JPH02297818A - Current control unit of contact - Google Patents

Current control unit of contact

Info

Publication number
JPH02297818A
JPH02297818A JP11670389A JP11670389A JPH02297818A JP H02297818 A JPH02297818 A JP H02297818A JP 11670389 A JP11670389 A JP 11670389A JP 11670389 A JP11670389 A JP 11670389A JP H02297818 A JPH02297818 A JP H02297818A
Authority
JP
Japan
Prior art keywords
contact
contacts
current
contact resistance
large current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11670389A
Other languages
Japanese (ja)
Inventor
Tatsuji Takahashi
達司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11670389A priority Critical patent/JPH02297818A/en
Publication of JPH02297818A publication Critical patent/JPH02297818A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/60Auxiliary means structurally associated with the switch for cleaning or lubricating contact-making surfaces
    • H01H1/605Cleaning of contact-making surfaces by relatively high voltage pulses

Landscapes

  • Keying Circuit Devices (AREA)

Abstract

PURPOSE:To increase the electrical life of a contact and eliminate imperfect contact of a contact caused by insulation film, etc., to make greater reliability by detecting contact resistance of a contact and flowing a large current between contacts with an output signal when the contact resistance becomes larger than a predetermined value. CONSTITUTION:A contact resistance of a contact 1 is supervised by a detection circuit 16 and when the contact resistance exceeds a predetermined standard value, a transistor 6 is turned on to flow a large current between contacts and resultantly, if the contact resistance of a contact decreases lower than the standard value, the transistor 6 is turned off to cut off the large current flow. That is, when it is judged that a contact resistance of the contact 1 detected by the detection circuit 16 exceeds the standard value in a closing state of the contact 1, a large current is made to flow between contacts; thereby, such contact faults as insulation film, etc., are removed so that the contact 1 is free from imperfect contact. Resultantly, it is possible to increase the electrical life of a contact and also make a contact with high reliability free from imperfect contact.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、低電流を開閉する接点の絶縁皮膜などの傷
害を除去して電気的接触を良好にするための接点用電流
制御装置に関するものである。
The present invention relates to a current control device for contacts that removes damage to the insulation coating of contacts that open and close low currents to improve electrical contact.

【従来の技術】[Conventional technology]

エレベータの行き過ぎを防ぐ終点スイッチや、エレベー
タの扉の閉成状態を確認する戸閉検出スイッチ等に流れ
る電流は、回路の電子化に伴い微小となり、かつ小形化
してきている。このため、接点開閉時のエネルギによる
接点面の活性化や電流による接点面上の絶縁皮膜の破壊
などが困難になっている。 この対策として、Wi閉電流、通電電流を太きぐするこ
とが提案されている。 第4図は、従来の接点用電流制御装置の回路図であり、
接点閉成毎に接点間に一定時間大電流を流し、これによ
り接点面に生じた絶縁膜など、低負荷電流を開閉する接
点の傷害となるものを除去して接点のクリーン化を伴う
ものである。 同図において、1は戸閉スイッチなどの接点であり、こ
の接点1の一端は+Vll[に接続され、その他端は抵
抗2及びホトカブラ3の一次側(発光ダイオード)を介
してアースに接続されている。 ホトカブラ3の二次側(ホトトランジスタ)は十V電源
と、アース間に抵抗4を介して接続され、そして、接点
1の開閉に伴いオン・オフされるホトカプラ3のオン・
オフ信号は制御回路5に出力されるようになっている。 前記抵抗2とホトカブラ3の一次側との直列回路には、
トランジスタ6が抵抗7を介して並列に接続され、さら
にトランジスタ8が抵抗9,1゜を介して並列に接続さ
れている。前記抵抗1oにはコンデンサ11と抵抗12
との直列回路が並列に接続され、この直列回路のコンデ
ンサ11と抵抗12との接続点に前記トランジスタ6の
ベースが接続されている。13はトランジスタ6のエミ
ッタ・ベース間に接続したダイオード、14及び15は
トランジスタ8のベースバイアス用の抵抗である。 次に、上記のように構成された従来の接点用電流制御装
置の動作を第5図のタイムチャートを参照して説明する
。 接点1が開放された初期状態では、接点電流工o=0で
ある(第5図e参照)。この時、ホトカブラ3はオフ状
態になっているため、制御回路5には+V電源を抵抗4
で設定した電圧レベルのrHJ信号が入力される。また
、接点1が閉状態になると、ホトカブラ3の一次側には
電流I、が流れるため、ホトカブラ3がオンし、制御回
路5の入力接続点をアースに落とす。このため、制御回
路5の入力信号は“L”になる。 一方、接点1が閉成されると、トランジスタ8が第5図
(b)に示すようにオンし、コンデンサ11が充電され
始める。この時、コンデンサ11の両端電圧は第5図(
C)のように変化する。そして、コンデンサ11がチャ
ージアップするまでの時間T、の間、トランジスタ6が
オンしく第5図(d)参照)、これに伴い抵抗7に負荷
電流I2が流れる。従って、接点1には接点の閉と同時
に時間T、の間l0=I、+I2の接点電流が流れ、そ
の接点電流I。は通常状態よりI2だけ増加する。これ
により、接点間にはジュール熱が発生し、絶縁皮膜等を
破壊して接点をクリーンな状態にする。
The current flowing through the end point switch that prevents the elevator from overshooting, the door close detection switch that confirms the closed state of the elevator door, and the like has become smaller and smaller as circuits become more electronic. For this reason, it is difficult to activate the contact surface due to energy when opening and closing the contact, and to destroy the insulating film on the contact surface due to current. As a countermeasure to this problem, it has been proposed to increase the Wi closing current and conducting current. FIG. 4 is a circuit diagram of a conventional contact current control device,
A large current is passed between the contacts for a certain period of time each time the contacts are closed, and this removes anything that could damage the contacts that open and close low-load currents, such as an insulating film that has formed on the contact surface, thereby cleaning the contacts. be. In the figure, 1 is a contact such as a door close switch, and one end of this contact 1 is connected to +Vll[, and the other end is connected to ground via a resistor 2 and the primary side (light emitting diode) of a photocoupler 3. There is. The secondary side (phototransistor) of the photocoupler 3 is connected between a 1V power source and ground via a resistor 4, and the photocoupler 3 is turned on and off as the contact 1 opens and closes.
The off signal is output to the control circuit 5. The series circuit between the resistor 2 and the primary side of the photocoupler 3 includes:
Transistor 6 is connected in parallel via resistor 7, and transistor 8 is further connected in parallel via resistor 9,1°. A capacitor 11 and a resistor 12 are connected to the resistor 1o.
A series circuit is connected in parallel, and the base of the transistor 6 is connected to the connection point between the capacitor 11 and the resistor 12 of this series circuit. 13 is a diode connected between the emitter and base of transistor 6, and 14 and 15 are resistors for biasing the base of transistor 8. Next, the operation of the conventional contact current control device configured as described above will be explained with reference to the time chart shown in FIG. In the initial state where the contact 1 is open, the contact current o=0 (see FIG. 5e). At this time, since the photocoupler 3 is in the off state, the +V power supply is connected to the control circuit 5 through the resistor 4.
The rHJ signal at the voltage level set in is input. When the contact 1 is closed, a current I flows through the primary side of the photocoupler 3, so the photocoupler 3 is turned on and the input connection point of the control circuit 5 is grounded. Therefore, the input signal of the control circuit 5 becomes "L". On the other hand, when contact 1 is closed, transistor 8 is turned on as shown in FIG. 5(b), and capacitor 11 begins to be charged. At this time, the voltage across the capacitor 11 is as shown in Figure 5 (
C). Then, during the time T until the capacitor 11 is charged up, the transistor 6 is turned on (see FIG. 5(d)), and the load current I2 flows through the resistor 7 accordingly. Therefore, a contact current of l0=I, +I2 flows through contact 1 for a time T at the same time as the contact is closed, and the contact current I. increases by I2 from the normal state. As a result, Joule heat is generated between the contacts, destroying the insulating film and leaving the contacts in a clean state.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上述のような従来の接点用電流制御装置では、接点1が
閉成される毎に接点間に通常の数倍に相当する大きな電
流が流れるため、接点の電気的寿命を極度に低下させた
り、あるいは接点が審理するなど、別の接点傷害が発生
し易(なるという問題があった。 この発明は上記のような問題点を解決するためになされ
たもので、接点の電気的寿命の増大を図ると共に、絶縁
皮膜等による接点の接触不良のない信頼性の高い接点の
電流制御装置を得ることを目的とする。
In the conventional current control device for contacts as described above, a large current equivalent to several times the normal current flows between the contacts each time the contact 1 is closed, which may extremely shorten the electrical life of the contacts. Otherwise, there was a problem in which other contact damage such as contact breakage was likely to occur. This invention was made to solve the above problems, and it In addition, it is an object of the present invention to obtain a highly reliable contact current control device that is free from poor contact due to insulating films or the like.

【課題を解決するための手段] この発明に係る接点の電流制御装置は、接点の接触抵抗
を検出し、この接触抵抗が予め定めた基準値以上になっ
た時出力信号を送出する検出回路と、この検出回路から
の出力信号により動作され一1前記接点間に大電流を流
す回路手段とを備えてなるものである。 【作用】 接点の閉状態において、検出回路が検出した接点の接触
抵抗が基準値以上であることを判断すると、回路手段を
動作させて接点間に大電流を流し、これによって絶縁皮
膜等の接点傷害を除去し、接点を接触不良のない状態に
する。 したがって、この発明にあっては、傷害除去のための大
電流は必要以上に流れることがなく、接点の電気的寿命
を増大できると共に、信頼性の高い接点を提供し得る。
[Means for Solving the Problems] A contact current control device according to the present invention includes a detection circuit that detects the contact resistance of the contact and sends an output signal when the contact resistance exceeds a predetermined reference value. , and circuit means which is operated by an output signal from the detection circuit and causes a large current to flow between the contacts. [Function] When the detection circuit determines that the contact resistance of the contact detected by the contact is equal to or higher than the reference value in the closed state of the contact, the circuit means is operated to flow a large current between the contacts, thereby causing the contact resistance of the insulating film, etc. Remove the damage and make the contacts free from poor contact. Therefore, in the present invention, a large current for removing damage does not flow more than necessary, and the electrical life of the contact can be increased, and a highly reliable contact can be provided.

【実施例】【Example】

以下、この発明の実施例を図面に基づいて説明する。 第1図は、この発明による接点用電流制御装置の一実施
例を示す回路図である。 第1図において、第4図と同一の部分には同一符号を付
して説明する。16は接点1の接触抵抗がある値以上に
なったことを検出する検出回路で、+■電源とアース間
に直列に接続した抵抗17及び18と、抵抗2とホトカ
ブラ3の一次側との直列回路に並列に接続した抵抗19
,20の直列回路と、演算増幅器21とから構成されて
いる。 前記演算増幅器21の非反転入力端は、抵抗17と18
との接続点P、に接続され、さらに反転入力端は抵抗1
9.20との接続点P2に接続されている。これにより
演算増幅N21の非反転入力端には、+vg源の電圧を
抵抗17.18で分圧した抵抗18の両端に発生する電
圧Vaが供給され、また反転入力端には接点1の接触抵
抗、抵抗19,20により決定される抵抗20の両端電
圧vbが供給される。そして、演算増幅器21の出力信
号は接点1に傷害除去用の負荷電流I2を流すトランジ
スタ6のベースに供給されるようになっている。 次に、上記のように構成された本実施例の動作を第2図
及び第3図を参照して説明する。 第2図は動作説明用のフローチャートであり、第3図は
そのタイムチャートである。 まず、接点1が開の初期状態では、接点電流I。=0で
ある。次に、接点1が第3図(a)に示すように閉状態
になると(ステップSl)、ホトカプラ3の一次側に電
流I、が流れるため、ホトカプラ3はオン動作し、その
オン動作に伴う信号が制御回Ws5に供給される。この
時、接点1の開成に伴い接点1を介して抵抗19.20
に+V電源が供給されるため、抵抗20の両端には接点
1の接触抵抗に応じた電圧が発生し、この両端電圧vb
が演算増幅器21の反転入力端に供給される。 ここで、演算増幅器21は、これに入力される電圧Va
とvbとを比較し、接点1の接触抵抗が予め設定した基
準値より大きいか小さいかを判定する(ステップ82)
。 接点1の接触抵抗が第3図(b)に示す基準値より小さ
い時はV a < V bとなるため(ステップS3)
、演算増幅器21の出力はrLJとなり、トランジスタ
6はオフのままとなる(ステップS4)。この時の接点
電流I。はl0=I、となる。 一方、絶縁皮膜の生成などにより接点1の接触抵抗が基
樵値以上になると、電圧Vaとvb間はV a ) V
 bとなるため(ステップS5)、演算増幅i#21の
出力はrHJとなり、トランジスタ6が第3図(Q)に
示すようにオンする(ステップ86)。これに伴い、抵
抗7とトランジスタ6の直列回路には負荷電流工2が流
れ、接点電流I。 はl0=I 、 十I、となる。すなわち、接点1を流
れる電流は第3図(d)に示すように通常時よりI。分
増加するため(ステップS7)、接点間の絶縁皮膜等は
ジュール熱によって破壊され(ステップS8)、接点抵
抗値は減少する(ステップ39)。これにより接点抵抗
が基準値以下に抵抗すると、V a < V bとなる
ため、演算増幅WIr21の出力はrLJに反転し、ト
ランジスタ6はオフする。 上述のような本実施例にあっては、接点1の接触抵抗を
演出回路16により監視し、その接触抵抗が予め定めた
基準値以上になった時にトランジスタ6をオンして大電
流を接点間に流し、これによ抄接点の接触抵抗が基準値
以下に減少しなならば、トランジスタ6をオフして大電
流を遮断するようにしたものであるから、従来のように
接点1が閉成する毎に大電流が流れることがなく、シか
も大電流は絶縁皮膜などの傷害が生じなときのみ流れ、
必要以上に大電流が流れないため、接点1の電気的寿命
が増大し、接点溶着も未然に防止することができる。 なお、この発明における検出口416及び傷害除去用の
大電流供給回路は上記実施例に示す回路方式のものに限
定されない。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a circuit diagram showing an embodiment of a contact current control device according to the present invention. In FIG. 1, the same parts as in FIG. 4 will be described with the same reference numerals. 16 is a detection circuit that detects when the contact resistance of contact 1 exceeds a certain value; Resistor 19 connected in parallel to the circuit
, 20 in series, and an operational amplifier 21. The non-inverting input terminal of the operational amplifier 21 is connected to resistors 17 and 18.
The inverting input terminal is connected to the connection point P, and the inverting input terminal is connected to the resistor 1.
It is connected to connection point P2 with 9.20. As a result, the non-inverting input terminal of the operational amplifier N21 is supplied with the voltage Va generated across the resistor 18 obtained by dividing the voltage of the +vg source by the resistor 17.18, and the contact resistance of contact 1 is supplied to the inverting input terminal. , the voltage vb across the resistor 20 determined by the resistors 19 and 20 is supplied. The output signal of the operational amplifier 21 is supplied to the base of a transistor 6 which causes a load current I2 for damage removal to flow through the contact 1. Next, the operation of this embodiment configured as described above will be explained with reference to FIGS. 2 and 3. FIG. 2 is a flowchart for explaining the operation, and FIG. 3 is a time chart thereof. First, in the initial state where contact 1 is open, contact current I. =0. Next, when the contact 1 becomes closed as shown in FIG. 3(a) (step Sl), the current I flows through the primary side of the photocoupler 3, so the photocoupler 3 turns on, A signal is supplied to the control circuit Ws5. At this time, with the opening of contact 1, a resistance of 19.20
Since +V power is supplied to the resistor 20, a voltage corresponding to the contact resistance of the contact 1 is generated at both ends of the resistor 20, and this voltage at both ends vb
is supplied to the inverting input terminal of the operational amplifier 21. Here, the operational amplifier 21 has a voltage Va input thereto.
and vb are compared, and it is determined whether the contact resistance of contact 1 is larger or smaller than a preset reference value (step 82).
. When the contact resistance of contact point 1 is smaller than the reference value shown in FIG. 3(b), V a < V b (step S3).
, the output of the operational amplifier 21 becomes rLJ, and the transistor 6 remains off (step S4). Contact current I at this time. becomes l0=I. On the other hand, if the contact resistance of contact 1 exceeds the basic value due to the formation of an insulating film, etc., the voltage between Va and vb will be V a ) V
b (step S5), the output of operational amplifier i#21 becomes rHJ, and transistor 6 turns on as shown in FIG. 3(Q) (step 86). Accordingly, a load current 2 flows through the series circuit of the resistor 7 and the transistor 6, and a contact current I flows. becomes l0=I, 10I. That is, as shown in FIG. 3(d), the current flowing through contact 1 is I compared to the normal state. Since the contact resistance value increases (step S7), the insulating film between the contacts is destroyed by Joule heat (step S8), and the contact resistance value decreases (step S39). As a result, when the contact resistance becomes less than the reference value, Va<Vb, so the output of the operational amplifier WIr21 is inverted to rLJ, and the transistor 6 is turned off. In this embodiment as described above, the contact resistance of the contact 1 is monitored by the production circuit 16, and when the contact resistance exceeds a predetermined reference value, the transistor 6 is turned on and a large current is applied between the contacts. If the contact resistance of the contact does not decrease below the reference value, the transistor 6 is turned off and the large current is cut off. Large currents do not flow every time the device is used, and large currents only flow when there is no damage to the insulation film, etc.
Since an unnecessarily large current does not flow, the electrical life of the contact 1 is increased and contact welding can be prevented. Note that the detection port 416 and the large current supply circuit for injury removal in this invention are not limited to the circuit system shown in the above embodiment.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば接点の接触抵抗を検出
する検出回路を設け、この検出回路が接点の接触抵抗が
予め定めた基準値以上であると判断した時のみ接点間に
大電流を流すように構成したので、接点の電気的寿命を
増大できると共に、接触不良のない信頼性の高い接点を
提供することができる。
As described above, according to the present invention, a detection circuit that detects the contact resistance of the contacts is provided, and a large current is applied between the contacts only when this detection circuit determines that the contact resistance of the contacts is equal to or higher than a predetermined reference value. Since the contact is configured to flow, the electrical life of the contact can be increased, and a highly reliable contact without contact failure can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1rI!Jはこの発明による接点用電流IIJIII
装置の一実施例を示す回路図、第2図はその動作説明用
のフローチャート、第3図は同じ(そのタイムチャート
、第4図は従来の接点用電流制御装置の回路図、第5図
はそのタイムチャートである。 l・・・接点、3・・・ホトカプラ、5・・・#御回路
、6・・・トランジスタ、2,4.7・・・抵抗、16
・・・検出回路、17,18,19,20・・・抵抗、
21・・演算増幅器。 なお、図中同一符号は同−又は相当部分を示す。
1st rI! J is the contact current IIJIII according to this invention
A circuit diagram showing one embodiment of the device, FIG. 2 is a flowchart for explaining its operation, FIG. 3 is the same (time chart thereof), FIG. 4 is a circuit diagram of a conventional contact current control device, and FIG. This is a time chart. 1... Contact, 3... Photocoupler, 5... #Control circuit, 6... Transistor, 2, 4.7... Resistor, 16
...detection circuit, 17,18,19,20...resistance,
21...Operation amplifier. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 電源と負荷との間を開閉する接点に流れる電流を制御す
る電流制御装置において、前記接点の接触抵抗を検出し
、この接触抵抗が予め定めた基準値以上になった時出力
信号を送出する検出回路と、この検出回路からの出力信
号により動作され前記接点間に大電流を流す回路手段と
を備えてなる接点の電流制御装置。
In a current control device that controls the current flowing through a contact that opens and closes between a power source and a load, a detection device that detects the contact resistance of the contact and sends an output signal when this contact resistance exceeds a predetermined reference value. 1. A contact current control device comprising: a circuit; and circuit means operated by an output signal from the detection circuit to cause a large current to flow between the contacts.
JP11670389A 1989-05-10 1989-05-10 Current control unit of contact Pending JPH02297818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11670389A JPH02297818A (en) 1989-05-10 1989-05-10 Current control unit of contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11670389A JPH02297818A (en) 1989-05-10 1989-05-10 Current control unit of contact

Publications (1)

Publication Number Publication Date
JPH02297818A true JPH02297818A (en) 1990-12-10

Family

ID=14693743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11670389A Pending JPH02297818A (en) 1989-05-10 1989-05-10 Current control unit of contact

Country Status (1)

Country Link
JP (1) JPH02297818A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696637A (en) * 1992-07-30 1994-04-08 Yazaki Corp Corrosion prevention circuit for switch
JPH09131047A (en) * 1995-10-31 1997-05-16 Fuji Denki Kogyo Kk Dc/dc converter for low electric power
WO2004021382A2 (en) * 2002-08-28 2004-03-11 Teravicta Technologies, Inc. Micro-electromechanical switch performance enhancement
EP1585150A1 (en) 2004-04-05 2005-10-12 Fujitsu Ten Limited Circuit for preventing corrosion of contact
US7362011B2 (en) 2004-04-05 2008-04-22 Fujitsu Ten Limited Apparatus for preventing corrosion of contact
US7410563B2 (en) 2004-04-05 2008-08-12 Fujitsu Ten Limited Method and apparatus for preventing corrosion of contact
JP2011193224A (en) * 2010-03-15 2011-09-29 Mitsubishi Electric Corp Contact resistance recovery device and monitoring device
JP2016218775A (en) * 2015-05-21 2016-12-22 新コスモス電機株式会社 Alarm
CN111122979A (en) * 2018-10-30 2020-05-08 矢崎总业株式会社 Deterioration regeneration system and deterioration regeneration method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696637A (en) * 1992-07-30 1994-04-08 Yazaki Corp Corrosion prevention circuit for switch
JPH09131047A (en) * 1995-10-31 1997-05-16 Fuji Denki Kogyo Kk Dc/dc converter for low electric power
WO2004021382A2 (en) * 2002-08-28 2004-03-11 Teravicta Technologies, Inc. Micro-electromechanical switch performance enhancement
WO2004021382A3 (en) * 2002-08-28 2004-07-01 Teravicta Technologies Inc Micro-electromechanical switch performance enhancement
JP2005536854A (en) * 2002-08-28 2005-12-02 テラビクタ・テクノロジーズ・インコーポレーテッド Enhancing the performance of microelectromechanical switches
EP1585150A1 (en) 2004-04-05 2005-10-12 Fujitsu Ten Limited Circuit for preventing corrosion of contact
US7362011B2 (en) 2004-04-05 2008-04-22 Fujitsu Ten Limited Apparatus for preventing corrosion of contact
US7410563B2 (en) 2004-04-05 2008-08-12 Fujitsu Ten Limited Method and apparatus for preventing corrosion of contact
US7550878B2 (en) 2004-04-05 2009-06-23 Fujitsu Ten Limited Circuit for preventing corrosion of contact
JP2011193224A (en) * 2010-03-15 2011-09-29 Mitsubishi Electric Corp Contact resistance recovery device and monitoring device
JP2016218775A (en) * 2015-05-21 2016-12-22 新コスモス電機株式会社 Alarm
CN111122979A (en) * 2018-10-30 2020-05-08 矢崎总业株式会社 Deterioration regeneration system and deterioration regeneration method

Similar Documents

Publication Publication Date Title
KR100299014B1 (en) Ground circuit breaker with broadband noise immunity
JPH08140260A (en) Power supply
JPH02297818A (en) Current control unit of contact
EP0666630B1 (en) Overcurrent preventing circuit
US4467391A (en) Monitor for an electrically-controlled system
JPH04181176A (en) Detecting circuit for disconnection
US6111736A (en) Static relay with condition detecting
JP2000032650A (en) Load controlling method and its apparatus
JP2002044856A (en) Leakage current relay
JP3849298B2 (en) Voltage type inverter
JPH09112912A (en) Thermistor circuit monitoring apparatus
JP4716412B2 (en) DC power supply overcurrent protection circuit
US8569915B1 (en) High speed contact capable of detecting, indicating and preventing maloperation due to internal failure
JP2003309437A (en) Circuit protection apparatus for audio amplifier, and audio amplifier
JPH10127062A (en) Protective circuit for inverter for electric vehicle
JP2002204566A (en) Rush current preventing circuit for direct-current power circuit
JP2003111417A (en) Inrush current preventing circuit
JP3742548B2 (en) Headlamp load line short detection device
JPH0226223A (en) Rush current preventing circuit
CN114730674A (en) Detecting a switching state of an electromechanical switching element
JPH0537632Y2 (en)
JP2017228474A (en) Relay control device and electric leakage safety device
JPH0139381Y2 (en)
JPH0564436A (en) High-voltage power supply equipment
JPH01170365A (en) Rush current preventing circuit