JPH02296381A - Detection circuit for deterioration in semiconductor laser - Google Patents

Detection circuit for deterioration in semiconductor laser

Info

Publication number
JPH02296381A
JPH02296381A JP1116966A JP11696689A JPH02296381A JP H02296381 A JPH02296381 A JP H02296381A JP 1116966 A JP1116966 A JP 1116966A JP 11696689 A JP11696689 A JP 11696689A JP H02296381 A JPH02296381 A JP H02296381A
Authority
JP
Japan
Prior art keywords
output
semiconductor laser
deterioration
amplifier
mark rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1116966A
Other languages
Japanese (ja)
Inventor
Takeshi Sanada
真田 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1116966A priority Critical patent/JPH02296381A/en
Publication of JPH02296381A publication Critical patent/JPH02296381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To prevent the LD deterioration signal from falsely transmitted due to any input signal disconnection by a method wherein a mark rate detection circuit is made to detect the mark rate of input signals. CONSTITUTION:A current voltage converter 51 converts the output photoelectric current of a photodetector element 22 detecting the output from a semiconductor laser (LD) 21 into voltage signals. A mark rate detector 52 detects the mark rate of input signals. An amplifier 53 amplifies the output signals from the current voltage converter 51 and the output signals from the mark rate detector 52. A bias current controller 54 controls the bias current from a semiconductor laser 21. A comparator 55 compares the output from the amplifier 53 with set up value to detect any deterioration in the semiconductor laser 21. Through these procedures, only the deterioration in the LD module can be accurately detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディジタル光通信の光送信器等に利用する半導
体レーザ劣化検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser deterioration detection circuit used in optical transmitters of digital optical communications.

従来の技術 2ヘ−ジ 第2図は従来の半導体レーザ劣化検出回路の構成を示し
ている。第2図において、半導体レーザ(Laser 
Diode−、以下、LDと称す)1は、トランジスタ
2によってバイアス電流Inが供給されるとともにパル
ス駆動電流源3によってパルス電流Ipが供給され、第
3図に示すように光出力Poで発光するようになってい
る。
BACKGROUND ART 2 FIG. 2 shows the configuration of a conventional semiconductor laser deterioration detection circuit. In FIG. 2, a semiconductor laser (Laser
The diode (hereinafter referred to as LD) 1 is supplied with a bias current In by a transistor 2 and a pulse current Ip by a pulse drive current source 3, so that it emits light with an optical output Po as shown in FIG. It has become.

このとき、LDIからモニタ光を受ける受光素子(Ph
oto Diode>以下、PDと称す)4、抵抗5を
含む増幅器6、トランジスタ2によりAutomati
c Power Contro1回路(以下、APC回
路と称す)が構成され、LDIの光出力は平均値P a
v、に保たれるようバイアス電流Inが変化する0 上記LDIが何らかの原因により劣化し、閾値電流値が
増加すると、APC回路によりバイアス電流Inが増加
し、LDIの光出力は平均値Pavに保たれるが、トラ
ンジスタ2の駆動能力の上限値I Bmaxを越えると
、もはやバイアス電流Inを増やすことができなくなり
、従って、LDIの光3 ・\−7 出力Pが減少し、トランジスタ20ベース電位はさらに
上昇する。
At this time, a light receiving element (Ph
(hereinafter referred to as PD) 4, an amplifier 6 including a resistor 5, and a transistor 2.
c Power Control 1 circuit (hereinafter referred to as APC circuit) is configured, and the optical output of the LDI is an average value P a
When the above LDI deteriorates for some reason and the threshold current value increases, the bias current In increases by the APC circuit, and the optical output of the LDI is maintained at the average value Pav. However, when the upper limit value I Bmax of the driving ability of transistor 2 is exceeded, it is no longer possible to increase the bias current In, and therefore, the light output P of the LDI decreases, and the base potential of transistor 20 decreases. It rises further.

ここで、抵抗7.8により設定される電位(たとえば光
出力Pが初期の光出力レベルPoの半分に相当)を越え
ると、抵抗9.1.0を含む比較器11が動作し、LD
Iの光出力異常として、警報器(ALM)12からLo
wレベルのLD劣化信号を出力する。13はトランジス
タ2のエミッタに接続した抵抗である。
Here, when the potential set by the resistor 7.8 (for example, the optical output P corresponds to half the initial optical output level Po) is exceeded, the comparator 11 including the resistor 9.1.0 is activated, and the LD
Lo from alarm (ALM) 12 as an abnormality in the optical output of I.
Outputs a w-level LD deterioration signal. 13 is a resistor connected to the emitter of transistor 2.

このように上記従来のLD劣化検出回路でもLDlが劣
化すると、これを検出し、LD劣化信号を出力すること
ができる。
In this way, when LDl deteriorates, the conventional LD deterioration detection circuit described above can detect this and output an LD deterioration signal.

発明が解決しようとする課題 しかしながら、上記従来の半導体レーザ劣化検出回路で
は、入力信号がなくなった場合や外部から強制的にLD
Iの出力を停止させた場合には、LDモジュール(LD
IとPD4と光ファイバへの結合等が一体となったもの
)そのものは何ら異常はないのに、LD劣化信号を出力
して・し捷うという問題があった。
Problems to be Solved by the Invention However, in the conventional semiconductor laser deterioration detection circuit described above, when the input signal is lost or when the LD is forced from the outside,
When the output of I is stopped, the LD module (LD
There was a problem in that the LD deteriorated signal was output and switched even though there was no abnormality in the device (in which the I, PD4, coupling to the optical fiber, etc. were integrated) itself.

本発明はこのような従来の問題を解決するものであシ、
LDモジー−ルの劣化のみを正確に検出することができ
る優れたLD劣化検出回路を提供することを目的とする
ものである。
The present invention is intended to solve these conventional problems.
It is an object of the present invention to provide an excellent LD deterioration detection circuit that can accurately detect only the deterioration of an LD module.

課題を解決するだめの手段 本発明は上記目的を達成するために、半導体レーザの出
力を検出する受光素子の出力光電流を電圧信号に変換す
る電流電圧変換手段と、入力信号のマーク率を検出する
マーク率検出手段と、前記電流電圧変換手段の出力信号
と前記マーク率検出手段の出力信号を増幅する増幅手段
と、前記増幅手段出力によシ前記半導体レーザのバイア
ス電流を制御するバイアス電流制御手段と、前記増幅手
段出力を設定値と比較判定して前記半導体レーザの劣化
を検出する比較手段を備えたものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides current-voltage conversion means for converting the output photocurrent of a light receiving element that detects the output of a semiconductor laser into a voltage signal, and detects the mark rate of the input signal. mark ratio detection means for amplifying the output signal of the current-voltage conversion means and the output signal of the mark ratio detection means; and bias current control for controlling the bias current of the semiconductor laser based on the output of the amplification means. and comparing means for comparing and determining the output of the amplifying means with a set value to detect deterioration of the semiconductor laser.

作用 本発明は上記のような構成により次のような作用を有す
る。すなわち、入力信号がなくなったとすると、マーク
率検出回路はこれを検出し、光出力が減少しただめにA
PC回路としてバイアス電5へ−7 流を増やそうとして働く分を相殺するように出力するの
で、LDのバイアス点は一定に保たれ、入力信号断によ
るLD劣化信号の誤報を防止することができる。
Effects The present invention has the following effects due to the above structure. In other words, if the input signal disappears, the mark rate detection circuit detects this, and as soon as the optical output decreases,
As a PC circuit, the bias current to 5-7 is output so as to cancel out the amount that works to increase the current, so the bias point of the LD is kept constant, and it is possible to prevent false alarms of LD deterioration signals due to input signal disconnection. .

実施例 第1図は本発明の一実施例を示すものであり、21はL
D、22はLD21の光をモニタ光として受けるPD、
23は入力信号Dataが入力するパルス駆動電流源、
24は増幅器25の非反転入力端子ど出力端子間を接続
する抵抗、26は増幅器25の出力端子と加算増幅器2
9の反転入力端子間を接続する抵抗、27は加算増幅器
29の反転入力端子と増幅器38の出力端子間を接続す
る抵抗、28は加算増幅器29の反転端子と出力端子間
を接続する抵抗、30は加算増幅器29の出力端子と増
幅器32の反転入力端子間を接続する抵抗、31は増幅
器32の反転入力端子と出力端子間に接続した抵抗、3
3はコレクタにLD2]を接続しベースに増幅器32の
出力端子を接続したトランジスタ、34はトランジスタ
33のエミッタに接続した抵抗、35は入力信号Dat
aを平均検波し6ベーン た信号Data’を増幅器38の非反転入力端子に供給
する抵抗、36は増幅器25の非反転入力端子と増幅器
38の非反転入力端子間を接続する抵抗、37は増幅器
38の反転入力端子に第2の参照電圧V r e f 
、を供給する抵抗、39は増幅器380反転入力端子と
出力端子間に接続した抵抗、40.41は第1の参照電
圧Vref1を分圧する分圧抵抗、42は分圧抵抗40
.41の接続点Pと増幅器43の非反転入力端子間を接
続する抵抗、44は増幅器43の非反転入力端子と出力
端子間を接続する抵抗、45は増幅器43の出力端子に
接続した警報器(A L M)である。
Embodiment FIG. 1 shows an embodiment of the present invention, and 21 is L.
D, 22 is a PD that receives the light from LD 21 as monitor light;
23 is a pulse drive current source into which the input signal Data is input;
24 is a resistor connecting the non-inverting input terminal and output terminal of the amplifier 25; 26 is a resistor connecting the output terminal of the amplifier 25 and the summing amplifier 2;
A resistor 27 connects between the inverting input terminal of the summing amplifier 29 and the output terminal of the amplifier 38. A resistor 28 connects the inverting terminal and the output terminal of the summing amplifier 29. 30 3 is a resistor connected between the output terminal of the summing amplifier 29 and the inverting input terminal of the amplifier 32; 31 is a resistor connected between the inverting input terminal and the output terminal of the amplifier 32;
3 is a transistor whose collector is connected to LD2] and whose base is connected to the output terminal of the amplifier 32, 34 is a resistor connected to the emitter of the transistor 33, and 35 is an input signal Dat.
36 is a resistor that connects the non-inverting input terminal of the amplifier 25 and the non-inverting input terminal of the amplifier 38; 37 is an amplifier; A second reference voltage V r e f is applied to the inverting input terminal of No. 38.
, 39 is a resistor connected between the inverting input terminal and output terminal of the amplifier 380, 40.41 is a voltage dividing resistor that divides the first reference voltage Vref1, 42 is a voltage dividing resistor 40
.. 41 is a resistor connected between the connection point P and the non-inverting input terminal of the amplifier 43, 44 is a resistor connecting between the non-inverting input terminal and the output terminal of the amplifier 43, and 45 is an alarm connected to the output terminal of the amplifier 43 ( ALM).

なお、上記増幅器25.29.32の非反転入力端子に
は、それぞれ第1の参照電圧Vrefxが供給されるよ
うになっており、まだ、増幅器32の出力端子と増幅器
43の反転入力端子が直接接続されている。
Note that the first reference voltage Vrefx is supplied to the non-inverting input terminals of the amplifiers 25, 29, and 32, respectively, and the output terminal of the amplifier 32 and the inverting input terminal of the amplifier 43 are still connected directly. It is connected.

そして、抵抗24と増幅器25はPD22の出力光電流
を電圧信号に変換する電流電圧変換手段5】を構成し、
抵抗36.39と増幅器38は入力信号Data’のマ
ーク率を検出するマーク率検出手段52を構成し、抵抗
28と加算増幅器29は電流電圧変換手段51の出7八
−/ 力信号とマーク率検出手段52の出力電流を加算増幅す
る増幅手段53を構成し、抵抗3Jと増幅器32はLD
21のバイアス電流IBを制御するバイアス電流制御手
段54を構成し、抵抗44と増幅器4−3は増幅手段5
3の出力を設定値と比較判定してLD2]の劣化を検出
する比較手段55をそれぞれ構成している。
The resistor 24 and the amplifier 25 constitute a current-voltage conversion means 5 which converts the output photocurrent of the PD 22 into a voltage signal,
The resistors 36 and 39 and the amplifier 38 constitute a mark rate detection means 52 for detecting the mark rate of the input signal Data', and the resistor 28 and the summing amplifier 29 constitute the output signal and the mark rate of the current-voltage converting means 51. The resistor 3J and the amplifier 32 constitute an amplifying means 53 that adds and amplifies the output current of the detecting means 52.
The resistor 44 and the amplifier 4-3 constitute a bias current control means 54 that controls the bias current IB of the amplifier 5.
3 and a set value to detect deterioration of the LD2].

次に上記実施例の動作について説明する。い寸、入力信
号Dataのマーク率が1/2であるとすると、マーク
率検出手段52の入力Data’は参照電圧Vref3
と等しくなり、増幅器38の出力は第1の参照電圧Vr
ef1となり、加算増幅器29の入力に寄与しない。ま
だ、増幅器29.32はそれぞれ反転増幅器なので、増
幅器25の出力の極性は変わらずにトランジスタ33の
ベースを駆動する。
Next, the operation of the above embodiment will be explained. Assuming that the mark rate of the input signal Data is 1/2, the input Data' of the mark rate detection means 52 is the reference voltage Vref3.
, and the output of the amplifier 38 is equal to the first reference voltage Vr
ef1 and does not contribute to the input of the summing amplifier 29. Still, since amplifiers 29 and 32 are each inverting amplifiers, the polarity of the output of amplifier 25 remains unchanged and drives the base of transistor 33.

したがって、LD21、PD22、増幅器25.29.
32、トランジスタ33によって構成されるAPC回路
は、前記第2図で述べた従来例と同様の動作をする。
Therefore, LD21, PD22, amplifiers 25.29.
The APC circuit composed of transistors 32 and 33 operates in the same manner as the conventional example described in FIG.

ここで、入力信号Dataが断となった場合を考えると
、LD21の光出力は減少し、垢1幅器25の出力電位
は上がり、増幅器29の出力電位は下がり、トランジス
タ330ベース電位となる増幅器32の出力が上がろう
とし、LD2]のバイアス電流IBを増やそうとする。
Here, considering the case where the input signal Data is disconnected, the optical output of the LD 21 decreases, the output potential of the amplifier 25 increases, the output potential of the amplifier 29 decreases, and the amplifier becomes the base potential of the transistor 330. 32 is going to rise, and the bias current IB of LD2] is going to be increased.

しかしながら、このとき、マーク率検出手段52の入力
信号D a t a’が下がるので、増幅器38の出力
電位は下がり、その結果として、LD21のバイアス点
は第3図の閾値のところの元通シの点にバイアスされる
ことになる。
However, at this time, the input signal D a ta' of the mark rate detection means 52 decreases, so the output potential of the amplifier 38 decreases, and as a result, the bias point of the LD 21 falls below the original frequency at the threshold value in FIG. will be biased towards the point.

このように、上記実施例によれば、マーク率検出手段5
2により、入力信号Dataのマーク率によらずに、L
D21のバイアス点がLD21の閾値のところにバイア
スされるので、入力信号が断となった場合でも、LD劣
化信号を誤報することなく、トランジスタ33の駆動能
力の上限値Inmaxを越えて光出力が減少した時のみ
、LD劣化と判定出力を出すことができるという利点を
有する。
In this way, according to the above embodiment, the mark rate detection means 5
2, regardless of the mark rate of the input signal Data, L
Since the bias point of D21 is biased to the threshold of LD21, even if the input signal is cut off, the optical output will exceed the upper limit value Inmax of the driving ability of the transistor 33 without falsely reporting an LD deterioration signal. It has the advantage that it is possible to issue an output for determining LD deterioration only when it decreases.

発明の効果 本発明は上記実施例より明らかなように、入力信号のマ
ーク率を検出し、これにより、マーク率9 ・\−7 によらずにLDのバイアス点を一定に保つようにしたも
のであシ、入力信号が断となった場合でもLD劣化信号
を誤報することがなく、LDモジ一ルの劣化を正しく判
断することができるという効果を有する。
Effects of the Invention As is clear from the above embodiments, the present invention detects the mark rate of the input signal and thereby maintains the bias point of the LD constant regardless of the mark rate 9.\-7. Moreover, even if the input signal is cut off, the LD deterioration signal is not erroneously reported, and the deterioration of the LD module can be correctly determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体レーザ劣化検
出回路の回路図、第2図は従来の半導体レーザ劣化検出
回路の回路図、第3図は半導体レーザの電流−光出力特
性図である。 21・半導体レーザ(LD) 、22−受光素子(PD
)、51・・電流電圧変換手段、52  マーク率検出
手段、53・・増幅手段、54  バイアス電流制御手
段、55  比較手段。
FIG. 1 is a circuit diagram of a semiconductor laser deterioration detection circuit according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a conventional semiconductor laser deterioration detection circuit, and FIG. 3 is a current-optical output characteristic diagram of a semiconductor laser. . 21-Semiconductor laser (LD), 22-Photodetector (PD)
), 51... Current-voltage conversion means, 52 Mark rate detection means, 53... Amplification means, 54 Bias current control means, 55 Comparison means.

Claims (1)

【特許請求の範囲】[Claims] 光源とする半導体レーザと、前記半導体レーザの出力を
検出する受光素子と、前記受光素子の出力光電流を電圧
信号に変換する電流電圧変換手段と、入力信号のマーク
率を検出するマーク率検出手段と、前記電流電圧変換手
段の出力信号と前記マーク率検出手段の出力信号を増幅
する増幅手段と、前記増幅手段出力により前記半導体レ
ーザのバイアス電流を制御するバイアス電流制御手段と
、前記増幅手段出力を設定値と比較判定して前記半導体
レーザの劣化を検出する比較手段と、を備えた半導体レ
ーザ劣化検出回路。
A semiconductor laser as a light source, a light receiving element for detecting the output of the semiconductor laser, a current-voltage conversion means for converting the output photocurrent of the light receiving element into a voltage signal, and a mark rate detection means for detecting the mark rate of the input signal. an amplification means for amplifying the output signal of the current-voltage conversion means and an output signal of the mark rate detection means; bias current control means for controlling the bias current of the semiconductor laser by the output of the amplification means; and an output of the amplification means. A semiconductor laser deterioration detection circuit, comprising: comparison means for comparing and determining the deterioration of the semiconductor laser with a set value.
JP1116966A 1989-05-10 1989-05-10 Detection circuit for deterioration in semiconductor laser Pending JPH02296381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116966A JPH02296381A (en) 1989-05-10 1989-05-10 Detection circuit for deterioration in semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116966A JPH02296381A (en) 1989-05-10 1989-05-10 Detection circuit for deterioration in semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02296381A true JPH02296381A (en) 1990-12-06

Family

ID=14700159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116966A Pending JPH02296381A (en) 1989-05-10 1989-05-10 Detection circuit for deterioration in semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02296381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177836A (en) * 1992-12-09 1994-06-24 Nec Corp Optical transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177836A (en) * 1992-12-09 1994-06-24 Nec Corp Optical transmitter

Similar Documents

Publication Publication Date Title
US6292497B1 (en) Laser diode driving method and circuit
JPH06132894A (en) Optical transmitter
US20020093714A1 (en) Optical transmitter and optical transmitting apparatus using the same
EP0930678B1 (en) Optical transmitter
US7539423B2 (en) Loss of signal detection and programmable behavior after error detection
US20030095315A1 (en) Apparatus for detecting cutoff of optical signal, optical receiver, optical transmitter, and method of detecting cutoff of optical signal
JPH02296381A (en) Detection circuit for deterioration in semiconductor laser
JPS6234169B2 (en)
KR100545589B1 (en) Apparatus for compensating charateristics of laser diode and optical transmitter comprising it
KR20200110986A (en) Controller of optical transmitter
US6094143A (en) Light obstruction type smoke sensor
JPS61224385A (en) Semiconductor laser drive circuit
JP2773447B2 (en) Laser diode output control circuit
JPS591019B2 (en) Optical communication method
JPS60140939A (en) Optical receiver
JP2545533Y2 (en) Laser diode control circuit
JPH04150325A (en) Alarm circuit
JPH03179789A (en) Alarm circuit
JPH09284220A (en) Light receiving device and optical signal processor
JPH07170234A (en) Optical transmission module
JPS626755Y2 (en)
KR100304794B1 (en) Apparatus for controlling optical power
KR900001589B1 (en) Bias circuit of avalanche photo diode for optical communication
JP2015076530A (en) Optical transmission/reception module
JPH02193426A (en) Sending-out method for light output decrease alarm