JPH02296703A - Production of oxygen-enriched air - Google Patents

Production of oxygen-enriched air

Info

Publication number
JPH02296703A
JPH02296703A JP1116152A JP11615289A JPH02296703A JP H02296703 A JPH02296703 A JP H02296703A JP 1116152 A JP1116152 A JP 1116152A JP 11615289 A JP11615289 A JP 11615289A JP H02296703 A JPH02296703 A JP H02296703A
Authority
JP
Japan
Prior art keywords
chamber
liq
oxygen
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1116152A
Other languages
Japanese (ja)
Inventor
Osamu Hanabusa
英 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1116152A priority Critical patent/JPH02296703A/en
Publication of JPH02296703A publication Critical patent/JPH02296703A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0285Physical processing only by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain O2-enriched air with a high O2 separation ability at a low cost without need for the exchange of the adsorbent or gas separation membrane unlike the conventional method by circulating a liq. capable of selectively absorbing O2 in air between a pressure chamber and a reduced-pressure chamber, separating and recovering the O2 dissolved and absorbed by the pressurization of air. CONSTITUTION:Air is pressurized 3 and supplied to the pressure chamber 1 charged with a liq. 2 having O2 absorptivity from its bottom, and diffused into the liq. 2 as fine bubbles. Meantime, a liq. 21 in the reduced-pressure chamber 20 is sent to the chamber 1 from a liq. suction port 25 at the bottom of the chamber 20. When the pressure in the chamber 1 is increased, the gaseous O2 in the fine bubbles is vigorously absorbed by the liq. 2, and the gas layer at the upper part in the chamber 1 is filled with air having a low content of O2. As the liq. 2 is continuously supplied into the chamber 1, the pressure in the chamber 1 is further increased, and the liq. 2 having absorbed and dissolved O2 is discharged 19 into the chamber 20. The pressure of the liq. contg. a large amt. of gaseous O2 is decreased in the chamber 20, and gaseous O2 is separated from the liq. 2 and discharged. Meanwhile, the greater part of O2 is liberated from the liq. 21, and the liq. 21 is again sent into the chamber 1, and a closed loop of the circulating liq. is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素富化空気の製造方法糞#奔者壇に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing oxygen-enriched air.

〔従来の技術〕[Conventional technology]

従来、多孔質膜状体の表面に気体分離性能の薄膜、例え
ばポリシロキサン、ポリカーボネート、ポリビニルピリ
ジン、ポリエステ!、などをキャスト法、水面展開法、
プラズマ重合法或いはコーティング法などによシ成形さ
れたものは気体分離膜として酸素富化空気製造用に適用
されている。
Conventionally, a thin film with gas separation performance has been applied to the surface of a porous membrane, such as polysiloxane, polycarbonate, polyvinylpyridine, polyester! , cast method, water surface development method, etc.
Those formed by plasma polymerization or coating methods are used as gas separation membranes for producing oxygen-enriched air.

このような気体分離膜の性能は形成された薄膜の性状に
大きく支配され、基体の多孔質膜状体の性状にも影響さ
れる。また多孔質膜状体への薄膜の付着耐久性を向上さ
せるため薄膜形成に際して種々の雰囲気でプラズマエツ
チング等が試みられるなど、薄膜性状の品質均一化には
厳密なテクニックが必要となる。
The performance of such a gas separation membrane is largely controlled by the properties of the formed thin film, and is also influenced by the properties of the porous membrane-like body of the substrate. Furthermore, in order to improve the durability of thin film adhesion to porous membranes, strict techniques are required to make the quality of the thin film uniform, such as plasma etching in various atmospheres when forming the thin film.

また適用に際しては、ガヌ圧に比例して気体分離能も向
上するが、これら気体分離膜自体の耐圧性には限界があ
るため、処理ガス量に比し気体分離膜面積が大きなもの
となシ、シかも耐圧性を補強する必要性からモジュー〜
が複雑化し、コスト高の原因となっている。また、この
種の気体分離膜モジュールは空気中各種夾雑物により汚
染した場合、膜面の洗浄等が殆んど不可能なためモジュ
ール自体を交換する必要性が生ずる。
In addition, when applied, gas separation performance improves in proportion to Ganu pressure, but since the pressure resistance of these gas separation membranes themselves is limited, the area of the gas separation membrane is large compared to the amount of gas to be processed. Due to the need to reinforce pressure resistance, the module
has become more complex, leading to higher costs. In addition, when this type of gas separation membrane module becomes contaminated with various contaminants in the air, it is almost impossible to clean the membrane surface, making it necessary to replace the module itself.

他の方式としてモレキュツーシーブなどの固体吸着剤に
酸素を選択吸着させ、熱又は圧の変化を利用して吸着酸
素を脱着・回収する方式も従来よシ利用され、2個の吸
着剤充填筒で吸着作用と脱着作用を交互に行わせる方式
が一般的に採られている。しかしながら、この方式にお
いても吸着剤の交換は装置を停止しなければならず、し
かも電力消Qjitが多く酸素製造コストが高いという
問題点をもっている。
Another method has been used in the past, in which oxygen is selectively adsorbed on a solid adsorbent such as a molecule sieve, and the adsorbed oxygen is desorbed and recovered using changes in heat or pressure. Generally, a method is adopted in which the cylinder performs adsorption and desorption functions alternately. However, even in this method, the apparatus must be stopped to replace the adsorbent, and there are also problems in that the power consumption is large and the oxygen production cost is high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、上述従来技術におけるよ
うな不具合がない酸素富化空気を製造できる方法を提供
しようとするものである。
In view of the above-mentioned state of the art, the present invention seeks to provide a method for producing oxygen-enriched air that does not have the disadvantages encountered in the prior art described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は空気中酸素を選択的に吸収する液体を用い、該
液体を加圧室と減圧室の閉回路で循還させ、空気加圧に
よシ溶解吸収させた酸素を減圧室で分離回収することを
特徴とする酸素富化空気の製造方法である。
The present invention uses a liquid that selectively absorbs oxygen in the air, circulates the liquid in a closed circuit of a pressurizing chamber and a depressurizing chamber, and separates and recovers the dissolved and absorbed oxygen in the depressurizing chamber. This is a method for producing oxygen-enriched air.

〔作用〕[Effect]

酸素を選択的に吸着し、又可逆的に吸脱着する液体、例
えばノリコンオイy等にその性質を認めることができる
が、より選択性を向上させるためにはコバ〜) (n)
−ヒスシック塩基錯体を含むポリシロキサン重合体、あ
るいはコバ〜) (n) −N、N’−ビス(サリチリ
デン)エチレンジアミン錯体、コバμ) (I) −N
、N’−ビス(サリチリデンイミノ)ジーn−プロピμ
アミン錯体を含むポリシロキサン重合体等がある。この
ような特性を有する液体を空気加圧室と減圧室との閉口
炉において循還させることによυ、■ 薄膜形成プロセ
スに比し、液体材料の合成が行われ−ば、そのま\吸着
剤として適用できる。
This property can be seen in liquids that selectively adsorb oxygen and reversibly adsorb and desorb oxygen, such as Norikon oil, but in order to further improve the selectivity, it is necessary to
-Polysiloxane polymer containing a hissic base complex, or top ~) (n) -N,N'-bis(salicylidene)ethylenediamine complex, top μ) (I) -N
, N'-bis(salicylideneimino)di-n-propyμ
Examples include polysiloxane polymers containing amine complexes. By circulating a liquid with such characteristics in a closed furnace between an air pressurization chamber and a depressurization chamber, υ, Can be applied as an agent.

■ 液体吸着剤の汚染が進んでも膜汚染のような機能低
下は起り難い。
■ Even if contamination of the liquid adsorbent progresses, functional deterioration such as membrane contamination is unlikely to occur.

■ 液体吸着剤の交換は、全量を一時に実施すれば装置
の停止が必要となるが、少量ずつ抜き取りながら新液追
加を行うことも容易であシ、装置停止なしに液更新も可
能となる。
■ Replacing the liquid adsorbent requires stopping the equipment if the entire amount is replaced at once, but it is also easy to add new liquid while removing it little by little, making it possible to replace the liquid without stopping the equipment. .

■ 気体分M膜方式では膜表面の酸素通過量、モレキュ
ツーシープでは固体の総表面積の酸素吸着量等二次元的
な酸素分離能として評価されるが、本発明による方法で
は、液体の容積に吸着・溶解される三次元的酸素分離能
を示すため格段に分離能は高くなシ、設備上も小型化す
ることが可能となシ、製造酸素量当りのコストも低いも
のとなる。
■ In the gas fraction M membrane method, the oxygen separation capacity is evaluated in two-dimensional terms, such as the amount of oxygen passing through the membrane surface, and in the case of Molecu2Seep, the amount of oxygen adsorbed by the total surface area of the solid. Since it exhibits a three-dimensional separation ability for oxygen that is adsorbed and dissolved in the oxygen, the separation ability is extremely high, the equipment can be downsized, and the cost per amount of oxygen produced is low.

■ 液体への空気溶解量は圧力に比例することはヘンリ
ーの法則として知られているが、成る圧力における飽和
溶解度は液体の種類・組成等により異なる。本発明は一
般空気(酸素約20%、窒素約80%)のうち酸素を選
択的に吸着・溶解する液体を用いるものであり、酸素濃
度80%以上にすることも容易である。
■ It is known as Henry's law that the amount of air dissolved in a liquid is proportional to the pressure, but the saturated solubility at that pressure varies depending on the type and composition of the liquid. The present invention uses a liquid that selectively adsorbs and dissolves oxygen in general air (about 20% oxygen and about 80% nitrogen), and it is easy to increase the oxygen concentration to 80% or more.

又、多段処理等によ9100%酸素とすることも可能で
ある。
Further, it is also possible to obtain 9100% oxygen by multi-stage treatment or the like.

■ 加圧液中で、供給気体の気泡が微細な程、液への溶
解は急速に進む。気泡径が100μ以下であれば瞬時に
溶解する。気液混合体における気泡浮上を妨げるために
加圧室に攪拌させることも有効である。
■ In a pressurized liquid, the finer the gas bubbles in the supplied gas, the more rapidly it will dissolve into the liquid. If the bubble diameter is 100μ or less, it will dissolve instantly. It is also effective to stir the gas-liquid mixture in a pressurized chamber in order to prevent bubbles from floating up.

気体溶解液体が常圧下又は減圧下に静置されるときは分
離発泡しないが、衝撃または擾乱を与えると殆んど瞬時
に発泡分離するため、減圧室に邪摩板などを設置するこ
とも有効である。
When a gas-dissolved liquid is left standing under normal pressure or reduced pressure, it does not separate and foam, but when it is subjected to impact or disturbance, it foams and separates almost instantly, so it is also effective to install a jam plate, etc. in the vacuum chamber. It is.

〔実施例〕〔Example〕

本発明の一実施例を図面によって説明する。 An embodiment of the present invention will be described with reference to the drawings.

図において、1は加圧室であり、酸素吸収態を有する液
体2が装填される。該加圧室の底部からコンプレッサ3
より供給される空気がデイフユーザ4で液体2中に微小
気泡として放出される。供給空気は大気を吸入し、予め
フイμり5で空気中夾雑物を除去し、除湿器6で水分を
取シ除いてお(。一方、減圧室20の液体21は、減圧
室の底部の液吸入口25から液送ポンプ8によシ逆止弁
9を径て散液口10より加圧室1に送られる。加圧室1
内の圧力が増大し、圧力計11が所定圧を示すときデイ
フユーザ4よシ放出された微細気泡中酸素ガス成分は液
体2に盛んに吸収され、加圧室1内上層の気体層は酸素
濃度の低い空気、即ち、主に窒素ガスとなる。コンプレ
ッサ5からの空気供給と、ポンプ8からの液体供給が連
続的に進行するため、加圧室1内の圧力がさらに増大し
、開弁圧に至るとき、液排出パルプ16は開となるが、
ニードμバμプ17は液位計18の信号により關口変位
する機構にあシ、酸素を吸収・溶解させた液体2は圧送
口14より配管15、パルプ16及びニードμパyプ1
7を径て噴出口19から減圧室20に放出される。
In the figure, 1 is a pressurized chamber, and a liquid 2 having an oxygen absorption state is loaded therein. Compressor 3 from the bottom of the pressurized chamber
The air supplied by the diffuser 4 is released into the liquid 2 as microbubbles. The air is sucked into the supply air, impurities in the air are removed in advance by a filter 5, and moisture is removed by a dehumidifier 6 (on the other hand, the liquid 21 in the decompression chamber 20 is The liquid is sent from the liquid suction port 25 to the liquid feeding pump 8 through the check valve 9 to the pressurizing chamber 1 from the liquid dispersing port 10. Pressurizing chamber 1
When the pressure inside increases and the pressure gauge 11 indicates a predetermined pressure, the oxygen gas component in the fine bubbles released by the diffuser 4 is actively absorbed into the liquid 2, and the upper gas layer inside the pressurizing chamber 1 has an oxygen concentration. It is mainly nitrogen gas. Since the air supply from the compressor 5 and the liquid supply from the pump 8 proceed continuously, the pressure inside the pressurizing chamber 1 further increases and when the valve opening pressure is reached, the liquid discharge pulp 16 opens. ,
The needle μ bubble 17 has a mechanism that is displaced by the signal from the liquid level gauge 18, and the liquid 2 in which oxygen has been absorbed and dissolved is transferred from the pressure feed port 14 to the pipe 15, the pulp 16, and the needle μ pipe 1.
7 and is discharged from the ejection port 19 into the decompression chamber 20.

この場合液体2は酸素ガスを多量溶解しており、殆んど
透明な状態でニードルパルプ17に至るが、当該バルブ
17を通過すれば圧力が弛緩される条件にあるため急激
な発泡を併なって噴出口19から酸素ガスと液体とに分
離した状態で放出される。液体21は酸素の大部分を失
って、再び吸入口25よシ加圧室1に送シ込まれ、液体
の循還閉y−デが形成される。
In this case, the liquid 2 dissolves a large amount of oxygen gas and reaches the needle pulp 17 in an almost transparent state, but when it passes through the valve 17, the pressure is relaxed, so rapid foaming occurs. Oxygen gas and liquid are released from the jet port 19 in a separated state. The liquid 21 loses most of its oxygen and is again pumped into the pressurizing chamber 1 through the suction port 25, forming a closed liquid circulation system.

加圧室1における圧力が開弁圧よりわずかに高値となっ
たとき、リリーフパルプ12が開となるよう調整されて
おり、加圧室1内の酸素濃度の低い空気は放出口13を
径で大気に放流される。
The relief pulp 12 is adjusted to open when the pressure in the pressurization chamber 1 becomes slightly higher than the valve opening pressure, and the air with low oxygen concentration in the pressurization chamber 1 is discharged through the discharge port 13. released into the atmosphere.

一方減圧室20内で分離された気体は主に酸素ガスであ
シ、発泡分離時に生ずる微細液滴を除去するための飛沫
除去機構22を径て、排気口24よυ酸素貯気槽30に
送られる。
On the other hand, the gas separated in the decompression chamber 20 is mainly oxygen gas, and passes through the droplet removal mechanism 22 for removing minute droplets generated during foaming and separation, and then enters the oxygen storage tank 30 through the exhaust port 24. Sent.

液体2と液体21は同一組成液であるが、液体2は酸素
吸収状態にあシ、液体21は酸素脱着(放出)状態にあ
る。これら液体を長期間使用した場合の劣化や汚染が進
行したときは、液体排出パルプ26を開として抜き出し
、液体供給パルプ27よυ新液を送入して液位を調節し
つ一液更新が容易に行いうる。
Liquid 2 and liquid 21 have the same composition, but liquid 2 is in an oxygen absorption state, and liquid 21 is in an oxygen desorption (release) state. When deterioration or contamination progresses when these liquids are used for a long period of time, the liquid discharge pulp 26 is opened and extracted, and new liquid is fed into the liquid supply pulp 27 to adjust the liquid level and renew the liquid. It can be done easily.

なお、図中、7,7I及び7gは逆止弁を示す。In addition, in the figure, 7, 7I and 7g indicate check valves.

〔発明の効果〕〔Effect of the invention〕

本発明によシ従来技術におけるような不具合が解消され
、本発明は■ボイラ等燃焼設備に適用される酸素富化空
気の製造、■病院、航空気等の呼吸用酸素の供給、■鋼
材の切断、溶接用酸素供給、■都市下水、一般産業廃水
の活性汚泥処理用酸素の製造、■高炉、転炉、平炉への
製鉄吹込用酸素の製造等に有利に適用できる。
The present invention eliminates the problems in the prior art, and the present invention can be used in the following applications: ■ Production of oxygen-enriched air applied to combustion equipment such as boilers, ■ Supply of breathing oxygen for hospitals, aviation, etc., and ■ Steel material production. It can be advantageously applied to supplying oxygen for cutting and welding, (1) producing oxygen for activated sludge treatment of urban sewage and general industrial wastewater, (2) producing oxygen for blowing steel into blast furnaces, converters, and open hearths.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を説明するための系統図である。 明 The figure is a system diagram for explaining one embodiment of the present invention. Akira

Claims (1)

【特許請求の範囲】[Claims] 空気中酸素を選択的に吸収する液体を用い、該液体を加
圧室と減圧室の閉回路で循還させ、空気加圧により溶解
吸収させた酸素を減圧室で分離回収することを特徴とす
る酸素富化空気の製造方法。
It is characterized by using a liquid that selectively absorbs oxygen in the air, circulating the liquid in a closed circuit of a pressurizing chamber and a decompression chamber, and separating and recovering the dissolved and absorbed oxygen in the decompression chamber by pressurizing the air. A method for producing oxygen-enriched air.
JP1116152A 1989-05-11 1989-05-11 Production of oxygen-enriched air Pending JPH02296703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116152A JPH02296703A (en) 1989-05-11 1989-05-11 Production of oxygen-enriched air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116152A JPH02296703A (en) 1989-05-11 1989-05-11 Production of oxygen-enriched air

Publications (1)

Publication Number Publication Date
JPH02296703A true JPH02296703A (en) 1990-12-07

Family

ID=14680050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116152A Pending JPH02296703A (en) 1989-05-11 1989-05-11 Production of oxygen-enriched air

Country Status (1)

Country Link
JP (1) JPH02296703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying

Similar Documents

Publication Publication Date Title
US20140061134A1 (en) Water treatment system with carbon regeneration circuit
KR950008351A (en) Single Phase Pressure Circulation Adsorption Systems and Processes
JP3215713B2 (en) Nitrogen gas separation method
WO1997005066A1 (en) Water purification system
KR970062630A (en) Large capacity vacuum pressure circulation adsorption method and system
WO2007037583A1 (en) Apparatus and method for preparing oxygen water
CN106621711B (en) A kind of processing method of the benzene gas containing high concentration
JP2008006332A (en) Method for manufacturing specific-gas-dissolved water, and apparatus and method for circulating specific-gas-dissolved water
JPH06182107A (en) Apparatus for adsorption and reaction
JPH02296703A (en) Production of oxygen-enriched air
Nitsche et al. Separation of organic vapors by means of membranes
KR100814421B1 (en) portable reverse osmosis water purification system
JP2007136341A (en) Concentration method of carbon dioxide and apparatus
AU2019407860A1 (en) Method and apparatus for reverse osmosis water purification
JP3065158B2 (en) Device for adsorption and separation of water and acid in organic solvents
JP2006112488A (en) Concentrating method and storing device of methane derived from sewage sludge
JPH0580248B2 (en)
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JP3181523B2 (en) Sewage purification equipment
JPH0678963A (en) Carbon dioxide gas supplying device
JP2003260306A (en) Oil separating method and apparatus
JPH0699018A (en) Membrane type polar gas separation device
JP2772362B2 (en) Removal device for dissolved carbon dioxide in liquid
Jia et al. Effect of air bubbling on atrazine adsorption in water by powdered activated carbons–competitive adsorption of impurities
JPH11235999A (en) Carbon dioxide separation device