming apparatus that determines a distance from the document table surface to the document surface and optically displaces a part of the projection device based on a signal from the calculation device to adjust the imaging relationship. , the light projecting means and the light receiving means are arranged so that their respective optical axes are orthogonal to each other.

(実施例) 第1図は本発明の一実施例の要部概略図である。同図に
おいてlは原稿であり書籍等のブック系の中央部分にと
じ部分がある原稿を例として示している。2は原稿台で
あり透明のコンタクトガラス等から成っている。9は距
離検出手段であり同図に示すように原稿1を原稿台2面
上に載置したときの原稿台(コンタクトガラス)2から
の浮き上がり計を後述する方法により原稿1全面にわた
り走査し検出している。
(Embodiment) FIG. 1 is a schematic diagram of a main part of an embodiment of the present invention. In the figure, l is a manuscript, and a book-type manuscript such as a book with a binding part in the center is shown as an example. Reference numeral 2 denotes a document table, which is made of transparent contact glass or the like. Reference numeral 9 denotes distance detecting means, which scans and detects the lift from the document table (contact glass) 2 when the document 1 is placed on the document table 2, as shown in the same figure, by a method described later. are doing.

7は光源で原稿1を走査し照明している。8は凹面鏡で
あり光[7からの光束を集光し原稿1を照明している。
A light source 7 scans and illuminates the original 1. A concave mirror 8 condenses the light beam from the light [7] and illuminates the original 1.

10,11,12.13は各々ミラー、14は投影レン
ズであり原H41面上の画像情報を所定倍率でドラム状
の感光部15上に投影している。
Reference numerals 10, 11, 12, and 13 are mirrors, respectively, and 14 is a projection lens, which projects the image information on the original H41 plane onto the drum-shaped photosensitive section 15 at a predetermined magnification.

!7は演算手段であり距離検出手段9で求めた原稿1の
各領域毎の浮き上がり量よりレンズモータ制御装置18
による駆動パルス数を求め記憶手段19に記憶させてい
る。
! Reference numeral 7 denotes a calculation means, and the lens motor control device 18 uses the lifting amount of each region of the original 1 determined by the distance detection means 9.
The number of driving pulses is determined and stored in the storage means 19.

レンズモータ制御装置18は記憶手段19からの原M4
f面上の各領域毎における駆動パルス数に基づいてモー
タ16を駆動させている。モータ16はレンズモータ制
御装置18からの駆動パルス数の信号に基づいて投影レ
ンズ14、又は原稿1か感光体15面上に結像するよう
にミラー等の光学要素を光軸上駆動させている。
The lens motor control device 18 stores the original M4 from the storage means 19.
The motor 16 is driven based on the number of drive pulses for each region on the f-plane. The motor 16 drives an optical element such as a mirror on the optical axis so as to form an image on the projection lens 14 or the surface of the original 1 or photoreceptor 15 based on a signal of the number of driving pulses from the lens motor control device 18. .

これにより原H41の全面の画像情報を感光体15面上
に積度良く投影結像している。
As a result, the image information of the entire surface of the original H41 is projected and imaged onto the surface of the photoreceptor 15 with good density.

次に本実施例の距離検出手段9の光学的原理について第
2図を用いて説明する。
Next, the optical principle of the distance detecting means 9 of this embodiment will be explained using FIG. 2.

同図において原M4f面上の走査時に発光部材4から放
射された光束はコリメータレンズ3で平行光束にされ原
稿1面上を照射する。発光部材4とコリメータレンズ3
は投光手段103を構成している。[$1からの反射光
束の一部は結像レンズ5により集光され受光素子6面上
に結像される。
In the figure, the luminous flux emitted from the light emitting member 4 during scanning on the original M4f surface is converted into a parallel luminous flux by the collimator lens 3, and irradiates the original surface. Light emitting member 4 and collimator lens 3
constitutes a light projecting means 103. [A part of the reflected light beam from $1 is focused by the imaging lens 5 and formed into an image on the surface of the light receiving element 6.

結像レンズ5と受光素子6は受光手段104を構成して
いる。そして受光素子6における反射光束の基準位置か
らの集束位置(結像位置)の隔たり量Xを検出すること
によって原稿1面上のコンタクトガラス2からの浮き上
がり量yを求めている。
The imaging lens 5 and the light receiving element 6 constitute a light receiving means 104. Then, by detecting the distance X of the focusing position (imaging position) of the reflected light beam on the light receiving element 6 from the reference position, the lifting amount y of the surface of the document 1 from the contact glass 2 is determined.

このとき本実施例では投光手段103の光軸101と受
光手段104の光軸102とが略直交するようにして、
受光手段104による原稿1面上の結像倍率が一定とな
るようにしている。
At this time, in this embodiment, the optical axis 101 of the light projecting means 103 and the optical axis 102 of the light receiving means 104 are made to be substantially perpendicular to each other.
The magnification of the image formed on one side of the original by the light receiving means 104 is kept constant.

即ち、同図においてはコンタクトガラス2面上に平面状
のシート原稿を載置したときは発光部材4からの光束は
光路Aを通り受光素子6面上の基準点6aに集束する。
That is, in the figure, when a flat sheet original is placed on the surface of the contact glass 2, the light beam from the light emitting member 4 passes through the optical path A and is focused on the reference point 6a on the surface of the light receiving element 6.

これに対してブック系の原稿を載置したときは中央の浮
き上がり領域では光路Bを通り受光素子6面上の点6b
に集束する。
On the other hand, when a book type original is placed, the raised area in the center passes through the optical path B and points 6b on the surface of the light receiving element 6.
focus on.

このときの集束位置6bは他の平面部やシート原稿の場
合の基準位置6aに比べて距離Xだけずれる。このとき
の距l11×は前述のように結像レンズ5の結像倍率が
一定である為、原!I41のコンタクトガラス2からの
浮き上がり量yに比例して変化する。
The focusing position 6b at this time is shifted by a distance X compared to the reference position 6a for other flat surfaces or sheet originals. At this time, the distance l11x is equal to the original value because the imaging magnification of the imaging lens 5 is constant as described above. It changes in proportion to the lifting amount y of I41 from the contact glass 2.

本実施例では発光部材4からの光束と原稿台2とのなす
角をθ、原稿1面上の光束により照射される位置を結像
レンズ5により受光素子6面上に結像する際の結像倍率
なβとすると y=sinθ×βX     ・・・・・・(1)なる
関係がある。
In this embodiment, the angle between the light beam from the light emitting member 4 and the document table 2 is θ, and the position irradiated by the light beam on the surface of the document 1 is the focal point when the imaging lens 5 forms an image on the surface of the light receiving element 6. If the image magnification is β, then there is the following relationship: y=sinθ×βX (1).

従来は受光素子面上の各位置により結像倍率が異なり、
即ちβがXの関数となっていたが、本実施例では前述の
如く結像倍率βを原稿1の浮き上がりff1yによらず
常に一定となるように各要素を設定している。この為(
1)式は単に浮き上がり量yとずれ量である距1IIx
に関する第3図に示すような1次関数となる。
Conventionally, the imaging magnification differed depending on the position on the photodetector surface.
In other words, β was a function of X, but in this embodiment, as described above, each element is set so that the imaging magnification β is always constant regardless of the lift of the original 1 ff1y. For this reason (
1) Equation is simply the amount of uplift y and the distance 1IIx which is the amount of deviation.
becomes a linear function as shown in FIG.

これにより距sl×を求めることにより容易に原M4f
のコンタクトガラス2からの浮き上がり量yを検出して
いる。
This allows the original M4f to be easily calculated by finding the distance sl×.
The lifting amount y from the contact glass 2 is detected.

本実施例では受光素子6としては例えば1ラインCCD
センサーを用い受光素子上の結像位置のずれXをCOD
の画素ピッチでデジタル化して結像位置の画素番号を出
力するように構成している。
In this embodiment, the light receiving element 6 is, for example, a 1-line CCD.
COD the deviation X of the image formation position on the light receiving element using a sensor
It is configured to digitize the image at a pixel pitch of , and output the pixel number at the imaging position.

今、このときの出力画素番号2.と直性の出力画素番号
10との差1.−xoに対応する浮き上がり変化!it
が求まり、その変化量に対応する駆動パルス数を演算回
路17により演算し、記憶回路に記憶している。従来例
においては受光素子面上の各位置において結像倍率が異
っていた為に駆動パルス数は1画素分変化した場合、1
パルス分駆動するように対応させることはできなかった
Now, output pixel number 2. The difference between the output pixel number 10 and the direct output pixel number 1. - Lifting change corresponding to xo! it
is determined, and the number of drive pulses corresponding to the amount of change is calculated by the calculation circuit 17 and stored in the storage circuit. In the conventional example, since the imaging magnification was different at each position on the light receiving element surface, the number of driving pulses changed by 1 pixel.
It was not possible to make it correspond to driving by the number of pulses.

例えば、出力画素番号を12 =2. It、=1゜I
L、=oとし、各出力画素番号に対応する浮き上がり量
をy2 =0.7mm%y1 =0.3mm、 y。
For example, the output pixel number is 12 = 2. It, = 1゜I
L, = o, and the amount of raisedness corresponding to each output pixel number is y2 = 0.7 mm% y1 = 0.3 mm, y.

=Omo+とする。It I−It o = 1 0 
= 1.1□−ffil =2 1=1.  y+  
7゜=0.3−0=0.31m%y2−’/l=0.7
−0.3=0.4mmとなり、2゜からiLIへ1画素
ずれた場合、浮き上がり変化量は0.3mmであり、1
.から12へ1画素変化した場合、浮き上がり変化量は
0.4IIImである。
=Omo+. It I−It o = 1 0
= 1.1□-ffil =2 1=1. y+
7゜=0.3-0=0.31m%y2-'/l=0.7
-0.3=0.4mm, and if there is a shift of 1 pixel from 2° to iLI, the amount of change in elevation is 0.3mm, and 1
.. When there is a one pixel change from 1 to 12, the amount of change in elevation is 0.4IIIm.

従来ではこの場合モータの1パルスで浮き上がり変化量
として0.1mm補正するように設定し、2゜からU、
で3パルス、2.から12で4パルス信号を送るように
する必要がある。
Conventionally, in this case, one pulse of the motor was set to correct the amount of lift change by 0.1 mm, and from 2° to U,
3 pulses, 2. It is necessary to send a 4-pulse signal from 12 to 12.

これに対して本実施例においては結像倍率βが一定であ
る為、駆動パルス数は1画素分変化した場合、1パルス
分駆動させるように対応させることができる。例えば今
、出力画素番号x2=z’。
On the other hand, in this embodiment, since the imaging magnification β is constant, when the number of drive pulses changes by one pixel, it can be adapted to drive by one pulse. For example, now, output pixel number x2=z'.

ILl=1.2o=0とし、各出力番号に対応する浮き
上がり量を3/2 =0. 6mm、 y、 =0.3
mIII、 y0=Omn+とする。Il、からi、へ
1画素ずれた場合、浮き上がり変化量は0.3mmであ
り、11から12へ1画素変化した場合も浮き上がり量
は0.3mmとなる。この場合、1パルスで浮き上がり
変化量として0.3mm補正するように設定でき、fi
、から2.で1パルス、!、からIl2で1パルス信号
を送ればよいことになる。
ILl=1.2o=0, and the lifting amount corresponding to each output number is 3/2=0. 6mm, y, =0.3
mIII, y0=Omn+. When there is a shift of one pixel from Il to i, the amount of change in elevation is 0.3 mm, and when there is a shift of one pixel from 11 to 12, the amount of elevation is also 0.3 mm. In this case, it can be set to correct the lift change amount by 0.3 mm with one pulse, and fi
, to 2. 1 pulse! , it is sufficient to send one pulse signal from Il2.

従フて最大パルス数として従来例ではその数倍以上のパ
ルス数を必要とする。単位時間での駆動パルス数が増大
することはモータの駆動周波数。を増大させることにな
りモータの大型化につながり好ましくない。
Accordingly, in the conventional example, the maximum number of pulses is required to be several times the maximum number of pulses. The increase in the number of drive pulses per unit time is the motor drive frequency. This increases the motor size, which is undesirable.

これに対して本実施例では最大画素数を用いることがで
きるどう特長がある。
In contrast, this embodiment has the advantage of being able to use the maximum number of pixels.

本実施例では距離検出手段の投光手段からの光束の原稿
1への入射角αをコンタクトガラスからの正反射光が受
光素子6面上に入射しないように設定している。
In this embodiment, the incident angle α of the luminous flux from the light projecting means of the distance detecting means onto the original document 1 is set so that the specularly reflected light from the contact glass does not enter onto the surface of the light receiving element 6.

具体的には、 15°く α 〈40゜ 50°く α 〈750 なる式を満足する範囲内としている。in particular, 15°  α 〈40゜ 50°  α 〈750 It is within the range that satisfies the following formula.

即ち、一般に原稿の浮き上がり部では第1図の如く曲面
をもっている為、拡散反射された光束のうち受光素子に
集束される光束はごく少量である。この為、コンタクト
ガラスからの雑音光束である正反射光の強度のほうが信
号光束よりも大きくなることが考えられる。このように
正反射光の強度のほうが強くなった場合、原稿は浮き上
がっているにもかかわらず、原稿はコンタクトガラス上
にあるものと誤認してしまう。
That is, since the raised portion of a document generally has a curved surface as shown in FIG. 1, only a small amount of the diffusely reflected light beam is focused on the light receiving element. For this reason, it is conceivable that the intensity of the specularly reflected light, which is the noise light flux from the contact glass, is greater than that of the signal light flux. When the intensity of the specularly reflected light becomes stronger in this way, the original is mistakenly perceived as being on the contact glass, even though the original is floating.

従って本実施例では前述の如くコンタクトガラスからの
正反射光か受光素子上に入射しないように投光手段から
の光束の入射角度を1前述の如く設定している。
Therefore, in this embodiment, the incident angle of the light beam from the light projecting means is set as described above so that the specularly reflected light from the contact glass does not enter the light receiving element.

第7図は本発明の第2実施例の要部概略図である。同図
において第1図で示した要素と同一要素には同符番な付
している。
FIG. 7 is a schematic diagram of main parts of a second embodiment of the present invention. In this figure, the same elements as those shown in FIG. 1 are given the same reference numerals.

本実施例では距離検出手段9の投光手段からの光束及び
Jg、Mk面からの反射光束を受光する光束を画像形成
用のミラー10,11.12を介して行っている点が第
1図の第1実施例と異っている。
In this embodiment, the light beam from the light projecting means of the distance detecting means 9 and the reflected light beam from the Jg and Mk surfaces are received through image forming mirrors 10, 11 and 12, as shown in FIG. This is different from the first embodiment.

本実施例では原i1の感光体15面上への複写動作を開
始する而に、予備走査を行なう。そして原稿1の全領域
での浮き上がり量を検知し、それに対応するレンズモー
タ制御装置によるモータ駆動パルス数を演算手段17に
より求め記憶装置19に一時記憶させる。次に複写動作
時、記憶させた駆動パルス数を順次、レンズモータ制御
装置18に送ることによりモータ16で投影レンズ14
を駆動させ、原稿1のコンタクトガラス2からの浮き上
がりを補正している。
In this embodiment, a preliminary scan is performed before starting the copying operation of the original i1 onto the surface of the photoreceptor 15. Then, the amount of lifting in the entire area of the original 1 is detected, and the corresponding number of motor drive pulses by the lens motor control device is determined by the calculation means 17 and temporarily stored in the storage device 19. Next, during the copying operation, by sequentially sending the memorized number of drive pulses to the lens motor control device 18, the motor 16 controls the projection lens 14.
is driven to correct lifting of the original 1 from the contact glass 2.

本実施例では距離検出手段9で画像形成装置本体上に固
定させることが可能となる為、前述の第1実施例の様に
距離検出手段9が走査するのに比べ、発光部材及び受光
素子等の駆動用回路などの配置の簡素化がより可能とな
る。
In this embodiment, since the distance detecting means 9 can be fixed on the main body of the image forming apparatus, the light emitting member, the light receiving element, etc. This makes it possible to further simplify the arrangement of driving circuits, etc.

第1.第2実施例においては画像形成用の光源として幅
広い分光感度を有するハロゲンランプを用いて予備走査
を行って原稿1のコンタクトガラス2からの浮き上がり
量を求めている。
1st. In the second embodiment, a halogen lamp having a wide range of spectral sensitivity is used as a light source for image formation, and a preliminary scan is performed to determine the amount of lift of the original 1 from the contact glass 2.

これに対して距離検出手段の投光手段の光源として赤外
発光ダイオードを用い受光素子に赤外領域に感度を有す
る素子を用い、又画像形成装置の露光用光源として赤外
域に分光特性のない蛍光灯等の光源を用いれば露光用光
源からの光束は距離検出手段の検出に何ら影響を及ぼさ
なくすることができる。このように各要素を構成すれば
原稿1のコンタクトガラス2からの浮き上がり量の検出
と同時に原稿の露光走査をすることができ、予備走査を
省略することができこの結果、迅速なる画像形成を可能
とすることができる。
On the other hand, an infrared light emitting diode is used as the light source of the light projecting means of the distance detecting means, an element sensitive to the infrared region is used as the light receiving element, and the exposure light source of the image forming apparatus has no spectral characteristics in the infrared region. If a light source such as a fluorescent lamp is used, the light flux from the exposure light source can be made to have no effect on the detection by the distance detecting means. By configuring each element in this way, it is possible to perform exposure scanning of the original at the same time as detecting the amount of lifting of the original 1 from the contact glass 2, and the preliminary scanning can be omitted.As a result, rapid image formation is possible. It can be done.

(発明の効果) 本発明によれば距離検出手段の投光手段と受光手段の光
学的配置を前述の如く設定し、投光手段により照明され
る原稿面の受光素子への結像倍率が一定となるようにし
、これにより原稿のコンタクトガラスからの浮き上がり
量を受光素子からの出力信号を用い容易にしかも高精度
に求めることができ投影レンズの駆動制御を容易にする
ことができ、原稿面上の画像情報を感光体面上に精度良
く投影形成することのできる複写機等に好適な距離検出
手段を有した画像形成装置を達成することができる。
(Effects of the Invention) According to the present invention, the optical arrangement of the light emitting means and the light receiving means of the distance detecting means is set as described above, and the imaging magnification of the document surface illuminated by the light emitting means on the light receiving element is constant. As a result, the amount of lift of the original from the contact glass can be easily and highly accurately determined using the output signal from the light receiving element, and the driving control of the projection lens can be easily controlled. Accordingly, it is possible to achieve an image forming apparatus having a distance detecting means suitable for a copying machine or the like, which can accurately project and form image information on a photoreceptor surface.

又、本発明は投光手段からの光束の原稿面への入射角を
適切に設定することにより不要光が受光素子に入射する
のを防止し、S/N比の高い距離検出を可能とする等の
特長を有している。
Furthermore, the present invention prevents unnecessary light from entering the light receiving element by appropriately setting the angle of incidence of the light beam from the light projecting means on the document surface, thereby enabling distance detection with a high S/N ratio. It has the following features.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の要部概略図、第2図は第
1図の距離検出手段の説明図、第3図は本発明に係る受
光素子面上の光束の集束位置と59L槁の浮き上がり量
との関係を示す説明図、第4図、第5図は従来の画像形
成装置における距離検出手段の説明図、第6図は従来の
受光素子面上の光束の集束位置と原稿の浮き上がり量と
の関係を示す説明図、第7図は本発明の第2実施例の要
部概略図である。 図中、1は原稿、2は原稿台(コンタクトガラス)、3
は投光レンズ、4は発光部材、5は結像レンズ、6は受
光素子、7は光源、103は投光手段、104は受光手
段、14は投影レンズ、15は感光体、16はモータ、
17は演算回路、18はレンズモータ制御装置、19は
記憶手段である。 舅   3   口 第   4   図 奉  5   図 第  6   図
FIG. 1 is a schematic diagram of the main parts of the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the distance detection means of FIG. 1, and FIG. FIGS. 4 and 5 are explanatory diagrams showing the relationship between the lifting amount of 59L, and FIGS. 4 and 5 are explanatory diagrams of distance detection means in a conventional image forming apparatus. FIG. FIG. 7 is an explanatory diagram showing the relationship with the lifting amount of the original, and is a schematic diagram of the main part of the second embodiment of the present invention. In the figure, 1 is the original, 2 is the original table (contact glass), and 3
1 is a light projecting lens, 4 is a light emitting member, 5 is an imaging lens, 6 is a light receiving element, 7 is a light source, 103 is a light projecting means, 104 is a light receiving means, 14 is a projection lens, 15 is a photoreceptor, 16 is a motor,
17 is an arithmetic circuit, 18 is a lens motor control device, and 19 is a storage means. Father-in-law 3rd place 4th picture 5th picture 6th picture

Claims (3)

【特許請求の範囲】[Claims] (1)原稿台面上に載置した原稿を投影手段により像担
持体面上に投影する際、投光手段からの光束を該原稿台
面に対して斜方向より投光し、該原稿面からの反射光束
を受光手段で受光し、該受光手段面上における該反射光
束の入射位置に基づく信号を用いて演算手段により該原
稿台面から該原稿面までの距離を求め、該演算手段から
の信号に基づいて該投影手段の一部を光学的に変位させ
て結像関係を調整するようにした画像形成装置であって
、該投光手段と受光手段を各々の光軸が互いに直交する
ように配置したことを特徴とする距離検出手段を有した
画像形成装置。
(1) When projecting an original placed on the original table surface onto the image carrier surface by the projection means, the light beam from the light projecting means is projected obliquely onto the document table surface, and the light beam is reflected from the document surface. A light beam is received by a light receiving means, and a distance from the document table surface to the document surface is determined by a calculating means using a signal based on the incident position of the reflected light beam on the surface of the light receiving means, and based on the signal from the calculating means. An image forming apparatus in which the image forming relationship is adjusted by optically displacing a part of the projection means, wherein the light projection means and the light reception means are arranged so that their respective optical axes are orthogonal to each other. An image forming apparatus having a distance detecting means.
(2)前記投光手段による前記原稿面上の照射位置と前
記受光手段の受光面とが一定の結像倍率となるように各
要素を設定したことを特徴とする請求項1記載の距離検
出手段を有した画像形成装置。
(2) Distance detection according to claim 1, characterized in that each element is set so that the irradiation position on the document surface by the light projecting means and the light receiving surface of the light receiving means have a constant imaging magnification. An image forming apparatus having means.
(3)前記投光手段を該投光手段からの光束の前記原稿
台面への入射角をαとしたとき 15°<α<40° 50°<α<75° なる条件を満足するように配置したことを特徴とする請
求項1記載の距離検出手段を有した画像形成装置。
(3) The light projecting means is arranged so as to satisfy the following conditions: 15°<α<40° 50°<α<75°, where α is the angle of incidence of the light beam from the light projecting means onto the document table surface. An image forming apparatus having a distance detecting means according to claim 1.
JP11999989A 1989-05-12 1989-05-12 Image forming device with distance detecting means Pending JPH02298933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11999989A JPH02298933A (en) 1989-05-12 1989-05-12 Image forming device with distance detecting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11999989A JPH02298933A (en) 1989-05-12 1989-05-12 Image forming device with distance detecting means

Publications (1)

Publication Number Publication Date
JPH02298933A true JPH02298933A (en) 1990-12-11

Family

ID=14775390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11999989A Pending JPH02298933A (en) 1989-05-12 1989-05-12 Image forming device with distance detecting means

Country Status (1)

Country Link
JP (1) JPH02298933A (en)

Similar Documents

Publication Publication Date Title
US5886342A (en) Image reader and document curvature measurement using visible and infrared light
EP0589136A2 (en) Image reading and forming device
JPH0785206A (en) Adaptor for scanner
US4547813A (en) Apparatus for controlling light distribution in line scan optical imaging systems
JPH02298933A (en) Image forming device with distance detecting means
JPH0968663A (en) Scanning optical device
JPH06294999A (en) Image reader
US4755013A (en) Light scanning optical system of an image output scanner using an electro mechanical light modulator
JPH073554B2 (en) Copier Original size detector
JPH0612246B2 (en) Copier Original size detector
JP2513191B2 (en) Automatic focus detection device in image reading device
JPH0782203B2 (en) Copier Original size detector
JP3125522B2 (en) Image reading device
JP3083600B2 (en) Copier
JP2001245109A (en) Image reader
JP2003037712A (en) Image reader
JPH0782202B2 (en) Copier Original size detector
JPH02298932A (en) Image forming device with distance detecting means
JP2005322956A (en) Image reader
KR100271163B1 (en) Apparatus and method for perceiving the upper end of paper of image scanner
JP3179461B2 (en) Image forming device
JP2005167857A (en) Image forming apparatus
JPH0212175A (en) Image forming device
JPS6179107A (en) Original size detecting device
JPH04306054A (en) Picture reader