JPH02296309A - Superconductive transformer - Google Patents

Superconductive transformer

Info

Publication number
JPH02296309A
JPH02296309A JP11602089A JP11602089A JPH02296309A JP H02296309 A JPH02296309 A JP H02296309A JP 11602089 A JP11602089 A JP 11602089A JP 11602089 A JP11602089 A JP 11602089A JP H02296309 A JPH02296309 A JP H02296309A
Authority
JP
Japan
Prior art keywords
heat insulating
iron core
insulating vessel
tank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11602089A
Other languages
Japanese (ja)
Inventor
Tsuneji Teranishi
常治 寺西
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11602089A priority Critical patent/JPH02296309A/en
Publication of JPH02296309A publication Critical patent/JPH02296309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To obtain a superconductive transformer which is high in reliability from the viewpoint of accident prevention, light, and also excellent in insulating capacity by filling refrigerant such as liquid nitrogen, etc., in a heat insulating vessel so as to cool winding, and filling gas at normal temperature such as nitrogen gas, etc., in a tank outside the heat insulating vessel, and for cooling of an iron core, performing it with a cooling system in other line such as a cooling panel inserted in the iron core. CONSTITUTION:The wall face of a heat insulating vessel 4 is constituted of double vessels 41 and 42 of FRP, and a conductive layer 44 made by metallic deposition, etc., is provided at the face on the side of a vacuum layer, and this conductive layer 44 is connected to grounding potential. And high and low voltage windings 2 and 3 constituted of oxide superconductors are stored in the heat insulating vessel 4, and a pressure release valve 12, which operates at internal pressure rise in an accident, is attached to the top of the heat insulating vessel 4. Furthermore, gas 8 such as nitrogen gas, etc., is charged in the air outside the heat insulating vessel 4 and inside a transformer tank 7, and a cooling panel 9 is interposed between iron core pulling-out plate layers inside the iron core 1. Hereby, enlargement of an accident inside the winding can be suppressed to the minimum, and reliability can be elevated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業−にの利用分野) 本発明は超電導導体を利用した超電導変圧器に関する。[Detailed description of the invention] [Purpose of the invention] (Field of industrial use) The present invention relates to a superconducting transformer using a superconducting conductor.

(従来の技術) 超電導体の電力機器への応用に関しては比較的古くから
検討されており、最近では、交流用超電導線の開発と相
俟って、変圧器など交流電気機器への応用研究も進んで
いる。しかし、実用化には様々な技術的問題がある。
(Conventional technology) The application of superconductors to power equipment has been studied for a relatively long time, and recently, along with the development of AC superconducting wires, research into the application of superconductors to AC electrical equipment such as transformers has also begun. It's progressing. However, there are various technical problems in putting it into practical use.

これは、従来のNbTiやN、 b 3 S nのよう
な液体ヘリウムによる冷却を前提とした超電導制料を用
いた機器か極低温での冷凍という極限技術を必要とする
ことが、経済性、信頼性の面で実用化の妨げとなってい
たことが大きな要因の一つである。 ところが、最近酸
化物系高温超電導導体開発か急速に進み、YBa2Cu
307−xなど液体窒素温度以上で電気抵抗零、完全反
磁性という超電導体としての特性を示す物質の発見が各
所で報告されている。このような高温超電導材を利用し
た場合、液体窒素を冷媒として使うことができるので、
冷媒自身のコスト低減は勿論、冷凍技術か格段に容易に
なり、経済性のみならず、信頼性の高い機器が得られる
ことになり、電力機器への応用も急速に進むことが期待
される。
This requires equipment using conventional superconducting materials such as NbTi, N, and b3Sn, which are premised on cooling with liquid helium, or the extreme technology of freezing at extremely low temperatures. One of the major factors was that reliability was an obstacle to practical application. However, recently, the development of oxide-based high-temperature superconductors has progressed rapidly, and YBa2Cu
The discovery of materials such as 307-x that exhibit the characteristics of superconductors, such as zero electrical resistance and complete diamagnetic properties above liquid nitrogen temperature, has been reported in various places. When such high-temperature superconducting materials are used, liquid nitrogen can be used as a refrigerant, so
Not only will the cost of the refrigerant itself be reduced, but refrigeration technology will become much easier, making it possible to obtain equipment that is not only economical but also highly reliable, and it is expected that its application to power equipment will rapidly advance.

超電導導体を変圧器に応用した場合、特に巻線の損失が
無くなるため非常に効率の良い変圧器が得られる。
When superconducting conductors are applied to transformers, very efficient transformers can be obtained, especially since winding losses are eliminated.

第3図に従来の超電導変圧器の概略図を示す。FIG. 3 shows a schematic diagram of a conventional superconducting transformer.

第3図において、1は鉄心でありこの鉄心1に同心的に
巻回された高圧巻線2と低圧巻線3は断熱容器4内に収
納されている。断熱容器4内には液体窒素または液体ヘ
リウムなどの冷媒5が封入され、断熱容器4外部のタン
ク7内には前記鉄心1、巻線2,3より成る機器本体が
収納されると共に絶縁油6か満たされている。そして、
巻線導体は断熱容器4内の冷媒5によって超電導状態が
保たれる。断熱容器4外の絶縁油6は常温空間にあって
鉄心1からの発熱を外部に取出す役目と、巻線2.3と
鉄心1やタンク7などの接地物との間の絶縁の役目も果
たしている。
In FIG. 3, reference numeral 1 denotes an iron core, and a high voltage winding 2 and a low voltage winding 3 concentrically wound around the iron core 1 are housed in a heat insulating container 4. A refrigerant 5 such as liquid nitrogen or liquid helium is sealed in the heat insulating container 4, and a device body consisting of the iron core 1 and the windings 2 and 3 is housed in a tank 7 outside the heat insulating container 4, as well as insulating oil 6. Or fulfilled. and,
The winding conductor is maintained in a superconducting state by the coolant 5 in the heat insulating container 4. The insulating oil 6 outside the heat insulating container 4 is in a room temperature space and plays the role of extracting the heat generated from the iron core 1 to the outside and also the role of insulating between the windings 2.3 and grounded objects such as the iron core 1 and the tank 7. There is.

巻線2,3のみを断熱容器4に収納し鉄心1を常温空間
に置くのは、鉄心1も含めて液体窒素や液体ヘリウムな
どの冷媒5中に浸して鉄心1も冷媒5で冷却すると、冷
凍機動力に多くの電力を要し、超電導変圧器の低損失化
のメリットを損なうためである。これは冷凍機が低温空
間での発熱を冷却するのに當温に換算して、液体窒素温
度では約10倍、液体ヘリウム温度では約500倍の動
力を要することによる。しかも、断熱容器4外を絶縁油
6で満たせば、巻線2,3と鉄心1やタンク7などの接
地物との間の絶縁も良好な状態に保たれ、断熱容器4は
絶縁物であっても構わない。
Storing only the windings 2 and 3 in a heat insulating container 4 and placing the iron core 1 in a room temperature space is possible by immersing the iron core 1 and the like in a refrigerant 5 such as liquid nitrogen or liquid helium and cooling the iron core 1 with the refrigerant 5. This is because a large amount of electric power is required to power the refrigerator, and the advantage of low loss of the superconducting transformer is lost. This is because the refrigerator requires about 10 times more power at liquid nitrogen temperature and about 500 times more power at liquid helium temperature in terms of temperature in order to cool down the heat generated in a low-temperature space. Furthermore, by filling the outside of the insulation container 4 with insulating oil 6, the insulation between the windings 2 and 3 and grounded objects such as the iron core 1 and the tank 7 is maintained in a good condition, and the insulation container 4 is not an insulator. I don't mind.

(発明が解決しようとする課題) しかし、このような従来の超電導変圧器には次のような
問題点がある。すなわち、超電導導体が何らかの原因で
クエンチしたり、巻線内部で絶縁破壊事故が生じたりし
た場合導体の発熱や絶縁破壊によって生じるアークによ
って多大のエネルギが断熱容器4内で消費され、冷媒5
の瞬間的蒸発によって断熱容器4内の圧力が上昇し、最
悪の場合、断熱容器4の破損、更には絶縁油6への着火
による変圧器の火災などの重大な災害が想定され、この
ような事故に対する対策に万全を期する必要があった。
(Problems to be Solved by the Invention) However, such conventional superconducting transformers have the following problems. In other words, if the superconducting conductor quenches for some reason or a dielectric breakdown accident occurs inside the winding, a large amount of energy is consumed in the heat insulating container 4 due to the arc generated by heat generation and dielectric breakdown of the conductor, and the refrigerant 5
The instantaneous evaporation of the oil increases the pressure inside the insulating container 4, and in the worst case, serious disasters such as damage to the insulating container 4 and even a fire in the transformer due to ignition of the insulating oil 6 are expected. It was necessary to take all possible precautions against accidents.

本発明は、このような課題を解決するためになされたも
のであり、巻線内部の事故の拡大を最小限に抑え、信頼
性を高めるとともに、冷却効率の高い超電導変圧器を得
ることを目的とする。
The present invention was made to solve these problems, and aims to minimize the spread of accidents inside the windings, improve reliability, and obtain a superconducting transformer with high cooling efficiency. shall be.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の課題を解決するため、本発明においては、巻線を
収納する断熱容器の壁面内部に導電層を設け、この導電
層を接地電位に接続し、断熱容器内には液体窒素などの
冷媒を封入し、かつ断熱容器には放圧弁を設ける。そし
て、断熱容器外の変圧器タンクには窒素ガスを封入し、
鉄心内に挿入した冷却パネルによって鉄心の冷却を行う
ようにする。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, a conductive layer is provided inside the wall surface of the heat insulating container for storing the winding, this conductive layer is connected to ground potential, and the heat insulating container is A refrigerant such as liquid nitrogen is sealed inside, and the insulated container is equipped with a pressure relief valve. Then, the transformer tank outside the insulation container is filled with nitrogen gas.
The core is cooled by a cooling panel inserted into the core.

(作 用) このような構成の超電導変圧器においては、巻線内部の
事故によって液体窒素が急激に蒸発し、断熱容器内の圧
力か上昇しても、放圧弁から液体窒素かタンク内に放出
されタンクは気体で満たされているため圧力上昇がこの
空間で吸収され、タンクの爆発には至らない。また、絶
縁油を使用していないので、火災などの重大災害に至る
こともない。
(Function) In a superconducting transformer with such a configuration, even if liquid nitrogen rapidly evaporates due to an accident inside the windings and the pressure inside the insulated container increases, liquid nitrogen will not be released from the pressure relief valve into the tank. Since the tank is filled with gas, the pressure increase is absorbed by this space and does not cause the tank to explode. Furthermore, since no insulating oil is used, there is no risk of serious disasters such as fire.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、従来と同一部分は同一記号で示し、そ
の説明は省略する。第1図において、酸化物超電導体で
構成された高低圧巻線2,3か断熱容器4内に収納され
る。巻線導体の交流損失によって発生する熱は液体窒素
5@の冷媒の蒸発潜熱によって奪われ、気化した窒素は
断熱容器4−に部からタンク7外に導かれ、窒素液化機
などで構成された冷凍装置11によって再びlfk化さ
れ、断熱容器4下部から巻線内に送り込まれる。なお、
断熱容器4の上部には、事故時の内部圧力上昇のときに
動作する放圧弁12が取付けられる。更に、断熱容器4
外の変圧器タンク7内部の空気には窒素ガスなどの気体
8が封入される。また、鉄心1内には冷却パネル9が鉄
心抜板層間に挟み込まれ、その冷却パネル9内には、冷
却器10で冷却されたフロリナートなどの冷媒が送られ
ている。
In FIG. 1, the same parts as the conventional one are indicated by the same symbols, and the explanation thereof will be omitted. In FIG. 1, high and low voltage windings 2 and 3 made of oxide superconductors are housed in a heat insulating container 4. The heat generated by AC loss in the winding conductor is taken away by the latent heat of vaporization of the refrigerant of liquid nitrogen 5, and the vaporized nitrogen is led from the insulated container 4 to the outside of the tank 7, which is made up of a nitrogen liquefier, etc. It is converted into lfk again by the freezing device 11 and fed into the winding from the lower part of the heat insulating container 4. In addition,
A pressure relief valve 12 is attached to the top of the heat insulating container 4, which operates when the internal pressure increases in the event of an accident. Furthermore, a heat insulating container 4
The air inside the outer transformer tank 7 is filled with a gas 8 such as nitrogen gas. A cooling panel 9 is sandwiched between core punched layers within the core 1, and a refrigerant such as Fluorinert cooled by a cooler 10 is fed into the cooling panel 9.

断熱容器4の壁面は、第2図に構造を示すように、FR
Pの二重容器41.、42で構成され、二重の壁の間は
真空が保たれるとともに、スーパーインシュレーション
と呼ばれるアルミニューム蒸着されたプラスチックフィ
ルムを重ねて形成した断熱材43が挿入され、更に、断
熱容器の内側の壁を構成するFRP壁の真空層側の面に
は金属蒸着などにより形成された導電層44が設けられ
、この導電層44は接地電位に接続される。
The wall surface of the heat insulating container 4 is FR
P double container 41. , 42, a vacuum is maintained between the double walls, and a heat insulating material 43 formed by stacking aluminum-deposited plastic films called super insulation is inserted, and the inside of the heat insulating container is A conductive layer 44 formed by metal vapor deposition or the like is provided on the surface of the FRP wall constituting the wall on the vacuum layer side, and this conductive layer 44 is connected to a ground potential.

このように構成された本実施例においては、次のような
作用効果が生じる。
In this embodiment configured in this way, the following effects occur.

(1)巻線2,3などの高電圧部分は、接地電位に接続
された断熱容器4の導電層44に囲まれ、この間の絶縁
は液体窒素5によって保たれるので、断熱容器4とタン
ク7との間の空間には電界が加わらず、大気圧の窒素ガ
ス8を満たしておいても絶縁−にの支障がなく、絶縁油
を使用する必要がない。なお、液体窒素5の絶縁強度は
絶縁油の約14倍あるので巻線内の絶縁は良好に保たれ
る。
(1) The high voltage parts such as the windings 2 and 3 are surrounded by the conductive layer 44 of the heat insulating container 4 connected to ground potential, and the insulation between them is maintained by liquid nitrogen 5, so the high voltage parts such as the windings 2 and 3 are surrounded by the conductive layer 44 of the heat insulating container 4, which is connected to the ground potential. 7, no electric field is applied to the space, and even if the space is filled with nitrogen gas 8 at atmospheric pressure, there is no problem with insulation, and there is no need to use insulating oil. Note that since the dielectric strength of liquid nitrogen 5 is about 14 times that of insulating oil, the insulation within the winding can be maintained well.

(2)v、心1は冷却パネル9によって冷却されるので
、鉄心1の冷却という意味でも絶縁油を必要としない。
(2) Since the core 1 is cooled by the cooling panel 9, no insulating oil is required to cool the core 1.

(3)断熱容器4内で液体窒素5の急激な蒸発かあり、
容器内の圧力が」1昇した場合は断熱容器4に取付けた
放圧弁12が動作し、液体窒素や窒素ガスがタンク7内
に放出され、タンク7内の窒素ガスの空気の圧力上昇に
よって蒸発窒素ガスが吸収されるのでタンク7内の圧力
上昇はゆるやかになり、タンク7に放圧装置を設けてお
けばタンク7内体の爆発に至る前に放圧することができ
る。この際、タンク7内に放出された窒素ガスは別の配
管系統によって冷却装置11の液化機に導いてやれば消
費することなく液体窒素として再生できる。
(3) There is rapid evaporation of liquid nitrogen 5 in the heat insulating container 4,
When the pressure inside the container rises by 1, the pressure relief valve 12 attached to the insulated container 4 operates, and liquid nitrogen or nitrogen gas is released into the tank 7, causing the nitrogen gas in the tank 7 to evaporate due to the increased air pressure. Since the nitrogen gas is absorbed, the pressure increase in the tank 7 becomes gradual, and if the tank 7 is equipped with a pressure relief device, the pressure can be relieved before the interior of the tank 7 explodes. At this time, the nitrogen gas released into the tank 7 can be regenerated as liquid nitrogen without being consumed if it is guided to the liquefier of the cooling device 11 through another piping system.

(4)断熱容器4外に気体を用いるので、絶縁油を用い
た場合に比べ変圧器か軽量になる。
(4) Since gas is used outside the heat insulating container 4, the transformer is lighter than when insulating oil is used.

(5)絶縁油を使用する必要がないので、万一の事故に
際しても火災などの重大災害に至ることがない。
(5) Since there is no need to use insulating oil, even in the unlikely event of an accident, it will not lead to a serious disaster such as a fire.

また鉄心の冷却には、鉄心内にヒートパイプを挿入して
おく方法もある。
Another method for cooling the iron core is to insert a heat pipe inside the iron core.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、断熱容器外に窒素
ガスなどの気体を用い、鉄心の冷却を別系統にすること
によって、防災」二信頼性か高くかつ、軽量で絶縁性能
も優れた超電導変圧器を得ることができる。
As explained above, according to the present invention, by using a gas such as nitrogen gas outside the insulating container and using a separate cooling system for the core, it is possible to achieve high reliability, light weight, and excellent insulation performance for disaster prevention. A superconducting transformer can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す超電導変圧器の断面
図、第2図は第1図の変圧器に用いる断熱容器の壁の一
部拡大図、第3図は従来の超電導変圧器の断面図である
。 1・・・鉄心      2・・・高圧巻線3・・・低
圧巻線    4・・・断熱容器5・・・液体窒素  
  6・・・絶縁油7・・・タンク     8・・・
窒素ガス9・・・冷却パネル   10・・冷却器11
・・・冷凍機     12・・・放圧弁41、42・
・・FRP容器 43・断熱材 44・・導電層 代理人 弁理士 則 近 憲 佑 同 第子丸 健
Fig. 1 is a cross-sectional view of a superconducting transformer showing an embodiment of the present invention, Fig. 2 is an enlarged view of a portion of the wall of an insulating container used in the transformer of Fig. 1, and Fig. 3 is a conventional superconducting transformer. It is a sectional view of a container. 1... Iron core 2... High voltage winding 3... Low voltage winding 4... Heat insulating container 5... Liquid nitrogen
6... Insulating oil 7... Tank 8...
Nitrogen gas 9...Cooling panel 10...Cooler 11
... Refrigerator 12 ... Pressure relief valves 41, 42.
・・FRP container 43・Insulating material 44・・Conductive layer agent Patent attorney Nori Chika Ken Yudo Daiko Maru Ken

Claims (1)

【特許請求の範囲】[Claims] 鉄心に巻回された巻線のみを断熱容器に収納し、鉄心と
巻線からなる中身をタンクに収納した超電導変圧器にお
いて、断熱容器の壁面内部に導電層を設け、この導電層
を接地電位に接続し、断熱容器内部には液体窒素などの
冷媒を満たし巻線を冷却するとともに、断熱容器外部の
タンク内には窒素ガスなど常温の気体を満たし、鉄心の
冷却は鉄心内に挿入した冷却パネルなど別系統の冷却シ
ステムで行うことを特徴とする超電導変圧器。
In a superconducting transformer in which only the windings wound around the iron core are stored in an insulated container, and the contents consisting of the iron core and the windings are stored in a tank, a conductive layer is provided inside the wall of the insulated container, and this conductive layer is connected to the ground potential. The inside of the insulation container is filled with a refrigerant such as liquid nitrogen to cool the windings, and the tank outside the insulation container is filled with room temperature gas such as nitrogen gas. A superconducting transformer that operates using a separate cooling system such as a panel.
JP11602089A 1989-05-11 1989-05-11 Superconductive transformer Pending JPH02296309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11602089A JPH02296309A (en) 1989-05-11 1989-05-11 Superconductive transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11602089A JPH02296309A (en) 1989-05-11 1989-05-11 Superconductive transformer

Publications (1)

Publication Number Publication Date
JPH02296309A true JPH02296309A (en) 1990-12-06

Family

ID=14676802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11602089A Pending JPH02296309A (en) 1989-05-11 1989-05-11 Superconductive transformer

Country Status (1)

Country Link
JP (1) JPH02296309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283583A (en) * 2008-05-21 2009-12-03 Fuji Electric Systems Co Ltd Static superconducting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283583A (en) * 2008-05-21 2009-12-03 Fuji Electric Systems Co Ltd Static superconducting device

Similar Documents

Publication Publication Date Title
JP4826996B2 (en) Superconducting cable line
KR20080102157A (en) Multi-bath apparatus and method for cooling superconductors
KR20190142822A (en) Cryogenic cooling system
US6640552B1 (en) Cryogenic superconductor cooling system
JP2018137292A (en) Terminal structure of superconducting apparatus
KR20080013766A (en) Termination for a superconductive cable
JPH02296309A (en) Superconductive transformer
Minnich et al. Cryogenic power transmission
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
US8315679B2 (en) Superconducting device
JPH01122111A (en) Superconducting transfer
JP3181513B2 (en) Terminal structure of cryogenic cable
JPS6233759B2 (en)
Green et al. A magnet system for the time projection chamber at PEP
CN102705699A (en) Aluminized film and low-temperature heat insulator used in power superconducting low-temperature environment supporting system
JPH01206834A (en) Superconducting current limiter
Cooper et al. Fermilab tevatron quadrupoles
Mitsui Electrical insulation technology for superconducting magnets in Japan
JPH01206827A (en) Superconducting current limiter
JPH0633855B2 (en) Liquid helium storage equipment
JPH01149310A (en) Gas insulated conductor
Hintz Performance of Superconducting NbTi and NbZr Inorganic Solenoids
Minnich Technical aspects of cryogenic cable design
JPH01286729A (en) Superconducting device
JPS59129354A (en) Cryogenic refrigerator