JPH02297869A - Charging/discharging circuit - Google Patents

Charging/discharging circuit

Info

Publication number
JPH02297869A
JPH02297869A JP1118920A JP11892089A JPH02297869A JP H02297869 A JPH02297869 A JP H02297869A JP 1118920 A JP1118920 A JP 1118920A JP 11892089 A JP11892089 A JP 11892089A JP H02297869 A JPH02297869 A JP H02297869A
Authority
JP
Japan
Prior art keywords
power supply
voltage
charging
backup power
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1118920A
Other languages
Japanese (ja)
Other versions
JP2841470B2 (en
Inventor
Nobuharu Koshiba
信晴 小柴
Toshihiko Ikehata
敏彦 池畠
Kenichi Takada
高田 堅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1118920A priority Critical patent/JP2841470B2/en
Publication of JPH02297869A publication Critical patent/JPH02297869A/en
Application granted granted Critical
Publication of JP2841470B2 publication Critical patent/JP2841470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To have a simple and uncostly charging/discharging circuit by dividing the voltage of a DC main power supply using a plurality of resistances, connecting that of those resistances which provides proper charging voltage in parallel with a backup power supply, and connecting a diode between them for the purpose of preventing counterflow. CONSTITUTION:The voltage of a DC main power supply DCS is divided by a plurality of resistances R1, R2, and the resistance R1 which provides proper charging voltage is connected in parallel with a backup main power supply BS. Between these two a counterflow preventive diode D1 is interposed, and the joint of this diode d1 with the power supply BS shall be wired to the load side so that discharge is made to the load from the backup power supply BS. Thereby the same diode can provide prevention of discharge loss via the main power supply side in the even of power interruption, which should allow the circuitry to be constructed simply and also assure the economy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は充放電可能なバックアップ電源がよく用いられ
る機器、たとえば、マイコン搭載機器などにおけるバッ
クアップ電源用充放電回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a charging/discharging circuit for a backup power source in equipment in which a rechargeable/dischargeable backup power source is often used, such as equipment equipped with a microcomputer.

従来の技術 近年、マイコンを搭載した電子機器が急増する傾向にあ
るが、電源オフ時など、大切なメモリーが消去しないよ
うに種々のメモリーバックアップ電源が用いられている
BACKGROUND OF THE INVENTION In recent years, there has been a rapid increase in the number of electronic devices equipped with microcomputers, and various memory backup power supplies are used to prevent important memory from being erased when the power is turned off.

バックアップ用電源としては、リチウム−次電池、乾電
池などの充電できない一次電池、及びNi−Cd電池、
キャパシタ、リチウム二次電池などの充電可能な二次電
源がある。
As a backup power source, lithium secondary batteries, non-rechargeable primary batteries such as dry batteries, Ni-Cd batteries,
There are rechargeable secondary power sources such as capacitors and lithium secondary batteries.

発明が解決しようとする課題 本発明は、とくに後者の二次電源にかかわるものである
が、これまでは5たとえば、主電源が5V電圧に対し、
キャパシタの場合、複数個直列接続し、5V対応とした
り、N 1−Cd電池の場合、電池を2〜3個直列接続
し、さらに電池と直列に比較的大きな抵抗を接続して電
流を制限することによって、電池の内部で充電電圧が大
巾に上昇しないような充電方式(トリクル充電)をとっ
ていた。
Problems to be Solved by the Invention The present invention is particularly concerned with the latter type of secondary power supply.
In the case of capacitors, multiple capacitors are connected in series to support 5V, and in the case of N1-Cd batteries, two or three batteries are connected in series, and a relatively large resistor is connected in series with the batteries to limit the current. Therefore, a charging method (trickle charging) was used to prevent the charging voltage from rising significantly inside the battery.

また、リチウム二次電池の場合、電圧が3vの高電圧が
得られるものがあり、また、バックアップに必要な電圧
が2v付近まで可能なため、1個で対応していた。
In addition, some lithium secondary batteries can provide a high voltage of 3V, and the voltage required for backup can reach around 2V, so a single battery is sufficient.

と(にリチウム二次電池のように1個で対応する場合充
電電圧が3vに対し、主電源電圧が5vもあるので、定
電圧素子であるツェナーダイオードを用い、電圧を3v
に低下させて用いていた。
When a single battery such as a lithium secondary battery is used, the charging voltage is 3V, but the main power supply voltage is 5V, so a Zener diode, which is a constant voltage element, is used to reduce the voltage to 3V.
It was used at a lower level.

しかし、ツェナーダイオードは抵抗などに較べ高価であ
り、かつツェナーダイオード自体のバラツキが大きいた
め、必ずしも精度よ(適正な充電電圧範囲内に収めるこ
とが困難であった。
However, Zener diodes are more expensive than resistors and the like, and the Zener diodes themselves have large variations, so it has always been difficult to maintain accuracy (within an appropriate charging voltage range).

本発明では、ツェナーダイオードを用いず、精度の良い
充電電圧を得、しかも単純で安価な充放電回路を得るこ
とを目的とした。
The present invention aims to provide a charging/discharging circuit that does not use a Zener diode, provides a highly accurate charging voltage, and is simple and inexpensive.

課題を解決するための手段 第1図に示した如く、直流主電源の電圧を複数の抵抗に
よって分割し、適正な充電電圧が得られる抵抗とバック
アップ用主電源とを並列接続し、かつ直流主電源がオフ
状態のとき、バックアップ電源が分割抵抗によって放電
されないように両者間に、逆流防止用ダイオードを接続
し、さらにバックアップ電源より、負荷に放電されるよ
うに、逆流防止用ダイオードとバックアップ電源との接
続点を負荷側に結線し、主電源動作時においても、逆流
防止用ダイオードを経由して負荷側に電力が供給される
ようにしたものである。
Means for Solving the Problem As shown in Figure 1, the voltage of the DC main power supply is divided by multiple resistors, and the resistor that provides an appropriate charging voltage is connected in parallel with the backup main power supply. When the power is off, connect a backflow prevention diode between the backup power supply so that it is not discharged by the split resistor, and connect the backflow prevention diode and the backup power supply so that the backup power supply is discharged to the load. The connection point is connected to the load side, so that power is supplied to the load side via the backflow prevention diode even when the main power supply is operating.

作用 こうすることにより、充電電圧は抵抗比により精度よく
分割され、適正な充電電圧が得られる。
By doing so, the charging voltage is divided with high precision by the resistance ratio, and an appropriate charging voltage can be obtained.

また、主電源のオフ時には逆流防止用ダイオードにより
、バックアップ電源の分割抵抗による放電損失は完全に
防止することができる。さらに、逆流防止ダイオ−下が
主電源の駆動回路に結線されていることにより、同じダ
イオードで停電時において、主電源側経由の放電損失も
完全に防止することができるので、部品点数が少なくし
て、効率のよい充放電回路ができる。
Further, when the main power supply is turned off, the backflow prevention diode can completely prevent discharge loss due to the divided resistance of the backup power supply. Furthermore, by connecting the lower part of the backflow prevention diode to the main power supply drive circuit, the same diode can completely prevent discharge loss via the main power supply side in the event of a power outage, reducing the number of components. As a result, an efficient charging/discharging circuit can be created.

この充放電回路としては、第1図a、bの2種類考えら
れ、どちらでも良い。ただし、回路の配線上アース側に
ダイオードが結線できない場合があるので、このことを
考慮すると、プラス偏にダイオードを入れたaの方が好
ましい。
There are two types of charging/discharging circuits shown in FIG. 1, a and b, and either one may be used. However, it may not be possible to connect a diode to the ground side due to circuit wiring, so taking this into account, it is preferable to use a with a diode placed on the positive side.

第1図の回路によるとバックアップ電源が作動する場合
、必ずバックアップ電源とは並列接続していない抵抗を
経由して放電することになるが、大電流で放電する場合
、そこで大きな電圧降下を生ずることになる。そこで、
その損失を低減するために、第2図のようにその抵抗と
並列に第2の逆流防止ダイオードを接続することも有効
な方法である。    □ 実施例 (実施例1) 直流主電源の電圧を5Vとし、バックアップ電源には正
極に活性炭、負極にリチウム合金を用いたカーボンリチ
ウム二次電池を用い、本発明の第1図aの回路構成を行
った。カーボンリチウム二次電池は、電圧3Vを有し、
充電電圧が一3±0.2Vで電気容量が3vから2vま
T: 1 m A hのものを用いた。分割抵抗はR1
を1100Ω、R2を390Ωとした。また、逆流防止
ダイオードD+をシリコンダイオード(IS953NE
C製)とした。また、負荷を主電源(DCS)動作時は
500Ω主電源をオフ状態とし、バックアップ電源CB
S)動作時の負荷を30にΩとした。
According to the circuit in Figure 1, when the backup power supply operates, the discharge will always occur via a resistor that is not connected in parallel with the backup power supply, but if it discharges with a large current, a large voltage drop will occur there. become. Therefore,
In order to reduce the loss, it is also an effective method to connect a second anti-backflow diode in parallel with the resistor as shown in FIG. □ Example (Example 1) The voltage of the DC main power source was 5V, and the backup power source was a carbon lithium secondary battery with activated carbon as the positive electrode and lithium alloy as the negative electrode, and the circuit configuration of FIG. 1a of the present invention was used. I did it. The carbon lithium secondary battery has a voltage of 3V,
A battery with a charging voltage of 13±0.2V and a capacitance of 3V to 2V and T: 1 mA h was used. The dividing resistance is R1
was set to 1100Ω, and R2 was set to 390Ω. Also, replace the backflow prevention diode D+ with a silicon diode (IS953NE).
Made by C). In addition, when the load is operated by the main power supply (DCS), the 500Ω main power supply is turned off, and the backup power supply CB
S) The load during operation was set to 30Ω.

主電源の動作時、つまり充電状態においては、電流は約
10mA近く流れ、そのときの電圧降下は約0.7±0
.05Vであった。また、分割抵抗R1にかかる電圧は
完全充電状態においてはくバックアップ電源がないとき
と同じ想定)5=3.69V BSの最大電圧(VBSIIIAX )は、VlよりD
lの電圧降下を差し引いた値となり、 Vasm^x= 3.69−0.7 = 2.99 V
(±0.05V) となる。さらに、直流電源のバラツキが5±0.1Vと
すると、V BSIIIAXのバラツキは0.05Vに
0、IVを加え、最大でも±0.15Vとなる。
When the main power supply is operating, that is, in the charging state, the current flows approximately 10 mA, and the voltage drop at that time is approximately 0.7 ± 0.
.. The voltage was 0.05V. In addition, the voltage applied to the dividing resistor R1 is not in a fully charged state (same assumption as when there is no backup power supply) 5 = 3.69V The maximum voltage of the BS (VBSIIIAX) is lower than Vl
The value obtained by subtracting the voltage drop of l is Vasm^x = 3.69-0.7 = 2.99 V
(±0.05V). Further, assuming that the variation in the DC power supply is 5±0.1V, the variation in VBSIIIAX is 0.05V plus 0 and IV, which is ±0.15V at the maximum.

このことから、V BSIIIAXは、カーボンリチウ
ム二次電池の許容充電圧3.0±0.2Vにすべて入る
ことになる。実際に得られた、実験値も充電終了後さら
に10日間、連続充電後、主電源がオンの状態でVBS
jl^Xが10個のテストのうちすべてが2.9vから
3.1vの間であった。
From this, VBSIIIAX falls within the allowable charging voltage of 3.0±0.2V for the carbon lithium secondary battery. The experimental values actually obtained also show that VBS remains constant for an additional 10 days after the end of charging, after continuous charging, and with the main power turned on.
jl^X was between 2.9v and 3.1v in all 10 tests.

また、放電時においても、逆流防止ダイオードDI の
存在により容量損失かまった(ないので、電気容量をす
べて1 m A h / 2 Vまで得ることができた
Furthermore, even during discharging, there was no capacity loss due to the presence of the backflow prevention diode DI (because there was no backflow prevention diode DI), the entire electrical capacity could be obtained up to 1 mAh/2 V.

比較例として、第3図に示したように、ツェナーダイオ
ードで電圧制御をする方式でテストしてみた。
As a comparative example, a test was conducted using a method of voltage control using a Zener diode, as shown in FIG.

図中、R3は保護抵抗、ZDはツェナーダイオードであ
り、Ds 、 D4は逆流防止ダイオードである。ZD
としてH23BLL (電圧立ち上がり特性が比較的段
(、制御範囲、2.8V〜3.2V2日立製作所製)R
3に220Ω、Dsにシリコンダイオード、D4にショ
ットキバリヤーダイオードを選んだ。
In the figure, R3 is a protection resistor, ZD is a Zener diode, and Ds and D4 are backflow prevention diodes. ZD
As H23BLL (voltage rise characteristics are relatively high (control range, 2.8V to 3.2V2 manufactured by Hitachi) R
I chose 220Ω for 3, a silicon diode for Ds, and a Schottky barrier diode for D4.

この回路で10個それぞれの部品をサンプリングし、実
施例1と同じテストをしてみた。充電時においてはV 
B5111AXは8個が2.8Vから3.2vの中に入
ったが、1個ずつ2.8Vより低いもの、及び3.2v
よりも高いものがでてきた。
Using this circuit, we sampled each of the 10 components and performed the same test as in Example 1. V during charging
Eight of the B5111AX were between 2.8V and 3.2V, but one each was lower than 2.8V and one was 3.2V.
I found something higher than that.

これは、やはりZD、Ds 、DC8のバラツキが重な
ったためと推定される。
This is presumably due to the combination of variations in ZD, Ds, and DC8.

また、バッタアップ電源の放電時においても、得られた
電気容量が0.6〜0.8mA/2Vまでであった。こ
れは、D4の電圧降下及び、ZDやDCS経由の放電損
失があったためと思われる。
Further, even during discharging of the batter-up power source, the obtained electric capacity was 0.6 to 0.8 mA/2V. This seems to be due to the voltage drop of D4 and discharge loss via ZD and DCS.

(実施例2) 第2図の如(、本発明で実施例1にさらに第2の逆流防
止ダイオードD2としてショットキーバリヤーダイオー
ドを接続した回路を構成した。このとき、バックアップ
電源の放電時負荷はIKΩとした。
(Example 2) As shown in FIG. 2, according to the present invention, a circuit was constructed in which a Schottky barrier diode was further connected as a second backflow prevention diode D2 to Example 1. At this time, the load during discharge of the backup power supply was It was set as IKΩ.

第1図aの回路ではIKΩの負荷の場合、電圧降下が約
0.8V近(になるので電気容量が2Vまで0.1〜0
.2mA h 1.、か得られなかった。と 。
In the circuit shown in Figure 1a, if the load is IKΩ, the voltage drop will be approximately 0.8V, so the capacitance will be 0.1~0.
.. 2mA h1. , or could not get it. and .

ころが、第1図すの回路ではD2の電圧降下が0.4V
付近なので、2.6V付近よりの初期放電電圧が得られ
、2vまで約0.5〜0.6mAhの電気容量が得られ
た。
However, in the circuit shown in Figure 1, the voltage drop at D2 is 0.4V.
Since the voltage was around 2.6 V, an initial discharge voltage of around 2.6 V was obtained, and a capacitance of about 0.5 to 0.6 mAh was obtained up to 2 V.

発明の効果 これらのことより、本発明の回路は、精度の良い充電電
圧を得ることができ、しかも、単純回路で、経済的であ
る。
Effects of the Invention As a result of the above, the circuit of the present invention can obtain a highly accurate charging voltage, and is also a simple and economical circuit.

なお実施例でバックアップ電源としてはカーボンリチウ
ム二次電池を挙げたが、これは原理的なものを示したに
すぎず、バナジウム/リチウム二次電池、マンガン/リ
チウム二次電池、ポリマーバッテリー、二硫化モリブデ
ン/リチウム二次電池などのリチウム二次電池及びキャ
パシタ、Ni−Cd電池、鉛蓄電池、固体電解質二次電
池など広く適用することができる。また、直流主電源の
電圧はもちろん5Vに限るものでなく、種々の電圧のと
き、適正な分割抵抗を選ぶことにより、自由に使いこな
すことができる。
In the examples, a carbon lithium secondary battery was used as a backup power source, but this only shows the principle. Vanadium/lithium secondary batteries, manganese/lithium secondary batteries, polymer batteries, disulfide It can be widely applied to lithium secondary batteries such as molybdenum/lithium secondary batteries, capacitors, Ni-Cd batteries, lead-acid batteries, solid electrolyte secondary batteries, etc. Furthermore, the voltage of the DC main power supply is not limited to 5V, of course, and various voltages can be used freely by selecting appropriate dividing resistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、b及び第2図は本発明による充放電回路図、
第3図は比較のための充放電回路図である。 DC8・・・・・・直流主電源、E・・・・・・アース
、D+  。 D2 * Ds・・・・・・逆流防止ダイオード、R+
 、 R2・・・・・・分割抵抗、BS・・・・・・バ
ックアップ用電源、ZD・・・・・・ツェナーダイオー
ド。
1a, b and 2 are charging and discharging circuit diagrams according to the present invention,
FIG. 3 is a charging/discharging circuit diagram for comparison. DC8...DC main power supply, E...Earth, D+. D2 * Ds・・・・・・Reverse current prevention diode, R+
, R2...Division resistor, BS...Backup power supply, ZD...Zener diode.

Claims (3)

【特許請求の範囲】[Claims] (1)充放電可能なバックアップ電源及びその充電電源
を兼ねた直流主電源とが接続された回路において、前記
直流主電源の電圧がバックアップ電源の適正な充電電圧
より高い場合、直流主電源の電圧を複数の抵抗によって
分割し、適正な充電電圧が得られる抵抗とバックアップ
用電源とを並列接続し、かつ直流主電源がオフ状態のと
き、前記バックアップ電源が並列接続した分割抵抗によ
って放電されないよう両者間に逆流防止用ダイオードを
接続し、バックアップ電源より負荷に放電できるよう逆
流防止用ダイオードとバックアップ電源との接続点負荷
側に結線され、かつ前記逆流防止ダイオードは主電源動
作時の駆動回路中に配されていることを特徴とした充放
電回路。
(1) In a circuit in which a rechargeable and dischargeable backup power supply and a DC main power supply that also serves as its charging power supply are connected, if the voltage of the DC main power supply is higher than the appropriate charging voltage of the backup power supply, the voltage of the DC main power supply is divided by a plurality of resistors, and a resistor capable of obtaining an appropriate charging voltage is connected in parallel with a backup power source, and both are connected so that the backup power source is not discharged by the parallel-connected dividing resistor when the main DC power source is off. A backflow prevention diode is connected between the backup power supply and the connection point between the backflow prevention diode and the backup power supply, and the backflow prevention diode is connected to the load side so that discharge can be performed from the backup power supply to the load. A charging/discharging circuit characterized by the following:
(2)逆流防止ダイオードが、直流主電源のプラス側回
路に結線されていることを特徴とする特許請求の範囲第
1項記載の充放電回路。
(2) The charging/discharging circuit according to claim 1, wherein the reverse current prevention diode is connected to a positive side circuit of a DC main power source.
(3)バックアップ電源と並列に接続されていない分割
抵抗と並列接続になるように、第2の逆流防止ダイオー
ドをバックアップ電源と負荷回路との間に結線してなる
ことを特徴とした特許請求の範囲第1項または第2項記
載の充放電回路。
(3) A patent claim characterized in that a second backflow prevention diode is connected between the backup power source and the load circuit so that it is connected in parallel with a dividing resistor that is not connected in parallel with the backup power source. The charging/discharging circuit according to the first or second range.
JP1118920A 1989-05-12 1989-05-12 Charge / discharge circuit Expired - Fee Related JP2841470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118920A JP2841470B2 (en) 1989-05-12 1989-05-12 Charge / discharge circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118920A JP2841470B2 (en) 1989-05-12 1989-05-12 Charge / discharge circuit

Publications (2)

Publication Number Publication Date
JPH02297869A true JPH02297869A (en) 1990-12-10
JP2841470B2 JP2841470B2 (en) 1998-12-24

Family

ID=14748457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118920A Expired - Fee Related JP2841470B2 (en) 1989-05-12 1989-05-12 Charge / discharge circuit

Country Status (1)

Country Link
JP (1) JP2841470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510970A (en) * 2013-03-05 2016-04-11 フイジョウ キムリー テクノロジー シーオー.、エルティーディー.シェンジェン ブランチ Protection device and protection method for preventing decrease in supply voltage of microcontroller in electronic cigarette

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510970A (en) * 2013-03-05 2016-04-11 フイジョウ キムリー テクノロジー シーオー.、エルティーディー.シェンジェン ブランチ Protection device and protection method for preventing decrease in supply voltage of microcontroller in electronic cigarette

Also Published As

Publication number Publication date
JP2841470B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US6329796B1 (en) Power management circuit for battery systems
US5821733A (en) Multiple cell and serially connected rechargeable batteries and charging system
US10374440B2 (en) System and method for supercapacitor charging and balancing
EP0693815A2 (en) Auxiliary battery charge control circuits
US5625237A (en) Remove power source device having improved capacity indication capability, and an electronic device using the removable power source device
DE10035959A1 (en) Method of discharging a variety of rechargeable batteries and battery assembly
KR19980024172A (en) Charging devices and electronic devices with charging
JP2004336994A (en) Battery pack and battery charge/discharge circuit including battery pack therein
US5747966A (en) Battery charging/discharging apparatus with serial battery connection
US20060082345A1 (en) Rechargeable alkaline battery with overcharging protection
JP4491917B2 (en) Battery pack
EP0797283A2 (en) Lithium cell recharging
JPH08182214A (en) Circuit for controlling discharge of auxiliary battery and circuit for charging/discharging auxiliary battery and disconnecting auxiliary battery from main battery
JP2005130664A (en) Battery pack
KR19990037303A (en) Charge current adapter circuit or batteries for a cell
EP0762593A2 (en) Battery management circuit and method for controlling the in-circuit charge and discharge of series-connected rechargeable electrochemical cells
JPH02297869A (en) Charging/discharging circuit
US5825157A (en) Camera using solar battery
US5831416A (en) Apparatus and method for charging batteries
US6141234A (en) Power supply with battery charger for emergency sign
EP1139482A2 (en) Electric accumulator with electronic protection circuit
JP3421126B2 (en) Charging control method for series connected capacitors
JP3642105B2 (en) Battery pack
CN218041201U (en) Power supply conversion circuit
JP2952315B2 (en) Storage battery device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees