JPH02298817A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPH02298817A
JPH02298817A JP12004789A JP12004789A JPH02298817A JP H02298817 A JPH02298817 A JP H02298817A JP 12004789 A JP12004789 A JP 12004789A JP 12004789 A JP12004789 A JP 12004789A JP H02298817 A JPH02298817 A JP H02298817A
Authority
JP
Japan
Prior art keywords
light
optical path
point
diffraction grating
order diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12004789A
Other languages
Japanese (ja)
Other versions
JP2774568B2 (en
Inventor
Akira Ishizuka
公 石塚
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1120047A priority Critical patent/JP2774568B2/en
Priority to EP90108932A priority patent/EP0397202B1/en
Priority to DE69011188T priority patent/DE69011188T2/en
Priority to US07/522,051 priority patent/US5146085A/en
Publication of JPH02298817A publication Critical patent/JPH02298817A/en
Application granted granted Critical
Publication of JP2774568B2 publication Critical patent/JP2774568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To realize an encoder being free from deterioration of precision in detection even when there is an error in fitting of a scale plate, by a method wherein two diffracted lights are made to share an optical path substantially and an optical system wherein first and second positions are set in the relation of conjugation is provided in the optical path. CONSTITUTION:A laser light of a light source 1 is divided into two light fluxes by a polarizing BS 41 and these fluxes are made to fall on a first point M1 of a disk plate 5 through a mirror 60 and a 1/4 wave plate 71. Then, plus and minus primary diffracted lights out of reflected diffracted lights in a plurality are superposed by the polarizing BS 41 and made to fall on a second point M2 through a lens 12, mirrors 61 and 62, a lens 13, a mirror 63 and a 1/4 wave plate 72. On the occasion, the points M1 and M2 are set in the relation of conjugation by the lenses 12 and 13 and the mirrors 61 and 62. Since the diffracted lights fall on the point M2 even when there is a positional slippage in fitting of a scale plate, according to this constitution, precision in measurement is not deteriorated and desired signals can be taken out of photodetectors S1 and S2.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はロータリーエンコーダーに関し、特に円周上に
例えば透光部と反射部の格子模様を複数個周期的に形成
した放射状の回折格子を有する回転スケールに光束を照
射し、該回折格子からの回折光を利用して回転スケール
の回転角度や速度を充電的に検出するロータリーエンコ
ーダーに関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a rotary encoder, and particularly to a rotary scale having a radial diffraction grating in which a plurality of grid patterns of transparent parts and reflective parts are periodically formed on the circumference. The present invention relates to a rotary encoder that irradiates a light beam and uses diffracted light from the diffraction grating to electrically detect the rotation angle and speed of a rotating scale.

〔従来技術〕[Prior art]

従来から、回転物体に連結した円板(スケール)の周上
に回折格子を設け、該回折格子にレーザー光を照射し、
回折格子で発生する回折光を干渉させ、該干渉光の明暗
変化を検出して、円板の回転角度や回転速度を検出する
ロータリーエンコーダーが知られている。
Conventionally, a diffraction grating is provided on the circumference of a disk (scale) connected to a rotating object, and the diffraction grating is irradiated with a laser beam.
A rotary encoder is known that detects the rotation angle and rotation speed of a disk by interfering diffracted light generated by a diffraction grating and detecting changes in brightness of the interference light.

第12図(a)、  (b)は、特開昭63−9151
5号に記載されている従来のロータリーエンコーダーの
構成図である。同図において1はレーザー、2は回折格
子を有するスケ)ル、3は反射プリズム、4は偏光プリ
ズム、51.52は受光素子、6はスケール2の回転軸
である。第12図において、レーザー1を出射した光束
は、回折格子2の位置M、にほぼ垂直に入射する。M、
で発生する±1次回折光を、反射プリズム3の第1直角
反射面3aで直角方向に反射させ、反射プリズム3の側
面3c、  3dで2回ずつ全反射させたのち、反射プ
リズム3の第2直角反射面3bで再度直角方向に反射さ
せて、回折格子2の位置M2に入射させる。第12図(
b)は、反射プリズム3内の光路説明図で、第12図(
a)の下側から見た平面図である。第12図(b)に示
す如く、MIで発生した±1次の回折光は、回折角α+
、α−で出射し、反射プリズム3の側面3c。
Figures 12(a) and (b) are from Japanese Patent Application Laid-Open No. 63-9151.
FIG. 5 is a configuration diagram of a conventional rotary encoder described in No. 5. In the figure, 1 is a laser, 2 is a scale having a diffraction grating, 3 is a reflecting prism, 4 is a polarizing prism, 51 and 52 are light receiving elements, and 6 is a rotation axis of the scale 2. In FIG. 12, the light beam emitted from the laser 1 enters the diffraction grating 2 at a position M almost perpendicularly. M,
The ±1st-order diffracted light generated in the reflection prism 3 is reflected in the right angle direction by the first right-angled reflection surface 3a of the reflection prism 3, and is totally reflected twice each by the side surfaces 3c and 3d of the reflection prism 3. The light is reflected again in the right angle direction by the right angle reflecting surface 3b and is incident on the position M2 of the diffraction grating 2. Figure 12 (
b) is an explanatory diagram of the optical path inside the reflecting prism 3, and FIG.
FIG. 4 is a plan view of FIG. As shown in FIG. 12(b), the ±1st-order diffracted light generated by MI has a diffraction angle α+
, α-, and exits from the side surface 3c of the reflecting prism 3.

3dで全反射する。そして、反射プリズム3内の中心付
近で交差し、側面3c、  3dでさらに全反射して、
前記の回折角α+、α−と同一の角度で、回折格子2の
位置M2に入射する。すると、M2における±1次前回
折光は、Mlにおけるレーザー1からの入射光と平行で
、逆向きに、重なり合って、゛回折格子2を出射する。
Total reflection occurs in 3D. Then, the light intersects near the center of the reflecting prism 3, and is further totally reflected on the side surfaces 3c and 3d.
The light is incident on the position M2 of the diffraction grating 2 at the same angles as the above-mentioned diffraction angles α+ and α−. Then, the ±1st-order pre-refracted light in M2 is parallel to the incident light from the laser 1 in Ml, overlaps in the opposite direction, and exits the diffraction grating 2.

そして、この干渉した±1次前回折光を偏光プリズム4
を介して、受光素子51゜52で受光している。±1次
回折光は、回折格子2が1格子ピツチ分回転すると、そ
の位相が±2π変化する。同様にして、±1次前回折光
は、1格子ピツチの回転に対して、位相が±4π変化す
る。
Then, this interfering ±1st order pre-refracted light is passed through a polarizing prism 4.
The light is received by the light receiving elements 51 and 52 via the light receiving elements 51 and 52. When the diffraction grating 2 rotates by one grating pitch, the phase of the ±1st-order diffracted light changes by ±2π. Similarly, the phase of the ±1st-order pre-refracted light changes by ±4π with respect to the rotation of one grating pitch.

従って、第12図の如く、±1次前回折光同志を干渉さ
せると、受光素子51.52からは、スケール2の格子
lピッチ分の回転で4周期分の正弦波信号が得られる。
Therefore, as shown in FIG. 12, when the ±1st-order pre-refracted lights are caused to interfere with each other, a sine wave signal for four periods is obtained from the light receiving elements 51 and 52 by rotation of the grating l pitch of the scale 2.

格子の総数をN本とすれば、1回転で4N周期分の正弦
波信号が得られる。尚、第12図において、M、とM2
は回転軸6の回転中心に対して、互いにほぼ点対称な位
置関係にあり、このことによりスケール2の回転軸6へ
の取付けに際して、偏心があっても、測定誤差を生じな
いようにしている。さらに、受光素子51.52からは
、レーザー1の直線偏光と、反射プリズム3内での全反
射による楕円偏光と、偏光プリズム4の組み合わせによ
り、90°位相差信号が得られ、回折格子2の回転方向
も判別できるようになっている。
If the total number of gratings is N, a sine wave signal of 4N periods can be obtained in one rotation. In addition, in FIG. 12, M, and M2
are in a positional relationship that is almost point symmetrical to each other with respect to the rotation center of the rotation shaft 6, and this prevents measurement errors from occurring even if there is eccentricity when attaching the scale 2 to the rotation shaft 6. . Further, from the light receiving elements 51 and 52, a 90° phase difference signal is obtained by a combination of the linearly polarized light of the laser 1, the elliptically polarized light due to total reflection within the reflecting prism 3, and the polarizing prism 4, and a 90° phase difference signal is obtained from the diffraction grating 2. The direction of rotation can also be determined.

上記のように構成されている従来例では、以下のような
問題点が生ずる。
In the conventional example configured as described above, the following problems occur.

(1)干渉させる±1次回折光の光路が反射プリズム3
内で、別売路を通過する。このため、周囲の温度変化な
ど環境変化に対して測定誤差を生じ易い、特に、スケー
ル2の直径が大きくなればなる程、反射プリズム3内の
光路、すなわち非共通光路の部分が長くなって誤差が生
じ易い。また、このような環境変化に対してレーザーの
発振波長が変化すると、±1次回折光の光路が変化し、
±1次回折光が位置M2に入射しな(なる。
(1) The optical path of the ±1st-order diffracted light to be interfered with is the reflection prism 3
Inside, pass through the separate sales route. Therefore, measurement errors are likely to occur due to environmental changes such as changes in ambient temperature.In particular, the larger the diameter of the scale 2, the longer the optical path within the reflecting prism 3, that is, the non-common optical path, resulting in errors. is likely to occur. In addition, when the laser oscillation wavelength changes due to such environmental changes, the optical path of the ±1st order diffracted light changes,
The ±1st-order diffracted light does not enter the position M2.

(2)回転軸6に対してスケール20回折格子形成面が
相対的に傾くと、Mlで発生した回折光がM2に再入射
しなくなるので、前述の偏心の影響を受けて測定誤差が
生じる。
(2) If the diffraction grating forming surface of the scale 20 is tilted relative to the rotation axis 6, the diffracted light generated in Ml will not be re-injected into M2, and therefore a measurement error will occur due to the influence of the eccentricity described above.

〔発明の概要〕[Summary of the invention]

本発明の目的は、上記従来例の問題点を解消し、環境変
化やスケール2の傾きなどによる測定誤差が生じに(い
、高精度のロータリーエンコーダーを提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly accurate rotary encoder that eliminates the problems of the prior art described above and eliminates measurement errors caused by environmental changes or the inclination of the scale 2.

上記目的を達成する為に、本発明のロータリーエンコー
ダーは、回転方向に沿って回折格子を形成した回転スケ
ールの第1の位置に光源からの光束を照射し、該第1の
位置で発生する第1及び第2の回折光を、該回転スケー
ルの回転中心に関して該第1の位置とほぼ点対称な第2
の位置に入射させ、該第2の位置で該第1及び第2の回
折光が回折して生じる第1及び第2の再回折光同志を干
渉させて光検出器へ導き、該光検出器からの出力信号に
基づいて該回転スケールの回転状態を検出するロータリ
ーエンコーダーにおいて、該第1及び第2の回折光が互
いにほぼ共通の光路を有し、該共通の光路中に該第1と
第2の位置を共役関係にする光学系を設けたことを特徴
としている。
In order to achieve the above object, the rotary encoder of the present invention irradiates a light beam from a light source to a first position of a rotary scale in which a diffraction grating is formed along the rotation direction, and generates a light beam at the first position. The first and second diffracted lights are transferred to a second position that is approximately symmetrical to the first position with respect to the rotation center of the rotation scale.
the first and second re-diffracted lights generated by diffraction of the first and second diffracted lights at the second position are caused to interfere with each other and are guided to a photodetector; In a rotary encoder that detects the rotational state of the rotary scale based on an output signal from It is characterized in that it is provided with an optical system that makes the positions of No. 2 and 2 have a conjugate relationship.

本発明の更なる特徴と具体的形態は後述する実施例に記
載されている。
Further features and embodiments of the invention are described in the Examples below.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示す斜視図であり、同図
において1はレーザーダイオードなどから成る光源、2
0はコリメータレンズ、31,32.33はプリズム、
41.42は偏光ビームスプリッタ−面、5はスケール
を成す回転ディスク板(回折格子)、60. 61. 
62. 63はミラー、71. 72. 73は1/4
波長板、8はl/2波長板、9は非偏光ビームスプリッ
タ−110,11は偏光素子(例えば偏光板や偏光プリ
ズム)、12.13はレンズ、Sl、 S2は受光素子
である。
FIG. 1 is a perspective view showing a first embodiment of the present invention, in which 1 is a light source consisting of a laser diode, etc.;
0 is a collimator lens, 31, 32, 33 is a prism,
41.42 is a polarizing beam splitter surface, 5 is a rotating disk plate (diffraction grating) forming a scale, 60. 61.
62. 63 is a mirror, 71. 72. 73 is 1/4
A wavelength plate, 8 is a 1/2 wavelength plate, 9 is a non-polarized beam splitter, 110 and 11 are polarizing elements (for example, a polarizing plate or a polarizing prism), 12 and 13 are lenses, and S1 and S2 are light receiving elements.

光源1から射出した波長λのレーザー光束をコリメータ
レンズ20によって平行光束にし、プリズム31に入射
させプリズム31の所定箇所に設けたミラーや偏光ビー
ムスプリッタ−面41によって対称な光路Ll、L2に
沿って進む2光束に分割し、各々の光束R1,R2をミ
ラー60で反射せしめて1/4波長板71を通過させて
から、回転ディスク板5上に設けた格子ピッチPを有す
る放射状回折格子の第1の点(Ml)に同時に入射させ
る。ここで、回折格子で回折して点M1から出射する複
数の回折光のうち、光束R1の+1次反射回折光と光束
R2の−1次反射回折光が各々元の光路Ll、L2を逆
進する方向に射出するように、あらかじめ光束R1゜R
2の入射角θ。をθ。=sin−’(λ/2P)に設定
しておく。また光束R1とR2は、偏光ビームスプリッ
タ−面41で分割された時点で偏光面が互いに直交した
直線偏光になっているが、1/4波長板71を往復通過
することで、光束R1とR2の偏光面が入れ替わる。即
ち、R1は偏光ビームスプリッタ−面を透過した直線偏
光(P偏光)であるから、光束R1の十工次回折光(R
1+)は1/4波長板71を介してS偏光となり、偏光
ビームスプリッタ−面41で反射してプリズム31から
出射する。また光束R2は偏光ビームスプリッタ−面4
1で反射した直線偏光(S偏光)であるから、光束R2
の一1次回折光(R2−)は1/4波長板71を介して
P偏光となり、偏光ビームスプリッタ−面41を透過し
てプリズム31から光束(R1+)と重なりあって出射
する。光束(R1+)と光束(R2−)は重なりあった
ままレンズ12の中心(光軸)を透過し、プリズム33
のミラー61.62により反射されて伝送せしめられ、
1/2波長板8を通過して、レンズ13の中心(光軸)
を透過してプリズム32に入射する。そしてプリズム3
2の所定箇所に設けたミラーや偏光ビームスプリッタ−
面42によって、光束(R1+)を光路L3に沿って進
行せしめ、光束(R2−)を光路L4に沿って進行せし
める。光束(R1+)と光束(R2−)は各々ミラー6
3で反射して1/4波長板72を通過した後に、回転デ
ィスク板5上に設けた放射状回折格子の第2の点(M2
)に角度θ。で入射する。ここで、1./2波長板8は
+1次回折光(R1+)の偏光面をS偏光からP偏光に
変換し、−1次回折光(R2−)の偏光面をP偏光から
S偏光に変換している。また、放射状回折格子の点M1
と点M2は回転ディスク板5の回転軸0に対して対称な
位置関係に設定しておく。回折格子で反射回折して点M
2より出射した複数の反射回折光のうち光束(R1+)
の+1次回目折光(R1++)は元の光路L3を逆進し
、1/4波長板72を再び通過してS偏光となり、プリ
ズム32内の偏光ビームスプリッタ−面42で反射され
てプリズム32から射出し、光束(R2−)の−1次回
折光(R2−一)は元の光路L4を逆進し、1/4波長
板72を再び通過してP偏光となり、プリズム32内の
偏光ビームスプリッタ−面42を透過して+1次回目折
光(R1+十)と重なりあってプリズム32から出射す
る。重なりあった2光束は1/4波長板73を通過する
ことにより互いに偏光面が逆向きに回転する円偏光とな
るので、この互いに逆回りの円偏光同志が合成された光
束の偏光状態は直線偏光となる。この直線偏光光束の偏
光方位は回転ディスク板5の回転に応じて変化する+1
次回目折光(R1++)と−1久喜回折光(R2−−)
の波面の位相差によって決まり、位相差がO9π/4,
2π/4,3π/4.4π/4゜5π/4.・・・、8
π/4と変化してい(間に直線偏光光束の偏光方位は4
5°、 67.5°、 90’ 、 112,5°。
A laser beam with a wavelength λ emitted from a light source 1 is made into a parallel beam by a collimator lens 20, and is made incident on a prism 31 along symmetrical optical paths Ll and L2 by mirrors and polarizing beam splitter surfaces 41 provided at predetermined locations on the prism 31. The light beams R1 and R2 are divided into two traveling beams, reflected by a mirror 60, and passed through a quarter-wave plate 71. 1 point (Ml) at the same time. Here, among the plurality of diffracted lights diffracted by the diffraction grating and emitted from the point M1, the +1st-order reflected diffraction light of the light flux R1 and the -1st-order reflected diffraction light of the light flux R2 travel backward along the original optical paths Ll and L2, respectively. The luminous flux R1゜R is set in advance so that it is emitted in the direction
The angle of incidence θ of 2. θ. =sin-'(λ/2P). Furthermore, when the light beams R1 and R2 are split by the polarizing beam splitter surface 41, they become linearly polarized light whose polarization planes are orthogonal to each other. The plane of polarization of is switched. That is, since R1 is linearly polarized light (P polarized light) transmitted through the polarizing beam splitter surface, the 10th order diffracted light (R
1+) becomes S-polarized light through the quarter-wave plate 71, is reflected by the polarization beam splitter surface 41, and is emitted from the prism 31. Also, the light flux R2 is the polarizing beam splitter surface 4.
Since it is linearly polarized light (S polarized light) reflected at 1, the luminous flux R2
The first-order diffracted light (R2-) becomes P-polarized light through the quarter-wave plate 71, passes through the polarization beam splitter surface 41, and exits from the prism 31, overlapping with the light beam (R1+). The light beam (R1+) and the light beam (R2-) pass through the center (optical axis) of the lens 12 while remaining overlapping, and pass through the prism 33.
reflected by mirrors 61 and 62 and transmitted,
Passing through the 1/2 wavelength plate 8, the center (optical axis) of the lens 13
The light passes through and enters the prism 32. and prism 3
Mirrors and polarizing beam splitters installed at predetermined locations in 2.
The surface 42 causes the light beam (R1+) to travel along the optical path L3, and the light beam (R2-) to travel along the optical path L4. The light flux (R1+) and the light flux (R2-) are each mirror 6.
3 and passes through the quarter-wave plate 72, the second point (M2) of the radial diffraction grating provided on the rotating disk plate 5
) to the angle θ. incident at Here, 1. The /2 wavelength plate 8 converts the polarization plane of the +1st-order diffracted light (R1+) from S-polarized light to P-polarized light, and converts the polarization plane of the -1st-order diffracted light (R2-) from P-polarized light to S-polarized light. Also, the point M1 of the radial diffraction grating
and point M2 are set in a symmetrical positional relationship with respect to the rotation axis 0 of the rotating disk plate 5. Reflected and diffracted by the diffraction grating to point M
Luminous flux (R1+) among multiple reflected diffraction lights emitted from 2
The +1st-order diffracted light (R1++) travels backward along the original optical path L3, passes through the quarter-wave plate 72 again, becomes S-polarized light, is reflected by the polarizing beam splitter surface 42 in the prism 32, and is transmitted from the prism 32. The −1st-order diffracted light (R2-1) of the emitted light beam (R2-) travels backward along the original optical path L4, passes through the quarter-wave plate 72 again, becomes P-polarized light, and is sent to the polarizing beam splitter in the prism 32. It passes through the - plane 42, overlaps with the +1st order diffracted light (R1+10), and exits from the prism 32. When the two overlapping beams pass through the quarter-wave plate 73, they become circularly polarized lights whose planes of polarization rotate in opposite directions. Therefore, the polarization state of the beam that is a combination of these circularly polarized beams that rotate in opposite directions is linear. It becomes polarized light. The polarization direction of this linearly polarized light beam changes +1 according to the rotation of the rotating disk plate 5.
Next diffracted light (R1++) and -1 Kuki diffracted light (R2--)
It is determined by the phase difference between the wavefronts, and the phase difference is O9π/4,
2π/4, 3π/4.4π/4°5π/4. ..., 8
The polarization direction of the linearly polarized light beam changes as π/4 (in between
5°, 67.5°, 90', 112,5°.

135°、  157.5°、・・・、225° (4
5°)と回転していく。そこで、この光束を非偏光ビー
ムスプリッタ−9にて等光量の2光束に分割した後、一
方の光束を偏光素子10を用いて特定の偏光成分のみを
分離して取り出して受光素子s1に入射させ、もう一方
の光束を偏光素子11を用いて特定の偏光成分のみを分
離して取り出して受光素子s2に入射させれば、受光素
子Sl、 S2からそれぞれ回転ディスフ板5の回転量
に応じた周期的な信号が出力される。ここで偏光素子l
Oと11で取り出す偏光成分を互いに45°ずらしてお
けば、受光素子Sl、 S2に入射する干渉光の明暗変
化のタイミングが互いに174周期(出力信号の位相で
π/2)だけずれる。これらの互いに90°位相がずれ
た2相の周期信号に周知の電気的な増幅や二値化の処理
をしてやれば回転ディスク板5の回転角度や回転方向を
検出することができる。
135°, 157.5°,..., 225° (4
5°). Therefore, after this luminous flux is split into two luminous fluxes of equal light quantity by a non-polarizing beam splitter 9, only a specific polarized component of one of the luminous fluxes is separated using a polarizing element 10, extracted, and incident on the light receiving element s1. , if the other light beam is separated into only a specific polarized component using the polarizing element 11 and taken out and made incident on the light receiving element s2, the light receiving elements Sl and S2 each have a period corresponding to the amount of rotation of the rotary disc plate 5. A signal is output. Here, polarizing element l
If the polarized light components extracted by O and 11 are shifted by 45 degrees from each other, the timing of the change in brightness of the interference light incident on the light receiving elements Sl and S2 will be shifted by 174 cycles (π/2 in the phase of the output signal). By performing well-known electrical amplification and binarization processing on these two-phase periodic signals whose phases are shifted by 90 degrees from each other, the rotation angle and rotation direction of the rotary disk plate 5 can be detected.

本実施例のロータリーエンコーダーでは、光束R1が回
折格子に入射する時の光路L1と光束R1の+1次反射
回折光R1+が射出して向かう光路とがほぼ等しく、又
、光束R2が回折格子に入射する時の光路L2と光束R
2の一1次反射回折光R2−が射出して向かう光路とが
ほぼ等しく設定されており、この条件は±1次反射回折
光の光路L3. L4と±1次回目折光の各光路に関し
ても満たされているので、回転ディスク板5の放射状回
折格子の格子ピッチPが光源1からの光束の波長λと同
程度の小さな値になっても、光束R1,R2の点M1及
びM2に対する入射角や±1次回折光と±1次回目折光
の射出角を30°程度にすることができる。従って、従
来のエンコーダーのように格子ピッチPを細か(すると
回折光の取り出しが困難になるといった問題が生じに<
<、高分解能なエンコーダーを構成している。
In the rotary encoder of this embodiment, the optical path L1 when the light flux R1 enters the diffraction grating is almost equal to the optical path toward which the +1st-order reflected diffraction light R1+ of the light flux R1 exits, and the light flux R2 enters the diffraction grating. Optical path L2 and luminous flux R when
The optical path of the first-order reflected diffraction light R2- of the second-order reflected diffraction light R2- is set to be approximately equal to the optical path L3. Since L4 and each optical path of the ±1st-order diffracted light are also satisfied, even if the grating pitch P of the radial diffraction grating of the rotating disk plate 5 becomes a small value comparable to the wavelength λ of the light beam from the light source 1, The incident angles of the light fluxes R1 and R2 with respect to the points M1 and M2 and the exit angles of the ±1st order diffracted light and the ±1st order diffracted light can be set to about 30°. Therefore, unlike conventional encoders, when the grating pitch P is set fine (this causes problems such as difficulty in extracting the diffracted light).
<, constitutes a high-resolution encoder.

ここで、本実施例において+1次回折元売1+と一1次
回折光R2−が重なり合った光路、即ち偏光ビームスプ
リッタ−面41.42を結ぶ両光束の共通光路に設けた
レンズ12、レンズ13、ミラー61、ミラー62は、
次の条件を満たすように配置される。
Here, in this embodiment, a lens 12, a lens 13, Mirror 61 and mirror 62 are
It is arranged so that the following conditions are met.

まず、回転ディスク板5上の点M1を中心とする有限の
領域はレンズ12によって点P3を中心とする有限の領
域(中間像面)に写像され、更にこの点M3を中心とす
る有限の領域がレンズ13によってディスク板5上の点
M2を中心とする有限の領域に写像される。この条件に
より点M1から如何なる角度で出射する光束も途中で遮
られないかぎり、点M2に必ず入射させることができる
。即ち、本実施例で′はレンズ12、レンズ13、ミラ
ー61.ミラー62を有する光学系によって、点Mlと
点M2とを光学的に共役関係にしている。そしてこれに
より測定精度の劣化を防止している。
First, a finite area centered on point M1 on the rotating disk plate 5 is mapped by the lens 12 to a finite area (intermediate image plane) centered on point P3, and then a finite area centered on this point M3. is mapped by the lens 13 onto a finite area centered on the point M2 on the disk plate 5. Under this condition, the light flux emitted from the point M1 at any angle can be made incident on the point M2 as long as it is not interrupted on the way. That is, in this embodiment, ' is the lens 12, the lens 13, the mirror 61 . The optical system including the mirror 62 establishes an optically conjugate relationship between the point Ml and the point M2. This prevents deterioration of measurement accuracy.

次に、点M1から出射した回折光(R1+)の光路が光
路L1から角度Δθm (x+  y成分に分解したと
きの角度Δθx15.Δθy1.)だけずれて、光路L
1とは異なる光路(L5)を進行したとき点M2に入射
する光路(L7)の入射角度が予め設定された光路L3
にくらべて(−Δθx16.−Δθ’! +s )だけ
ずれて入射するようにミラー61.ミラー62及びミラ
ー60.63などの他の反射面を配置する。
Next, the optical path of the diffracted light (R1+) emitted from point M1 is shifted from the optical path L1 by an angle Δθm (angle Δθx15.Δθy1. when decomposed into x + y components), and the optical path L
An optical path L3 in which an incident angle of an optical path (L7) that enters point M2 when traveling along an optical path (L5) different from 1 is set in advance.
The mirror 61. Other reflective surfaces such as mirror 62 and mirror 60, 63 are arranged.

回折光(R2−)の光路も同様である。この条件によっ
て、点M2より出射する±1次回目折光の射出方位が回
転ディスク板5の位置や姿勢によらずに一定になり、偏
光ビームスプリッタ−42で重なり合う±1次回目折光
の光路が互いに常に平行になるので、±1次回目折光(
R1++)、(R2−−)の重ねあわせによる干渉光を
光電変換した信号が安定する。
The same applies to the optical path of the diffracted light (R2-). With this condition, the exit direction of the ±1st order diffracted light beams emitted from the point M2 becomes constant regardless of the position and orientation of the rotating disk plate 5, and the optical paths of the ±1st order diffracted lights that overlap at the polarizing beam splitter 42 are mutually Since they are always parallel, ±1st order diffracted light (
The signal obtained by photoelectrically converting the interference light due to the superposition of R1++) and (R2--) becomes stable.

このことについて以下で証明する。We will prove this below.

まず、回転ディスク板5の回転軸0(回転中心)と放射
状回折格子の中心とがΔrだけずれている場合の光路の
ずれを第2図及び第3図を用いて説明する。回転ディス
ク板5上の放射状回折格子の中心は、回転ディスク板5
の回転に伴なって回転軸0の周囲を移動し、点M1にお
ける回折格子のピッチが周期的に変動する。第2図に示
すように放射状格子の中心が点aにあるとき点M1にお
ける回折格子のピッチはΔp(=2πΔr / N 、
但し、Nは放射状回折格子の本数)だけ細くなり、点M
2における回折格子のピッチはΔpだけ太くなるから、
点M1から出射した光束R1の+1次回折光(R1+)
及び光束R2の一1次回折光(R2−)は、回転ディス
ク板5に対する出射角が光路Ll、L2の入射角θ1゜
θ2(θ1=θ2=θ。)よりΔθXだけ大きい出射角
θ5.θ6になり、光路L1又はL2からずれた光路L
5又はL6に沿って進行してプリズム31に戻る。そし
て、各光束はプリズム31より射出してレンズ12の中
心(光軸)からずれた位置に入射するが、レンズ12の
作用によって点M3を目標に進行する。そして点M3を
通過した±1次回折光(R1+)、  (R2−)は1
/2波長板8(不図示)を通過した後、レンズ13によ
って進路を曲げられ、プリズム32を経て、光路L7.
L8を進行してO3゜O4(θ3=θ4=θ。)よりΔ
θXだけ小さな入射角θ7.θ8で点M2に入射する。
First, the deviation of the optical path when the rotation axis 0 (rotation center) of the rotating disk plate 5 and the center of the radial diffraction grating are deviated by Δr will be explained with reference to FIGS. 2 and 3. The center of the radial diffraction grating on the rotating disk plate 5 is
As the diffraction grating rotates, it moves around the rotation axis 0, and the pitch of the diffraction grating at the point M1 changes periodically. As shown in Fig. 2, when the center of the radial grating is at point a, the pitch of the diffraction grating at point M1 is Δp(=2πΔr/N,
However, N becomes thinner by the number of radial diffraction gratings), and the point M
Since the pitch of the diffraction grating in 2 becomes thicker by Δp,
+1st-order diffracted light (R1+) of luminous flux R1 emitted from point M1
The first-order diffracted light (R2-) of the luminous flux R2 has an output angle θ5.degree. that is larger than the incident angle θ1.degree.θ2 (θ1=θ2=θ.) of the optical paths L1 and L2 by ΔθX. The optical path L becomes θ6 and deviates from the optical path L1 or L2.
5 or L6 and returns to the prism 31. Each light beam exits from the prism 31 and enters the lens 12 at a position offset from the center (optical axis), but due to the action of the lens 12, it travels toward point M3. And the ±1st-order diffracted light (R1+) and (R2-) that passed through point M3 are 1
/2 wavelength plate 8 (not shown), the optical path is bent by the lens 13, passes through the prism 32, and becomes the optical path L7.
Proceeding through L8, Δ from O3°O4 (θ3=θ4=θ.)
Incident angle θ7, which is smaller by θX. It enters point M2 at θ8.

点M2は回折格子のピッチがΔpだけ太(なっているか
ら、例えば光束(R1+)の+1次回折光(R1++)
の出射角θ++は θ++=sin−’ [λ/(p十Δp)  sinθ
7)であるが、 θ5=sin−’  [λ/(p−ΔI))   si
nθ1)θ7=2θ、−θ5 を代入すると、 sinθ0=λ/(p+Δp) −sin [2θH−5in−’ [λ/(p−Δp)
−sinθ1)]=λ/(p+Δp) −5in [2
sin−’ (λ/2p)−sin−’ (λ/(p−
Δp)−λ/2p) ]=λ/ (p+Δp) −[2(λ/2p) −[λ/(p−Δp)−λ/2p
l ]= λ/2p 即ち、θ+“=θ1=θ3 となり、点M2より出射する+1次回目折光(R1十+
)の進行方位(射出方向)は一定に保たれる。
At point M2, the pitch of the diffraction grating is thicker by Δp, so for example, the +1st-order diffracted light (R1++) of the luminous flux (R1+)
The exit angle θ++ is θ++=sin-' [λ/(p+Δp) sinθ
7), but θ5=sin-' [λ/(p-ΔI)) si
Substituting nθ1)θ7=2θ, −θ5, sinθ0=λ/(p+Δp) −sin [2θH−5in−′ [λ/(p−Δp)
−sinθ1)]=λ/(p+Δp) −5in [2
sin-'(λ/2p)-sin-' (λ/(p-
Δp)−λ/2p) ]=λ/ (p+Δp) −[2(λ/2p) −[λ/(p−Δp)−λ/2p
l] = λ/2p, that is, θ+"=θ1=θ3, and the +1st order diffracted light (R1 +
) is kept constant.

−1久喜回折光(R2−−)の進行方位(射出方向)も
、同様の理由によって一定に保たれる。
The traveling direction (emission direction) of the -1 Kuki diffracted light (R2--) is also kept constant for the same reason.

次に、第3図に示すように放射状回折格子の中心が点す
にあるとき、座標系(t、 r、 z) (第4図参照
)における入射光束のパラメータθ】、φlは、θ1=
θ。
Next, when the center of the radial diffraction grating is at the point as shown in Fig. 3, the parameters θ], φl of the incident light flux in the coordinate system (t, r, z) (see Fig. 4) are expressed as θ1=
θ.

φ1=0 であるが、点M1における回折格子の配列方位(を軸)
は角度でjan−’ (Δr / r )だけずれて、
+1軸になるから、回折格子に入射する光束R1と回折
格子との関係は、第4図のようになる。第4図において
、θ、1は回転ディスク板5への光束の入射角、φ、s
 [=tan−’ (Δr/r)]は回折格子の配列方
位(11軸)とのなす角度である。また21軸、r1軸
を第4図のように決め、入射光束の光路L1と各座標軸
とのなす角度を、α1□、β11.γ11とする   
−と、 cosα、、=3inθll”cO8φII   −(
1)cosβ1.=5iHθu’sinφ11   −
(2)γ1.=θ1.=θ1           ・
・・ (3)である。そこで、座標系(t、、r、、z
+)におけるn次回元売の出射方位を求める式 %式%) に代入して、更に O12=cos−’ ((1−cos” a 12−c
os”β+□) +4 ]φ12 =tan−’ (c
osβ12 / COS Q 12 )(α12<90
) =tan−’ (cosβ12 / CO8α12 )
 + 180(α1□〉90) =90     (α1□〈90.β1□=0)ニー9
0     (α12>90.β12=O)を計算すれ
ば良い。′ここで、Δrがrに比べて十分小さく、光束
R1の点M1における入射角がθ。
φ1=0, but the array direction of the diffraction grating at point M1 (axis)
is shifted by jan-' (Δr/r) in angle,
Since it is the +1 axis, the relationship between the light beam R1 incident on the diffraction grating and the diffraction grating is as shown in FIG. In FIG. 4, θ, 1 is the angle of incidence of the light beam on the rotating disk plate 5, φ, s
[=tan-' (Δr/r)] is the angle formed with the array direction (11 axes) of the diffraction grating. In addition, the 21st axis and the r1 axis are determined as shown in FIG. 4, and the angles formed between the optical path L1 of the incident light beam and each coordinate axis are α1□, β11, . Set to γ11
- and cosα,,=3inθll”cO8φII −(
1) cosβ1. =5iHθu'sinφ11 −
(2) γ1. =θ1. =θ1 ・
... (3). Therefore, the coordinate system (t,,r,,z
O12=cos-'((1-cos" a 12-c
os"β+□) +4 ]φ12 = tan-' (c
osβ12 / COS Q 12 ) (α12<90
) = tan-' (cosβ12/CO8α12)
+ 180 (α1□〉90) =90 (α1□〈90.β1□=0) Knee 9
0 (α12>90.β12=O). 'Here, Δr is sufficiently smaller than r, and the incident angle of the luminous flux R1 at the point M1 is θ.

[=sin−’ (λ・N/ (2yr r)l]であ
るとき、座標系(t+ r、 z)における回折光(R
1+)の出射方位のパラメータθ5.φ5は、 θ、=θ1□=θ1 φIs:φ12 = −2・φ11 であることは計算により直ちにもとまるから、第2図の
ように光束R1の+1次回折光(R1+)の光路L5を
ディスク面に投影したときのt軸とのなす角度は−2・
φ5.だけずれ、その光束が点M2に入射するときは、
レンズ12、レンズ13、ミラー61、ミラー62、そ
の他の反射面の組み合わせによって、入射光束の光路L
7を回転ディスク板5の格子配列面(t−r平面)に投
影したときのt軸とのなす角度が−2・φ、1だけずれ
ているから、その光束の+1次回折光(R1++)を回
転ディスク板5の格子配列面に投影したときのt軸との
なす角度は0に戻される。即ち、光路L3と完全に一致
する。
When [=sin-' (λ・N/ (2yr r)l], the diffracted light (R
1+) output direction parameter θ5. φ5 is θ, = θ1 □ = θ1 φIs: φ12 = −2・φ11 It can be immediately determined by calculation that the optical path L5 of the +1st-order diffracted light (R1+) of the light flux R1 is aligned with the disk surface as shown in Figure 2. The angle formed with the t-axis when projected onto is -2・
φ5. When the luminous flux is incident on point M2,
The optical path L of the incident light beam is determined by the combination of the lens 12, the lens 13, the mirror 61, the mirror 62, and other reflective surfaces.
7 is projected onto the lattice array plane (t-r plane) of the rotating disk plate 5 and the angle it makes with the t-axis is shifted by -2·φ, 1, so the +1st-order diffracted light (R1++) of that light beam is The angle formed with the t-axis when projected onto the lattice arrangement surface of the rotating disk plate 5 is returned to zero. That is, it completely matches the optical path L3.

光束R2の一1次回折光(R2−)が点Mlより出射し
て点M2に入射したあと、点M2から出射する一1次回
折光(R2−−)の光路も同様の理由によって、光路L
4と完全に一致す0.る。
After the 1st-order diffracted light (R2-) of the luminous flux R2 exits from the point Ml and enters the point M2, the optical path of the 1st-order diffracted light (R2--) that exits from the point M2 also changes to the optical path L for the same reason.
0, which exactly matches 4. Ru.

次に、回転ディスク板50回転軸0と回転ディスク板5
の格子配列面に立てた法線とがΔξだけ相対的に傾いた
時の光路の補正の様子を、第5図及び第6図を用いて説
明する。回転ディスク板5に対する光束R1の入射角及
び入射方位(角)は回転ディスク板5の回転に伴なって
変動するから、点M1から出射する+1次回折光(R1
+)の出射角θ5及び出射方位φ5も変動する。例えば
第5図のように回転ディスク板5の法線がCの位置にあ
るとき、座標系(t+ r、 z)における入射光束R
1のパラメータθ1.φ1は、 θ、二〇〇 φ工=O であるが、光路L1と座標軸t1とのなす角度α、1、
光路L1と座標軸r1とのなす角度β、1、光路Llと
座標軸2.とのなす角度γ2.の各位は、α、、=90
−〇、         ・・・(11)cosβ++
=8inα11*sinΔξ  −(12)cos 7
11 =sin a 11 ・cosΔξ  −(13
)であるから、座標系(tII rll zl)におけ
る入射光束のパラメータは θ、、 =cos”” (sin a 11 LIco
sΔξ)φ11 =tan−’ (cosβ、、/co
saB)となる。
Next, the rotating disk plate 50 rotating shaft 0 and the rotating disk plate 5
The manner in which the optical path is corrected when the normal line erected to the lattice array plane is relatively tilted by Δξ will be explained with reference to FIGS. 5 and 6. Since the incident angle and the incident direction (angle) of the light beam R1 with respect to the rotating disk plate 5 vary as the rotating disk plate 5 rotates, the +1st-order diffracted light (R1
The output angle θ5 and the output azimuth φ5 of +) also vary. For example, when the normal to the rotating disk plate 5 is at position C as shown in FIG. 5, the incident light flux R in the coordinate system (t+r, z)
1 parameter θ1. φ1 is θ, 200φ = O, but the angle α between the optical path L1 and the coordinate axis t1 is 1,
The angle β between the optical path L1 and the coordinate axis r1 is 1, the optical path L1 and the coordinate axis 2. The angle γ2. Each position is α,,=90
−○, ...(11) cosβ++
=8inα11*sinΔξ−(12)cos 7
11 = sin a 11 ・cosΔξ −(13
), the parameters of the incident light flux in the coordinate system (tII rll zl) are θ,, =cos”” (sin a 11 LIco
sΔξ)φ11 = tan-' (cosβ,,/co
saB).

ここで、振れの中心が回転ディスク板5の中心にあると
仮定して、回転ディスク板5上への光束R1の入射位置
は、Δx [=r番tanΔξ・tanθ、コ、Δy 
[=r (1/ cosΔξ−1)コだけずれて点Ml
lになり、光束R2の入射位置は、−ΔX、Δyだけず
れて点M12になるから、光束R1の入射点Mllを中
心とした座標系(t21 r21 z2)における入射
光束のパラメータは、 θ、2=θ、。
Here, assuming that the center of deflection is at the center of the rotating disk plate 5, the incident position of the light beam R1 onto the rotating disk plate 5 is Δx [= rth tanΔξ・tanθ, ko, Δy
[=r (1/ cosΔξ−1) point Ml shifted by
1, and the incident position of the light beam R2 shifts by -ΔX, Δy to point M12, so the parameters of the incident light beam in the coordinate system (t21 r21 z2) centered on the incident point Mll of the light beam R1 are θ, 2=θ,.

φ、2=φ11−tan−’ [ΔX/(Δy+r)1
となり、座標軸t2とのなす角度α1゜、座標軸r2と
のなす角度β1□、座標軸z2とのなす角度γ、2の各
位は、 cos a 12 =sinθ12”cosφ12CO
5β12=sinθ、2−sinφ12γ12 ”β1
2 となるから、座標系(j21 r21 22)における
+1次回折光の射出方位α、3.β、3.γ、3を求め
る式 %式%) )] に代入することで、α13.β13.γ、3を計算すれ
ば良い。ここで、Δξが0に近く、光束R1の点M1に
おける入射角がθ。[==sin−’(λ・N/(2π
r月コで設計されているとき、座標系(t+  r+ 
 z)における光束(R1+十)の出射光束のパラメー
タα14゜β14.γ14に直すと、 α 14  =  α 1a cosβ14=C(FiΔξ” cosβ13 Sin
Δξ−COS 713cos γ+a=sinΔξ* 
cosβ13 +cosΔξ@ COS 713θ6.
φ5に直せば θ6:γ14 φ5 ==tan−’ (cosβ14 / COS 
α14 )(α、4<90) =tan−1(cosβ14 /cos a 14) 
 +180(α、4 >90) =90     (α14 ” 90 +  β、、<
90)=−90(α、4 =90.  β、4 >90
)となる。これを計算すると、第5図のように光束R1
の+1次回折光(R1+)の光路L5を回転ディスク5
の格子配列面に投影したときのt軸とのなす角度はφ5
だけずれ、その光束が点M21に入射するときは、レン
ズ12、レンズ13、ミラー61、ミラー62、その他
の反射面の組み合わせによって、入射光束の光路L7を
回転ディスク5の格子配列面に投影したときのt軸との
なす角度がやはりφ7=φ5になるから、その光束の+
1次回折光(R1++)をディスク面に投影したときの
t軸とのなす角度は0に戻される。即ぢ、点M21から
出射する+1次回折光(R1++)の進行方位(射出方
向)は光路L3と平行になる。同様にして、光束R2の
一1次回折光(R2−)が点M12より出射して点M2
2に入射したあと、そこから出射する一1次回折光(R
2−−)の光路も、光路L4と平行になる。
φ, 2=φ11-tan-' [ΔX/(Δy+r)1
The angle α1° with the coordinate axis t2, the angle β1□ with the coordinate axis r2, and the angle γ, 2 with the coordinate axis z2 are as follows: cos a 12 = sin θ12”cosφ12CO
5β12=sinθ, 2-sinφ12γ12 ”β1
2, the emission direction α of the +1st-order diffracted light in the coordinate system (j21 r21 22), 3. β, 3. By substituting α13. β13. All you have to do is calculate γ, 3. Here, Δξ is close to 0, and the incident angle of the luminous flux R1 at the point M1 is θ. [==sin-'(λ・N/(2π
When it is designed in r months, the coordinate system (t+ r+
parameter α14° β14. When converted to γ14, α 14 = α 1a cosβ14=C(FiΔξ” cosβ13 Sin
Δξ−COS 713cos γ+a=sinΔξ*
cosβ13 +cosΔξ@COS 713θ6.
If you change it to φ5, θ6: γ14 φ5 ==tan-' (cosβ14 / COS
α14 ) (α, 4<90) = tan-1 (cos β14 /cos a 14)
+180 (α, 4 > 90) = 90 (α14 ” 90 + β,,<
90) = -90 (α, 4 = 90. β, 4 > 90
). Calculating this, we get the luminous flux R1 as shown in Figure 5.
The optical path L5 of the +1st order diffracted light (R1+) of
The angle formed with the t-axis when projected onto the lattice array plane is φ5
When the light beam is deviated by 100 degrees and enters the point M21, the optical path L7 of the incident light beam is projected onto the lattice arrangement surface of the rotating disk 5 by a combination of the lens 12, the lens 13, the mirror 61, the mirror 62, and other reflecting surfaces. Since the angle formed with the t-axis is φ7 = φ5, the +
The angle formed with the t-axis when the first-order diffracted light (R1++) is projected onto the disk surface is returned to zero. That is, the traveling direction (emission direction) of the +1st-order diffracted light (R1++) emitted from the point M21 becomes parallel to the optical path L3. Similarly, the first-order diffracted light (R2-) of the luminous flux R2 is emitted from the point M12, and is emitted from the point M2.
2, the first-order diffracted light (R
The optical path of 2--) is also parallel to the optical path L4.

次に、回転ディスク板5の法線がdの位置にあるとき、
座標系(x+  Y+  z)における入射光束R1。
Next, when the normal to the rotating disk plate 5 is at position d,
Incident light flux R1 in the coordinate system (x+Y+z).

のパラメータθ1.φ1は、 θ1=θ。The parameter θ1. φ1 is θ1=θ.

φ、−〇 であるが、光路L1と座標軸t1とのなす角度α12、
光路L1と座標軸r1とのなす角度β17、光路L1と
座標軸z1とのなす角度γ、1の各位は、α、、=90
−θ1+Δξ β、、=90 γ7.=θ1−Δξ であるから、座標系(t、、 rI+ zI)における
入射光束のパラメータは θ、1=θ1−Δξ φlI20 となる。ここで、振れの中心が回転ディスク板5の中心
にあると仮定すると、回転ディスク板5への光束R1の
入射位置はMlに一致しているから、光束R1の+1次
回折光(R1+)の出射方位θ1□。
φ, −〇, but the angle α12 between the optical path L1 and the coordinate axis t1,
The angle β17 between the optical path L1 and the coordinate axis r1, and the angle γ and 1 between the optical path L1 and the coordinate axis z1 are α, , = 90
−θ1+Δξ β,,=90 γ7. = θ1−Δξ Therefore, the parameters of the incident light flux in the coordinate system (t, , rI+zI) are θ, 1=θ1−Δξ φlI20. Here, assuming that the center of the deflection is at the center of the rotating disk plate 5, the incident position of the light beam R1 on the rotating disk plate 5 coincides with Ml, so the +1st order diffracted light (R1+) of the light beam R1 is emitted. Direction θ1□.

φ12は、 sinθ11+sinθ、2=+1− λ/pφ1□ 
=0 即ち、 θ、2 =sin” (+1 @λ/p−5inθ11
)= 5in−’ [2・sinθ1−sin (θ1
−Δξ))=θ1+Δξ となるから、座標系(t、 r、 Z)における出射方
位θ6.φ5は、 θ5=θ1□+Δξ 二〇。+2・Δξ φ5=0 となる。同様に、光束R2の−1次回折光の出射方位θ
6.φ6は、 θ6=θo−2・Δξ φ6=0 となる。レンズ12、レンズ13、ミラー61、ミラー
62、その他の反射面の組み合わせによって点M2に入
射する光束(R1+)の光路L7の入射方位θ7、φ7
は θ7=θ5 φ7=O となり、座標系(t3+ r3t z3)における入射
方位θ13.φ、3は、 θ13=θ7+Δξ=θ。+3・Δξ φ4.=0 となるから、回折角度の計算式を用いてM2から出射す
る1次回折光(R1++)の出射方位θ、4゜φ、4を
計算すると、 θ14=θ。+Δξ φ14:0 となり、座標系(t+  ”+  2)における出射方
位θ++、φ++は θ 十+ = θ 3 = θ 。
φ12 is sinθ11+sinθ, 2=+1− λ/pφ1□
=0, that is, θ, 2 = sin” (+1 @λ/p-5inθ11
) = 5in-' [2・sinθ1-sin (θ1
-Δξ))=θ1+Δξ Therefore, the emission direction θ6. in the coordinate system (t, r, Z). φ5 is θ5=θ1□+Δξ 20. +2・Δξ φ5=0. Similarly, the emission direction θ of the −1st-order diffracted light of the luminous flux R2
6. φ6 becomes θ6=θo−2·Δξ φ6=0. The incident azimuth θ7, φ7 of the optical path L7 of the luminous flux (R1+) incident on point M2 is determined by the combination of lens 12, lens 13, mirror 61, mirror 62, and other reflective surfaces.
is θ7=θ5 φ7=O, and the incident direction θ13. in the coordinate system (t3+r3t z3). φ, 3 is θ13=θ7+Δξ=θ. +3・Δξ φ4. = 0, so if we calculate the emission direction θ, 4°φ, 4 of the first-order diffracted light (R1++) emitted from M2 using the diffraction angle calculation formula, θ14=θ. +Δξ φ14:0, and the output directions θ++ and φ++ in the coordinate system (t+ ”+ 2) are θ 1+ = θ 3 = θ.

φ++00 だから、光路L3と完全に一致する。−1次回折光(R
2−)が点M2に入射して点M2から出射するー1次回
折光(R2−−)の出射方位も同様の計算によって、 θ−=θ。
φ++00 Therefore, it completely matches the optical path L3. -1st order diffracted light (R
2-) enters point M2 and exits from point M2. The output direction of the -1st-order diffracted light (R2--) is also calculated as follows: θ-=θ.

φ−=0 となり、光路L4と完全に一致する。φ−=0 This completely matches the optical path L4.

このように、回転ディスク板5の取り付は位置のエラー
や光源1の発振波長の変化があって、回転ディスク板5
の第1の位置(Ml)から出射する回折光の進路がずれ
ても、本発明の光学系(12,13゜61、62)によ
って、回転ディスク板5に再入射する第2の位置(M2
)が変動しないので、回折格子の読み取りの基準位置の
変動に伴う測定精度の劣化が原理的に発生せず、更に第
2の位置(M2)から出射する重ね合わせるべき各回折
光の進行方位(射出方向)を一定に保つように装置を構
成することで2つの回折光同志が形成する干渉縞パター
ンが乱されない。従って、回折格子の読み取りが安定し
て行える。
In this way, when mounting the rotating disk plate 5, there may be a positional error or a change in the oscillation wavelength of the light source 1.
Even if the course of the diffracted light emitted from the first position (Ml) is shifted, the optical system (12, 13° 61, 62) of the present invention allows the diffracted light to move to the second position (M2) where it re-enters the rotating disk plate 5.
) does not change, in principle there is no deterioration in measurement accuracy due to changes in the reference position for reading the diffraction grating, and furthermore, the traveling direction ( By configuring the apparatus to keep the emission direction constant, the interference fringe pattern formed by the two diffracted lights is not disturbed. Therefore, the diffraction grating can be read stably.

また、第1図の実施例では、偏光ビームスプリッタ−面
41.42の間の±1次回折光(R1+、R2−)の光
路が互いにほぼ共通化されているので、光束R1及びR
2を点M1から点M2に至る長い光路に亘って引き回す
ような構成をとっていても、周囲の温度変化等による光
束間の光路長差の変動が小さい。従って、精確に回転デ
ィスク板5の回転に応じた信号だけが受光素子Sl、S
2から出力され ゛ることになる。又、本実施例におい
ては、互いに干渉光を形成する光束R1,R2の光路長
が等しくなるように予め光学系を設定している。
In addition, in the embodiment shown in FIG. 1, the optical paths of the ±1st-order diffracted lights (R1+, R2-) between the polarizing beam splitter surfaces 41 and 42 are almost the same, so the light beams R1 and R
2 over a long optical path from point M1 to point M2, the variation in the optical path length difference between the light beams due to changes in ambient temperature, etc. is small. Therefore, only the signals accurately corresponding to the rotation of the rotating disk plate 5 are transmitted to the light receiving elements Sl and S.
It will be output from 2. Further, in this embodiment, the optical system is set in advance so that the optical path lengths of the light beams R1 and R2, which form interference light with each other, are equal.

第7図は第1図の実施例の変形例(第2実施例)を示し
ている。本実施例では回転ディスク板5に入射する光束
R,1,R2の入射角をθ。から若干変更して、往路の
光路(LL、 L2. L3. L4)と復路の光路(
L5.  L6.  L7.  L8)をわずかにずら
したもので、基本構造は同じである。第1図において点
M1から出射した光束R1の+1次回折光(R1+)と
光束R2の正反射光(零次回折光)は同一光路LLを進
行し、偏光ビームスプリッタ−面41で互いの偏光面の
違いによって、光束R1の1次回折光(R1+)のみが
反射されるはずであるが、光学部品の不完全さによって
は、光束R2の正反射光の一部も偏光ビームスプリッタ
−面で反射され、伝送されてしまうのでゴースト光(ノ
イズ)が発生する。点Mlでの光束R1の正反射光(零
次回折光)、点M2から射出する+1次回折光(R1+
)の正反射光(零次回折光)と−1次回折光(R2−)
の正反射光(零次回折光)も同様である。そこで第7図
のように光路を設定しておけば、上記のゴースト光の光
路が干渉光を形成するための回折光の光路からずれるの
で受光素子Sl、S2へのゴースト光の入射を免れるこ
とができる。
FIG. 7 shows a modification (second embodiment) of the embodiment shown in FIG. In this embodiment, the incident angle of the light beams R, 1, and R2 incident on the rotating disk plate 5 is θ. With some changes from , the outgoing optical path (LL, L2. L3. L4) and the returning optical path (
L5. L6. L7. L8) is slightly shifted, but the basic structure is the same. In FIG. 1, the +1st-order diffracted light (R1+) of the luminous flux R1 emitted from the point M1 and the specularly reflected light (zero-order diffracted light) of the luminous flux R2 travel along the same optical path LL, and their planes of polarization are different from each other at the polarizing beam splitter surface 41. Due to the difference, only the first-order diffracted light (R1+) of the light beam R1 should be reflected, but depending on the imperfections of the optical components, a part of the specularly reflected light of the light beam R2 is also reflected by the polarizing beam splitter surface. Since the light is transmitted, ghost light (noise) is generated. Regularly reflected light (zero-order diffracted light) of the luminous flux R1 at point Ml, +1st-order diffracted light (R1+) emerging from point M2
) specularly reflected light (zero-order diffracted light) and -1st-order diffracted light (R2-)
The same applies to the specularly reflected light (zero-order diffracted light). Therefore, if the optical path is set as shown in Fig. 7, the optical path of the ghost light will be shifted from the optical path of the diffracted light for forming the interference light, so that the ghost light will be prevented from entering the light receiving elements Sl and S2. I can do it.

以上の各実施例で回折光の次数として+1次や一1次を
用いているが、士符号は、第8図に示すように回転ディ
スク板5の回転方向(回折格子の移動方向)と光束の進
行方位のずらされる方向が一致するほうを+、それと逆
を−とじた。また干渉光を形成する回折光の次数は1次
だけでなく、2次でもそれ以上でも良いことは言うまで
もない。
In each of the above embodiments, the +1st order and the 11th order are used as the orders of the diffracted light. However, as shown in FIG. The direction in which the traveling direction of the plane is shifted is marked as +, and the opposite direction is marked as -. Furthermore, it goes without saying that the order of the diffracted light forming the interference light is not limited to the first order, but may also be the second order or higher order.

第9図(a)は本発明の第3実施例の斜視図、第9図(
b)は、第9図(a)の実施例の光路展開図である。第
9図において、1は半導体レーザー、20はコリメータ
ーレンズ、5は回転方向に沿って回折格子が形成された
回転スケール、41.42は偏光ビームスプリッタ−1
Sl、S2は受光素子、81゜82は反射鏡、7は17
4波長板、9はビームスプリッタ−110,11は偏光
板で、偏光方位が互いに45°ずれている。又、レーザ
ー1の直線偏光の方位は偏光ビームスプリッタ−41の
偏光方位に対して45°方向になっている。レーザー1
を出射する光束は、コリメーターレンズ20で平行光束
に変換された後、偏光ビームスプリッタ−41で、等光
量に、透過光束(p偏光)と反射光束(S偏光)に分割
される。分割された2光束は、回転スケール5の放射状
回折格子の位置M1に、下記(1)式のθであられされ
る角度(回折角)で入射する。
FIG. 9(a) is a perspective view of the third embodiment of the present invention, FIG.
b) is a developed optical path diagram of the embodiment of FIG. 9(a). In FIG. 9, 1 is a semiconductor laser, 20 is a collimator lens, 5 is a rotation scale on which a diffraction grating is formed along the rotation direction, and 41.42 is a polarizing beam splitter 1.
Sl and S2 are light receiving elements, 81° and 82 are reflecting mirrors, and 7 is 17
A four-wavelength plate, 9 a beam splitter, and 110 and 11 polarizing plates, the polarization directions of which are shifted by 45° from each other. Further, the direction of the linearly polarized light of the laser 1 is at 45 degrees with respect to the direction of polarization of the polarizing beam splitter 41. laser 1
The emitted light beam is converted into a parallel light beam by the collimator lens 20, and then split by the polarizing beam splitter 41 into a transmitted light beam (p-polarized light) and a reflected light beam (s-polarized light) into equal light quantities. The two divided beams enter the position M1 of the radial diffraction grating of the rotation scale 5 at an angle (diffraction angle) given by θ in equation (1) below.

θ=sin−’λ/p         ・・・(1)
ここで、λはレーザー1の発振波長、pは回転スケール
5の回折格子の位置M1における格子ピッチである。尚
、位置M1への入射する2光束の入射平面は、位置M1
における回折格子2の格子配列方向(接線方向)と平行
な面である。
θ=sin-'λ/p...(1)
Here, λ is the oscillation wavelength of the laser 1, and p is the grating pitch at the position M1 of the diffraction grating of the rotary scale 5. Incidentally, the plane of incidence of the two beams of light incident on the position M1 is
This is a plane parallel to the grating arrangement direction (tangential direction) of the diffraction grating 2 in .

位置M1で生じた上記2光束による±1次透過回折光は
、回転スケール5から回折格子の格子配列面に母直な方
向に出射する。そして、この±1次回折光は反射鏡83
で直角(格子配列面に平行)に反射し、レンズ101及
び102を介して回転スケール5の回転軸Oに対してほ
ぼ対称な位置におかれた反射鏡84に向けられる。そし
て、この反射鏡74は±1次回折光を再度回転スケール
2の回折格子の位置M2に、同じ方向から垂直に入射さ
せる。位置M2では、再び±1次回折光が(1)式の角
度θで出射される。
The ±1st-order transmitted diffracted light of the two light beams generated at the position M1 is emitted from the rotation scale 5 in a direction perpendicular to the grating arrangement plane of the diffraction grating. Then, this ±1st-order diffracted light is reflected by the reflecting mirror 83.
The light is reflected at right angles (parallel to the grating arrangement plane) and is directed via lenses 101 and 102 to a reflecting mirror 84 located at a position approximately symmetrical with respect to the rotation axis O of the rotation scale 5. Then, this reflecting mirror 74 makes the ±1st-order diffracted light enter the position M2 of the diffraction grating of the rotary scale 2 perpendicularly from the same direction again. At position M2, the ±1st-order diffracted light is again emitted at an angle θ of equation (1).

これら+1次の再回折光は反射鏡85.86で反射され
た後、偏光ビームスプリッタ−42に入射して互いに重
なり合い、1/4波長板7を通った後ビームスプリッタ
−9で2光束に分割され、各光束は偏光板10.11を
介して受光素子Sl、S2に入射する。こうして受光素
子SL、S2からは±1次回目折光の干渉の結果生ずる
正弦波信号が得られる。
These +1st-order re-diffracted lights are reflected by reflecting mirrors 85 and 86, enter the polarizing beam splitter 42, overlap each other, pass through the quarter-wave plate 7, and are split into two beams by the beam splitter 9. Each light beam enters the light receiving elements Sl and S2 via the polarizing plate 10.11. In this way, a sine wave signal generated as a result of the interference of the ±1st order diffracted light is obtained from the light receiving elements SL and S2.

次に第9図(b)の光路展開図を用いて、±1次回折光
の光路を説明する。第9図(b)において、偏光ビーム
スプリッタ−41を透過する透過光束(実線の光束)が
回折格子の位置M1に入射して、回折格子の格子配列面
から垂直方向に出射する1次回折光を+1次回折光とし
、偏光ビームスプリッタ−41で反射する反射光束(破
線の光束)がMlに入射して、回折格子の格子配列面か
ら垂直方向に出射す。
Next, the optical path of the ±1st-order diffracted light will be explained using the optical path development diagram of FIG. 9(b). In FIG. 9(b), the transmitted light beam (solid line light beam) that passes through the polarizing beam splitter 41 is incident on the position M1 of the diffraction grating, and the first-order diffracted light is emitted vertically from the grating arrangement surface of the diffraction grating. The +1st-order diffracted light is reflected by the polarizing beam splitter 41 (luminous flux indicated by a broken line) and is incident on M1, and is emitted in the vertical direction from the grating arrangement surface of the diffraction grating.

る1次回折光を一1次回折光とする。位置Mlで発生す
る±1次回折光は重なり合い、位置M1から位置M2ま
では、反射鏡83と84及びレンズ101と102から
成る光学系で共通の光路をたどる。位置M2では、これ
ら±1次回折光の各々に対し再度±1次回折光が発生す
るが、偏光ビームスプリッタ−42の作用により、第9
図(b)で実線及び破線で示された光束だけが受光素子
Sl、S2に入射する。
Let the first-order diffracted light be the 11th-order diffracted light. The ±1st-order diffraction lights generated at position M1 overlap, and follow a common optical path from position M1 to position M2 through an optical system consisting of reflecting mirrors 83 and 84 and lenses 101 and 102. At position M2, ±1st order diffracted light is generated again for each of these ±1st order diffracted lights, but due to the action of the polarizing beam splitter 42, the 9th order diffracted light
Only the light beams indicated by solid lines and broken lines in FIG. 2B are incident on the light receiving elements Sl and S2.

すなわち、位置M1からのp偏光の+1次回折光(実線
の光束+、p)が位置M2に入射すると再度±1次回折
光が発生するが、そのうち、±1次回折光(実線の光束
++)は反射鏡85で反射され、偏光ビームスプリッタ
−42を透過し受光素子Sl、 S2に入射する。しか
し、−1次回折光(不図示)は反射鏡86で反射され、
偏光ビームスプリッタ−42を透過してしまうので受光
素子Sl、S2には入射しない。一方、MlからのS偏
光の一1次回折光(破線の光束−+ s)が位fiM2
に入射して発生する±1次回折光のうち、−1次回折光
(破線の光束−一)は、反射鏡86で反射され偏光ビー
ムスプリッタ−42で反射して受光素子Sl、 S2に
入る。しかし+1次回折光(不図示)は反射鏡85を反
射した後、偏光ビームスプリッタ−42で反射されるの
で、受光素子Sl、S2には入射しない。こうして、+
1次の回折を2回受けた光(実線の光束)と、−1次の
回折を2回受けた光(破線の光束)とが重なり合つて偏
光ビームスプリッタ−42を出射して、1/4波長板7
、ビームスプリッタ−9、偏光板10. 11を介して
、2つの干渉光となり、各干渉光が受光素子Sl、 S
2に入射する。受光素子Sl、 S2からは、第12図
の従来例と同じく、回転スケール5の1回転あたり4N
周期分の正弦波信号が得られる。また偏光ビームスプリ
ッタ−42を出射した光束は1/4波長板7を通って、
前記実施例同様、回転スケール5の回転に伴って偏光方
位が回転する直線偏光光となるが、偏光板10. 11
の偏光方位を互いに45°ずらしてい゛るので、受光素
子Sl、S2からは互いに90°位相がずれた信号が得
られる。′第9図では、回転スケール2の回折格子の位
置M1からM2まで到達する±1次回折光の光路は共通
光 路であり、周囲の温度変化等の環境変化に対して測
定誤差を生じにくい。また、第12図の従来例の如き、
回折光を交差させるといった複雑な光路でないので組立
・調整が容易である。また共通光路に配したレンズ10
1. 102はMlとM2を互いに共役関係にするよう
設定してあり、前記実施例同様の効果を得ることができ
る。
That is, when the +1st-order diffracted light of the p-polarized light (luminous flux +, p shown by the solid line) from position M1 enters the position M2, ±1st-order diffracted light is generated again. The light is reflected by the mirror 85, passes through the polarizing beam splitter 42, and enters the light receiving elements Sl and S2. However, the -1st order diffracted light (not shown) is reflected by the reflecting mirror 86,
Since the light passes through the polarizing beam splitter 42, it does not enter the light receiving elements Sl and S2. On the other hand, the 1st-order diffracted light of the S polarization from Ml (luminous flux -+ s of the broken line) is at the position fiM2
Among the ±1st-order diffracted lights that are incident and generated, the -1st-order diffracted light (luminous flux -1 indicated by the broken line) is reflected by the reflecting mirror 86, reflected by the polarizing beam splitter 42, and enters the light receiving elements Sl and S2. However, the +1st-order diffracted light (not shown) is reflected by the reflecting mirror 85 and then reflected by the polarizing beam splitter 42, so that it does not enter the light receiving elements Sl and S2. In this way, +
The light that has undergone first-order diffraction twice (solid line luminous flux) and the light that has undergone -1st-order diffraction twice (dashed line luminous flux) are overlapped and output from the polarizing beam splitter 42, resulting in 1/ 4 wavelength plate 7
, beam splitter 9, polarizing plate 10. 11, it becomes two interference lights, and each interference light goes through the light receiving elements Sl and S.
2. As in the conventional example shown in FIG.
A sine wave signal corresponding to the period is obtained. Further, the light beam emitted from the polarizing beam splitter 42 passes through the quarter wavelength plate 7,
As in the previous embodiment, linearly polarized light whose polarization direction rotates as the rotary scale 5 rotates, but the polarizing plate 10. 11
Since the polarization directions of the two light beams are shifted by 45 degrees from each other, signals whose phases are shifted by 90 degrees from each other are obtained from the light receiving elements Sl and S2. ' In FIG. 9, the optical path of the ±1st-order diffracted light that reaches positions M1 to M2 of the diffraction grating of the rotary scale 2 is a common optical path, and measurement errors are less likely to occur due to environmental changes such as changes in the surrounding temperature. In addition, as in the conventional example shown in FIG.
Assembly and adjustment are easy because there is no complicated optical path such as crossing diffracted lights. In addition, the lens 10 arranged on the common optical path
1. Reference numeral 102 is set so that Ml and M2 are in a conjugate relationship with each other, and the same effect as that of the previous embodiment can be obtained.

第10図は本発明の第4実施例の概略図である。FIG. 10 is a schematic diagram of a fourth embodiment of the present invention.

図中、1は半導体レーザー、20はコリメーターレンズ
で、レーザーlからの光束を平行光束となるようにして
いる。30a (30b)は偏光ビームスプリッタ−で
入射光束のうち、S偏光を反射させ、P偏光を透過させ
ている。40a (40b)、 50a (50b)は
各々ミラー、5は放射状回折格子が形成された回転スケ
ールである。
In the figure, 1 is a semiconductor laser, 20 is a collimator lens, and the light beam from the laser 1 is made to become a parallel light beam. 30a (30b) is a polarizing beam splitter that reflects the S-polarized light and transmits the P-polarized light of the incident light beam. 40a (40b) and 50a (50b) are mirrors, and 5 is a rotating scale on which a radial diffraction grating is formed.

ここでミラー40a (40b)、 50a (50b
)は各々偏光ビームスプリッタ−30a (30b)か
らの2つの光束が回折格子に互いに異なる符号の回折次
数、例えば1次と一1次の回折次数の回折角に相当する
角度で入射するようにしている。70a (70b)は
偏光変換手段で、λ/4板より成りている。80a (
80b)は反射手段で、例えばミラー又は端面結像タイ
プの屈折率分布レンズの端面に反射膜を施した光学部材
より成っている。
Here, mirrors 40a (40b), 50a (50b
) are such that the two beams from the polarizing beam splitter 30a (30b) are incident on the diffraction grating at angles corresponding to the diffraction angles of the diffraction orders of different signs, for example, the 1st and 11th orders. There is. 70a (70b) is a polarization conversion means, which is made of a λ/4 plate. 80a (
Reference numeral 80b) denotes a reflecting means, which is made of, for example, a mirror or an optical member in which a reflective film is applied to the end face of an end face imaging type gradient index lens.

本実施例では、符番30a (30b)、 40a (
40b)。
In this example, the reference numbers 30a (30b), 40a (
40b).

50a (50b)、70a (70b)そして80a
 (80b)に相当する各要素を有する検出ユニット1
oOa (100b)を2つ設けている。
50a (50b), 70a (70b) and 80a
Detection unit 1 having each element corresponding to (80b)
Two oOa (100b) are provided.

次に本実施例におけるロータリーエンコーダーの検出動
作について説明する。
Next, the detection operation of the rotary encoder in this embodiment will be explained.

レーザーlからのレーザー光をコリメーターレンズ2で
平行光束とし、偏光ビームスプリッタ−30aでP偏光
光とS偏光光の2つの光束に分割している。
A collimator lens 2 converts the laser beam from the laser 1 into a parallel beam, and a polarizing beam splitter 30a splits the beam into two beams: P-polarized light and S-polarized light.

このうち偏光ビームスプリッタ−30aで反射したS偏
光光はミラー40aで反射し、回転スケール5上の回折
格子面上の位置M1に1次の回折角に相当する角度で入
射する。
Of these, the S-polarized light reflected by the polarizing beam splitter 30a is reflected by the mirror 40a and is incident on the position M1 on the diffraction grating surface on the rotation scale 5 at an angle corresponding to the first-order diffraction angle.

一方、偏光ビームスプリッタ−30aを透過したP偏光
光はミラー50aで反射し、回転スケール5上の回折格
子面上の位置M1に一1次の回折角に相当する角度で入
射させている。
On the other hand, the P-polarized light transmitted through the polarizing beam splitter 30a is reflected by the mirror 50a, and is incident on the position M1 on the diffraction grating surface on the rotation scale 5 at an angle corresponding to the 11th order diffraction angle.

回折格子で1次回折されたS偏光光は格子配列面より略
垂直に透過射出し、偏光変換手段としての1/4波長板
70aを通過し、円偏光となり、反射手段80aで反射
し偏光方向が逆転した円偏光となり元の光路に戻る。そ
して再び1/4波長板70aを通過し、回折格子上の位
置M1にP偏光光として再入射する。そして回折格子で
再回折した1次のP偏光光はミラー40aで反射し、偏
光ビームスプリッタ−30aを通過する。
The S-polarized light that has been first-order diffracted by the diffraction grating is transmitted and emitted approximately perpendicularly from the grating array plane, passes through a quarter-wave plate 70a serving as a polarization conversion means, becomes circularly polarized light, is reflected by a reflection means 80a, and is directed to the polarization direction. becomes reversed circularly polarized light and returns to its original optical path. Then, it passes through the quarter-wave plate 70a again and re-enters the position M1 on the diffraction grating as P-polarized light. The first-order P-polarized light that has been re-diffracted by the diffraction grating is reflected by a mirror 40a and passes through a polarizing beam splitter 30a.

一方、回折格子で一1次回折されたP偏光光は格子配列
面より略垂直に透過射出し、1/4波長板70aを通過
して、円偏光となり、反射手段80aで反射し、偏光方
向が逆転した円偏光となり元の光路に戻る。
On the other hand, the P-polarized light that has been diffracted in the 1st order by the diffraction grating is transmitted and emitted from the grating array surface approximately perpendicularly, passes through the quarter-wave plate 70a, becomes circularly polarized light, is reflected by the reflection means 80a, and is directed to the polarization direction. becomes reversed circularly polarized light and returns to its original optical path.

そして再び1/4波長板70aを通過し、回折格子の位
置MlにS偏光光束として再入射する。そして回折格子
で再回折した−1次のS偏光光はミラー50aで反射し
、偏光ビームスプリッタ−30aで反射する。
Then, it passes through the quarter-wave plate 70a again and re-enters the position M1 of the diffraction grating as an S-polarized light beam. Then, the -1st-order S-polarized light re-diffracted by the diffraction grating is reflected by the mirror 50a, and then reflected by the polarization beam splitter 30a.

これより、偏光ビームスプリッタ−30aでp偏光光束
とS偏光光束の2光束を重ね合わせて取り出し、これら
2つの光束をミラー109に導光している。ミラー10
9に導光された2光束は互いに偏光面が直交して重なり
合っており、ミラー109で反射した該2光束をレンズ
101と102を介してミラー110で反射させた後、
前述と同様の構成の検出ユニット100bに導光してい
る。そして検出ユニットl00aと同様に該2光束を回
折格子上の位置M2で1次の回折を2回行った後、取り
出し1/4波長板7に導光している。
From this, the polarizing beam splitter 30a superimposes and extracts two light beams, a p-polarized light beam and an S-polarized light beam, and guides these two light beams to a mirror 109. mirror 10
The two light beams guided to the mirror 9 overlap each other with their polarization planes perpendicular to each other, and the two light beams reflected by the mirror 109 are reflected by the mirror 110 via the lenses 101 and 102, and then
The light is guided to a detection unit 100b having the same configuration as described above. Then, similarly to the detection unit 100a, the two beams are subjected to first-order diffraction twice at the position M2 on the diffraction grating, and then guided to the extraction quarter-wave plate 7.

このときの2光束は互いに偏光面が直交して重なり合っ
ている。そして互いの位相差δは+1次の回折を4回行
った光束と、−1次の回折を4回行った光束との間の位
相差であるから I6 π X となる。即ち、x=IP (Pは格子ピッチ)のとき2
光束間の位相ずれは16πとなる。
At this time, the two light beams overlap each other with their planes of polarization perpendicular to each other. Since the mutual phase difference δ is the phase difference between the light beam that has undergone +1st-order diffraction four times and the light beam that has undergone -1st-order diffraction four times, it becomes I6 π X . That is, when x=IP (P is the lattice pitch), 2
The phase shift between the light beams is 16π.

1/4波長板7を通過した2光束の合成波は直線偏光光
束となり、その偏光方位は前記2光束間の位相が2πず
れる間に半回転するから、ビームスプリッタ−9を通過
し偏光板10を介した光束は、その間に1周期の明暗の
変化を生じ、受光素子siにて電気的な1周期の信号と
して出力される。
The composite wave of the two beams that has passed through the quarter-wave plate 7 becomes a linearly polarized beam, and its polarization direction rotates by half a rotation while the phase between the two beams shifts by 2π, so it passes through the beam splitter 9 and becomes a linearly polarized beam. The luminous flux passing through the rays undergoes one period of brightness and darkness change, and is outputted as an electrical signal of one period by the light receiving element si.

一方、ビームスプリッタ−9で反射した光束は、偏光板
11を偏光板10に対して偏光面の方位を45°ずらし
て配置している為、偏光板工1を介した光束の周期的な
明暗の変化の位相が90°ずれる。
On the other hand, the light beam reflected by the beam splitter 9 is caused by the periodic brightness and darkness of the light beam that passes through the polarizing plate 1 because the polarizing plate 11 is arranged with the direction of the polarization plane shifted by 45 degrees with respect to the polarizing plate 10. The phase of change in is shifted by 90°.

この為、受光素子S2から出力される周期信号の位相は
、受光素子Slから出力される周期信号の位相に比べて
常に90°ずれている。
Therefore, the phase of the periodic signal output from the light receiving element S2 is always shifted by 90° compared to the phase of the periodic signal output from the light receiving element Sl.

回転スケール上の回、折格子の格子総本数がN本とすれ
ば、スケール5が1回転する間の2光束の位相差δの変
化は よりx=NPを代入して δ=16πN となる。これより2つの受光素子15.16からは16
πN/2π=8N周期の周期信号(正弦波信号)が得ら
れる。
If the total number of folded gratings on the rotating scale is N, then the change in the phase difference δ between the two light beams during one rotation of the scale 5 becomes δ=16πN by substituting x=NP. From this, two light receiving elements 15.16 to 16
A periodic signal (sine wave signal) with a period of πN/2π=8N is obtained.

本実施例において、レンズ101,102は回転スケー
ル5上の回折格子の位置M1とM2を互いに共役関係に
するように、±1次回折光の共通光路(偏光ビームスプ
リッタ−30aから30bに至る光路)中に設けられて
いる。従って、前述の第1〜第3実施例のエンコーダー
同様に、周囲の温度変化や回転スケール5の傾きなどに
より測定精度が劣化しにくい系を構成している。また、
本実施例では+1次の回折を4回受けた光と一1次の回
折を4回受けた光とで干渉光を形成しているので、前述
の各実施例の4倍の分解能が得られる。
In this embodiment, the lenses 101 and 102 are arranged so that the positions M1 and M2 of the diffraction gratings on the rotary scale 5 are in a conjugate relationship with each other, so that the common optical path of the ±1st-order diffracted light (the optical path from the polarizing beam splitter 30a to 30b) It is located inside. Therefore, like the encoders of the first to third embodiments described above, a system is constructed in which measurement accuracy is unlikely to deteriorate due to changes in ambient temperature or the inclination of the rotary scale 5. Also,
In this example, the light that has undergone +1st-order diffraction four times and the light that has undergone 11th-order diffraction four times form interference light, so a resolution four times as high as in each of the above-mentioned examples can be obtained. .

本発明のエンコーダーに使用する回折格子は、周知の振
幅型回折格子のみならず、レリーフ型回折格子やホログ
ラムなどの位相型回折格子を用いることができる。また
、光源としては、上述のレーザーダイオードなどの半導
体レーザーの使用が装置の小型化に適している。半導体
レーザーとしては、シングルモードタイプのもの、マル
チモードタイプのものなど様々なタイプを選択し得る。
As the diffraction grating used in the encoder of the present invention, not only the well-known amplitude type diffraction grating but also a phase type diffraction grating such as a relief type diffraction grating or a hologram can be used. Further, as a light source, use of a semiconductor laser such as the above-mentioned laser diode is suitable for miniaturizing the device. As the semiconductor laser, various types can be selected, such as a single mode type and a multimode type.

第11図は、第1図に示したロータリーエンコーダーを
ハード磁気ディスク113のトラック信号の書き込み装
置に利用した例で、書込みヘッド112を揺動させるタ
イプの揺動型書込み装置のモータ114回転軸(不図示
)にエンコーダーの回転ディスク板5を載せ、そのうえ
からエンコーダー読み取りユニット111をかぶせた構
成にしている。尚、符番115はエアベアリングを示し
ている。
FIG. 11 shows an example in which the rotary encoder shown in FIG. 1 is used in a device for writing track signals on a hard magnetic disk 113. The rotary encoder shown in FIG. The rotary disk plate 5 of the encoder is placed on a rotary disk (not shown), and the encoder reading unit 111 is placed on top of the rotary disk plate 5 of the encoder. Note that the reference number 115 indicates an air bearing.

〔発明の効果〕〔Effect of the invention〕

以上、回折格子の第1の点から出射する各回折光の進行
方位がスケール板の取り付は位置のずれや傾きによって
多少変動しても、各回折光が再入射する回折格子の第2
の位置が変動しないので、格子の読み取りの基準位置の
変動に伴う測定精度の劣化が原理的に発生しない。又、
各回折光が互いにほぼ共通の光路を有しているので、周
囲の温度変動などにより測定精度が劣化しない。更に、
第2の位置から出射する互いに重ね合せるべき各回折光
の進行方位(射出方向)を一定に保つように装置を構成
することで2つの回折光が形成する干渉縞パターンが乱
されない。従って、干渉信号の読み取りが安定して行え
、高分解能、高精度なロータリーエンコーダーを提供で
きる。また、回転ディスク板の取り付はエラーにたいし
て比較的影響を受けないこと、および回転ディスク板と
投光、受光光学系(読み取り光学ユニット)が分離でき
ることがら「組み込みタイプの」ロータリーエンコーダ
ーが容易に実現できる。
As mentioned above, even if the traveling direction of each diffracted light beam emitted from the first point of the diffraction grating changes somewhat due to positional deviation or tilt when the scale plate is attached, the second point of the diffraction grating where each diffracted light beam re-enters the scale plate.
Since the position of the grating does not change, in principle, there is no deterioration in measurement accuracy due to a change in the reference position for reading the grating. or,
Since each diffracted light beam has a nearly common optical path, measurement accuracy does not deteriorate due to ambient temperature fluctuations, etc. Furthermore,
The interference fringe pattern formed by the two diffracted lights is not disturbed by configuring the device so that the traveling directions (emission directions) of the respective diffracted lights to be superimposed on each other emitted from the second position are kept constant. Therefore, it is possible to stably read interference signals and provide a high-resolution, high-precision rotary encoder. In addition, the installation of the rotating disk plate is relatively unaffected by errors, and the rotating disk plate, light emitting and receiving optical systems (reading optical units) can be separated, making it easy to create a "built-in type" rotary encoder. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す斜視図。 第2図〜第6図は第1実施例のロータリーエンコーダー
の回転ディスク板の取り付はエラーがある場合の光路補
正の様子を示す説明図。 第7図は本発明の第2実施例を示す斜視図。 第8図は回折光の次数の士符号の付は方を示す・説明図
。 第9図(a)、(b)及び第10図は各々本発明の第3
及び第4実施例を余す図。 第11図は第1図のエンコーダーをハード磁気ディスク
のトラック信号書き込み装置に利用した例を示す図。 第12図(a)、  (b)は従来のエンコーダーの一
例を示す説明図。 l・・・・・・・・・・・・・・・・・・・・・・・・
・・・光源(レーザーダイオード)20・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・コリメーターレンズ31.32.33
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・プリズム41.42・
・・・・・・・・・・・・・・・・偏光ビームスプリッ
タ−面5・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・回転ディスク板60.61,62.63  
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・ミラー71.72.73・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・1/4波長板8・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・1./2波■■ 9・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・非偏光ビームスプリッタ−io、11・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・偏
光素子Sl、 S2 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・受光素子12、 13・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
レンY 第2図 、仇nzに入射↑5光束尺汁 〜2 %7図 入構寸勢を 縦
FIG. 1 is a perspective view showing a first embodiment of the present invention. FIGS. 2 to 6 are explanatory diagrams showing optical path correction in the case where there is an error in the attachment of the rotating disk plate of the rotary encoder of the first embodiment. FIG. 7 is a perspective view showing a second embodiment of the present invention. FIG. 8 is an explanatory diagram showing how to assign signs to the orders of diffracted light. FIGS. 9(a), (b) and 10 are the third embodiments of the present invention, respectively.
and the remaining figures of the fourth embodiment. FIG. 11 is a diagram showing an example in which the encoder of FIG. 1 is used in a track signal writing device for a hard magnetic disk. FIGS. 12(a) and 12(b) are explanatory diagrams showing an example of a conventional encoder. l・・・・・・・・・・・・・・・・・・・・・・・・
...Light source (laser diode) 20...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・Collimator lens 31.32.33
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Prism 41.42・
・・・・・・・・・・・・・・・Polarizing beam splitter plane 5・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
...Rotating disk plate 60.61, 62.63
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・Mirror 71.72.73・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・1/4 wavelength plate 8・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・1. /2 waves ■■ 9・・・・・・・・・・・・・・・・・・・・・・・・
...Non-polarizing beam splitter-io, 11...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・Polarizing element Sl, S2 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
...... Light receiving elements 12, 13...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
Len Y Fig. 2, incident on the enemy nz ↑ 5 luminous flux ~ 2 % 7 Fig. entry dimension vertically

Claims (1)

【特許請求の範囲】[Claims] 回転方向に沿って回折格子を形成した回転スケールの第
1の位置に光源からの光束を照射し、該第1の位置で発
生する第1及び第2の回折光を、該回転スケールの回転
中心に関して該第1の位置とほぼ点対称な第2の位置に
入射させ、該第2の位置で該第1及び第2の回折光が回
折して生じる第1及び第2の再回折光同志を干渉させて
光検出器へ導き、該光検出器からの出力信号に基づいて
該回転スケールの回転状態を検出するロータリーエンコ
ーダーにおいて、該第1及び第2の回折光が互いにほぼ
共通の光路を有し、該共通の光路中に該第1と第2の位
置を共役関係にする光学系を設けたことを特徴とするロ
ータリーエンコーダー。
A light beam from a light source is irradiated onto a first position of a rotating scale in which a diffraction grating is formed along the rotation direction, and the first and second diffracted lights generated at the first position are directed to the center of rotation of the rotating scale. the first and second re-diffracted lights generated by diffraction of the first and second diffracted lights at the second position. In a rotary encoder that causes interference to be guided to a photodetector and detects a rotational state of the rotary scale based on an output signal from the photodetector, the first and second diffracted lights have substantially a common optical path with each other. A rotary encoder characterized in that an optical system is provided in the common optical path to bring the first and second positions into a conjugate relationship.
JP1120047A 1989-05-12 1989-05-12 Rotary encoder Expired - Fee Related JP2774568B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1120047A JP2774568B2 (en) 1989-05-12 1989-05-12 Rotary encoder
EP90108932A EP0397202B1 (en) 1989-05-12 1990-05-11 Encoder
DE69011188T DE69011188T2 (en) 1989-05-12 1990-05-11 Encoder.
US07/522,051 US5146085A (en) 1989-05-12 1990-05-11 Encoder with high resolving power and accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120047A JP2774568B2 (en) 1989-05-12 1989-05-12 Rotary encoder

Publications (2)

Publication Number Publication Date
JPH02298817A true JPH02298817A (en) 1990-12-11
JP2774568B2 JP2774568B2 (en) 1998-07-09

Family

ID=14776580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120047A Expired - Fee Related JP2774568B2 (en) 1989-05-12 1989-05-12 Rotary encoder

Country Status (1)

Country Link
JP (1) JP2774568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237638A (en) * 2011-05-11 2012-12-06 Canon Inc Encoder and correction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166927A (en) * 1984-09-10 1986-04-05 Canon Inc Rotary encoder
JPS6212814A (en) * 1985-07-10 1987-01-21 Canon Inc Rotary encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166927A (en) * 1984-09-10 1986-04-05 Canon Inc Rotary encoder
JPS6212814A (en) * 1985-07-10 1987-01-21 Canon Inc Rotary encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237638A (en) * 2011-05-11 2012-12-06 Canon Inc Encoder and correction method

Also Published As

Publication number Publication date
JP2774568B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JP2603305B2 (en) Displacement measuring device
JP2586120B2 (en) encoder
EP0469718B1 (en) Laser interferometry length measuring apparatus
EP1435510A1 (en) Grating interference type optical encoder
JPH0798207A (en) Optical type displacement sensor
EP0397202B1 (en) Encoder
US20110310397A1 (en) Position detection device
JP3495783B2 (en) Encoder
JPH0718714B2 (en) encoder
JP4023923B2 (en) Optical displacement measuring device
JPH0778433B2 (en) Rotary encoder
JP2683117B2 (en) encoder
JPH1038517A (en) Optical displacement measuring instrument
JPH05157583A (en) Rotary encoder
JP3247791B2 (en) Encoder device
JPH02298817A (en) Rotary encoder
JP4023917B2 (en) Optical displacement measuring device
JP2003097975A (en) Origin detecting device for rotary encoder and measurement device for rotation information
JPS62200225A (en) Rotary encoder
JP2683098B2 (en) encoder
JP2557967B2 (en) Grating interference displacement meter
JPH02298804A (en) Interferometer
JP2020076593A (en) Displacement detector
JP2020051782A (en) Optical angle sensor
JP2600888B2 (en) Encoder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees