JPH02295689A - Energy beam drilling method - Google Patents

Energy beam drilling method

Info

Publication number
JPH02295689A
JPH02295689A JP1117107A JP11710789A JPH02295689A JP H02295689 A JPH02295689 A JP H02295689A JP 1117107 A JP1117107 A JP 1117107A JP 11710789 A JP11710789 A JP 11710789A JP H02295689 A JPH02295689 A JP H02295689A
Authority
JP
Japan
Prior art keywords
hole
electron beam
funnel
drilling
repetitive frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1117107A
Other languages
Japanese (ja)
Inventor
Koichi Sakurai
光一 櫻井
Yoshio Yamane
山根 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1117107A priority Critical patent/JPH02295689A/en
Publication of JPH02295689A publication Critical patent/JPH02295689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To perform drilling at high speed with high accuracy by changing repetitive frequency of an energy beam and forming drilled holes having funnel- shaped cross-sectional forms at the time of performing drilling with plural beam pulses per hole. CONSTITUTION:When materials such as ceramic and synthetic resin are irradiated with an electron beam 8 from an electron gun 1, since evaporated materials are generated and scattered at the time of machining these materials, the irradiation electron beam is scattered by those evaporated particles. The higher the repetitive frequency is, the more this scattering effect becomes remarkable. lt is considered that this cause is due to the fact that the interval of the beam irradiations becomes shorter and the particles are hardly scattered. Even if the same electron beam is projected, when the repetitive frequency is made high, the machined hole diameter is increased by the scattering effect. By this method, in energy beam drilling work to perform drilling with the plural beam pulses per hole, many holes having funnel-shaped cross-sectional forms can drilled at high speed with high accuracy by changing the repetitive frequency of the beam and using the scattering effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、セラミック,樹脂板、複合材料板、金属板
などの穴あけ加工への適用を目的としたエネルギービー
ム穴あけ加工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an energy beam drilling method that is applicable to drilling ceramics, resin plates, composite material plates, metal plates, and the like.

〔従来の技術〕[Conventional technology]

第3図は例えば、刊行物(日本学Wi振興会福、日刊工
業新聞社刊、 [電子・イオンビーム/)ンドブック第
2版j p.384 (1986))に示された従来の
電子ビーム穴あけ加工方法を説明する構成図である。 
図において、(1)は電子銃、(2)は軸合わせコイル
、(3)は収束レンズ、(4)は偏向レンズ、(6)は
試料、(8)は電子ビームを示す。
Figure 3 is, for example, from the publication (Japanese Studies Wi Promotion Association Fuku, published by Nikkan Kogyo Shimbun, [Electron/Ion Beam/) End Book 2nd Edition, p. 384 (1986)) is a configuration diagram illustrating a conventional electron beam drilling method.
In the figure, (1) is an electron gun, (2) is an alignment coil, (3) is a converging lens, (4) is a deflection lens, (6) is a sample, and (8) is an electron beam.

次に動作について説明する。電子銃(1〉より発生した
電子ビーム(8》は、軸合わせコイル(2月こよって軸
合わせされ、収束レンズ(3)によって試料《6》上に
焦点を結ぶように収束される。偏向レンズ《4》は電子
ビーム(8)を試料上の任意の位置に偏向する。電子ビ
ーム(8》は通常106〜tosw/ crr12の高
いパワー密度に収束されるので、電子ビーム(8)の照
射された部分の試料(6)は瞬時に溶融・蒸発し、穴あ
け加工が行なわれる。
Next, the operation will be explained. The electron beam (8) generated from the electron gun (1) is aligned by the alignment coil (2), and is focused on the sample (6) by the converging lens (3). Deflection lens <<4>> deflects the electron beam (8) to an arbitrary position on the sample.Since the electron beam (8>> is usually focused to a high power density of 106 to tosw/crr12, the irradiation of the electron beam (8) The part of the sample (6) instantly melts and evaporates, and a hole is drilled.

第4図は、例えば、刊行物(セラミック加工ハンドブッ
ク槁集委員会纏、株式会社建設産業調査会発行、「セラ
ミック加工ハンドブック」p.409 (1987))
に示されたような,従来の電子ビーム穴あけ加工方法に
より簿られなアルミナセラミックスの加工穴断面の模式
図であり、図において(5)は加工穴である。
Figure 4 shows, for example, a publication (Ceramic Processing Handbook Compiled by the Ceramic Processing Committee, published by Construction Industry Research Group Co., Ltd., "Ceramic Processing Handbook" p. 409 (1987)).
FIG. 2 is a schematic diagram of a cross-section of a hole drilled in alumina ceramics that cannot be recorded by the conventional electron beam drilling method, as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

まず初めに、第2図のような『じょうごj型の断面形状
の加工穴が必要な理由を、例を挙げて詳し《説明する。
First of all, we will explain in detail the reason why a machined hole with a funnel-shaped cross-section as shown in Fig. 2 is necessary, using an example.

例見ば,高密度実装基板用のLSI、PGA (ピング
リッドアレイ:例えば、刊行物(日経マグノウヒル社刊
、 「日経マイクロデバイ七ズ」1984年2号参照)
)の七ラッミクス製チップキャリア(基板にチップを挿
入する治具)の穴あけ加工へ適用しようとした場合、加
工穴の断面形状は第2図に示されるような独特の『じょ
うご』型の形状が要求される。その理由は、 ■実装するブリン1・基板の穴間隔が狭い。即ちチップ
キャリアの穴には高い位置決め性能(LSIの電極ピン
を基板の穴ヘガイドする機能)が要求される。従クて、
高い穴位置精度が要求され、なおかつ、チップキャリア
裏面の穴径はビン径より大きい範囲でなるべ《小さいほ
うがよい。
For example, LSI, PGA (pin grid array) for high-density mounting boards: For example, see publications (published by Nikkei Magnou-Hill, ``Nikkei Microdevice Seven'', No. 2, 1984).
) When attempting to apply this to the drilling of a chip carrier (a jig for inserting chips into a board) made by Lamix, the cross-sectional shape of the drilled hole had a unique "funnel" shape as shown in Figure 2. required. The reason for this is: ■ The distance between the holes in the mounting board 1 and the board is narrow. That is, the holes in the chip carrier are required to have high positioning performance (the ability to guide the electrode pins of the LSI to the holes in the substrate). Follow me,
High hole position accuracy is required, and the diameter of the hole on the back of the chip carrier should be as small as possible within a range larger than the bottle diameter.

■LSIの電極ビンが細《曲がりやすい。従って、実装
時にLSIのピンが若干曲がっている可能性を考慮し、
チップキャリア表面の穴径(穴開口部の径)はなるべ《
大きいほうがよい。
■LSI electrode bottles are thin and easily bent. Therefore, consider the possibility that the LSI pins may be slightly bent during mounting,
The hole diameter (diameter of the hole opening) on the surface of the chip carrier should be
Bigger is better.

■LSIのビンのことを考慮すると、 『じょうご』型
の穴開口部とガイド部の穴はなるべく同軸上にあったほ
うがよい。
■When considering LSI bottles, it is best to have the ``funnel''-shaped hole opening and the hole in the guide part on the same axis as much as possible.

■■■の条件を満たすため、第2図のような、同軸度の
裏い「じょうご』型の断面形状が要求される。
In order to satisfy the conditions of ■■■, a ``funnel''-shaped cross-sectional shape that is not coaxial is required, as shown in Figure 2.

電子ビーム穴あけ加工を例にとると、従来の電子ビーム
穴あけ加工方法は以上のように構成されているので、実
際の産業用加工方法への適用を検討した場合、加工中に
焦点位置・パルス幅・繰り返し周波数などの加工パラメ
ータを、任意にかつ自動的に変化させることができない
ため、加工穴断面が第4図に示されるようなストレート
形状もし《はテーパ状になる。従って、第2図に示され
るような『じょうご』型の断面形状の穴を自動的に(即
ち高速に多数)加工するのが困難である。
Taking electron beam drilling as an example, the conventional electron beam drilling method is configured as described above, so when considering its application to an actual industrial processing method, it is important to - Since machining parameters such as repetition frequency cannot be changed arbitrarily and automatically, even if the cross section of the machined hole has a straight shape as shown in FIG. 4, it becomes tapered. Therefore, it is difficult to automatically (i.e., form a large number of holes at high speed) having a "funnel" cross-sectional shape as shown in FIG. 2.

『じょうご』型の断面形状の穴を得る方法として一般的
に考えられるのは、照射するビームのパワー密度分布を
故意に第5図のAのようにして穴あけ加工することであ
る。そのための代表的な方法としては第5図に示すよう
に、集束レンズ(3)でのビーム径を太き《して(ビー
ムの集束角な太き《して)集束レンズ(3》の球面収差
を顕著に発生させ、第5図Aのようなパワー密度分布を
得る方法がある。しかしこの方法では、高速に多数の穴
を加工するためにビームを偏向した場合、コマ収差(集
束角の2乗に比例して増加》や非点収差(集束角の1乗
に比例して増加)が顕著に発生し、第6図(A)、 (
B)にそれぞれコマ収差無しおよび有りの場合を示すよ
うに、ビームのパワー密度分布の軸対称性が失われてし
まう。従って、ビーム偏向により所望の、形状精度の高
い加工穴を高速に加工することはできないというような
問題点がある。
A commonly thought method for obtaining a hole with a "funnel" cross-sectional shape is to intentionally create a hole with the power density distribution of the irradiating beam as shown in A in FIG. 5. As shown in Figure 5, a typical method for this purpose is to increase the beam diameter at the focusing lens (3) (increase the focusing angle of the beam) and increase the spherical surface of the focusing lens (3). There is a method that generates significant aberrations and obtains the power density distribution as shown in Figure 5A. However, with this method, when the beam is deflected to process a large number of holes at high speed, coma aberration (the convergence angle 6 (A), (
As shown in B) with and without coma, the axial symmetry of the beam power density distribution is lost. Therefore, there is a problem in that it is not possible to rapidly machine holes with a desired shape accuracy due to beam deflection.

また、別の方法として『じょうご』型の断面形状を得る
ため、第5図のBの例に示されるようなパワー密度分布
で穴加工を行って第4図のような加工穴(5)を辱た後
、表側の穴径のみを拡げるためにドリル等で再加工して
第2図に示されるような『じょうご』型の加工穴を得る
方法も考見られるが、二のような方法は、確かに所望の
穴形状は得られるが、加工プロセスが2段階になり、所
用加工時間が長い・加工コストが高いなどの問題点があ
る。
Alternatively, in order to obtain a "funnel" cross-sectional shape, the hole (5) as shown in Figure 4 is machined by drilling with a power density distribution as shown in example B in Figure 5. There is also a method of re-machining with a drill etc. to enlarge only the diameter of the hole on the front side after humiliation to obtain a "funnel" shaped hole as shown in Figure 2, but the second method is Although it is true that the desired hole shape can be obtained, there are problems such as a two-step machining process, a long machining time, and a high machining cost.

二の発明は上記のような問題点を解消するためになされ
たもので、第2図の例にあるような「じょうご』型の断
面形状の穴(5)を、高速に多数加工することが可能で
あるエネルギービーム穴あけ加工方法を得ることを目的
としている。
The second invention was made to solve the above-mentioned problems, and it is possible to rapidly machine a large number of holes (5) with a "funnel" cross-sectional shape as shown in the example in Figure 2. The purpose is to obtain a possible energy beam drilling method.

〔課題を解決するための手段〕[Means to solve the problem]

二の発明にかかるエネルギービーム穴あけ加工方法は、
l穴あたり複数のビームパルスをもって穴あけ加工する
エネルギービーム穴あけ加工方法において、上記ビーム
の繰り返し周波数を変化させて『じょうご』型の断面形
状を有する加工穴を形成するものである。
The energy beam drilling method according to the second invention is as follows:
In an energy beam drilling method in which a hole is drilled using a plurality of beam pulses per hole, the repetition frequency of the beam is changed to form a machined hole having a "funnel"-shaped cross-sectional shape.

〔作用〕[Effect]

例えば電子ビームの場合、セラミック・合成樹脂のよう
な材料は加工時に蒸発物が発生・飛散するため、それら
の蒸発粒子によって照射電子ビームが散乱される。この
散乱効果はビームの繰り返し周波数が高いほど顕著にな
る。この原因は、ビーム照射の間隔が短くなり粒子が拡
散しに《くなるためと考えられる。このため、同一の電
子ビームを照射しても、繰り返し周波数を高《すると散
乱効果によって加工穴径は増大するので『じょうご』型
の断面形状の穴を高速に多数加工する二とが可能である
For example, in the case of an electron beam, materials such as ceramics and synthetic resins generate and scatter evaporated particles during processing, and the irradiated electron beam is scattered by these evaporated particles. This scattering effect becomes more pronounced as the repetition frequency of the beam increases. The reason for this is thought to be that the interval between beam irradiations becomes shorter and the particles become less likely to diffuse. For this reason, even if the same electron beam is irradiated, if the repetition frequency is increased, the hole diameter will increase due to the scattering effect, making it possible to process a large number of holes with a "funnel" cross-sectional shape at high speed. .

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。  
第1図において、(1)は電子銃、《2》は軸合わせコ
イル、(3〉は収束レンズ、《4)は偏向レンズ、(6
》は試料、(8〉は電子ビーム、(9)は垂直照射用の
偏向レンズ、《lO》は試料の蒸発物,  (11)は
D/A変換器および電流アンプ、(l2〉はパルスジエ
ネレータ、〈13〉は制御用コンビニータを示す。
An embodiment of the present invention will be described below with reference to the drawings.
In Figure 1, (1) is an electron gun, <<2>> is an alignment coil, (3> is a converging lens, <<4> is a deflection lens, and (6) is a deflection lens.
>> is the sample, (8> is the electron beam, (9) is the deflection lens for vertical irradiation, <<lO>> is the evaporated material of the sample, (11) is the D/A converter and current amplifier, (l2> is the pulse generator) nelator, <13> indicates a control combinator.

次に動作について説明する。電子銃(1)より発生した
電子ビーム<8)は、軸合わせコイル(2)によつで軸
合わせされ、収束レンズ(3)によって試料(6〉上に
焦点を結ぶように収束される。コンピュータ(13〉は
、D/A変換器および電流アンプ(1l〉を駆動し、そ
の出力電流によって偏向レンズ(4〉および垂直照射用
の偏向レンズ(9》は、電子ビーム〈8)を試料<6〉
に垂直に通過しなおかつ電子ビーム〈8〉を試料《6》
上の任意の位置に垂直に入射するように、偏向する。電
子ビーム(8)は通常106〜108W/cm2の高い
パワー密度に収束されるので、電子ピーム(8〉の照射
された部分の試料(6》は瞬時に溶融・蒸発し、穴あけ
加工が行なわれる。
Next, the operation will be explained. An electron beam <8) generated from an electron gun (1) is aligned by an alignment coil (2) and focused onto a sample (6>) by a converging lens (3). The computer (13) drives a D/A converter and a current amplifier (1l), and uses its output current to direct the electron beam (8) to the sample. 6〉
The electron beam <8> passes perpendicularly to the sample <<6>>.
Deflect it so that it is incident perpendicularly to any position above. Since the electron beam (8) is usually focused at a high power density of 106 to 108 W/cm2, the part of the sample (6) irradiated by the electron beam (8) instantly melts and evaporates, and drilling is performed. .

例えば、lmmtのアルミナセラミック板であれば、加
速電圧6 0 k V.  ビーム電流4 0 m A
+パルス幅50μsに設定する。その際、コンヒニータ
(l3)は、穴あけ加工前半は繰り返し周波数をl k
Hzに設定し、10パルス照射し、次に、穴あけ加工後
半は繰り返し周波数を10Hzに再設定し、lOパルス
照射するようにパルスジェネレータ(l2)に指令を送
り、加工を行う。
For example, in the case of an lmmt alumina ceramic plate, the accelerating voltage is 60 kV. Beam current 40 mA
+ Set the pulse width to 50 μs. At that time, the continuator (l3) sets the repetition frequency to l k during the first half of the drilling process.
Hz and irradiate 10 pulses, then reset the repetition frequency to 10 Hz in the second half of the drilling process, send a command to the pulse generator (l2) to irradiate lO pulses, and perform the process.

二二で、ビームパルスの繰り返し周波数と加工穴径の関
係について述べる。電子ビームの場合、セラミック・合
成樹脂のような材料は加工時に蒸発物(10)が発生・
飛散するため、それらの蒸発粒子によって照射電子ビー
ムが散乱される。この散乱効果はビームの繰り返し周波
数が高いほど顕著になる。この原因は,ビーム照射の間
隔が短《なり粒子が拡散しにくくなるためと考えられる
。このため、同一の電子ビームを照射しても、繰り返し
周波数を高《すると散乱効果によって加工穴径は増大す
る(同時に加工穴深さも減少する)。実験的には、上記
の例の加工条件下では、10Hzのときの穴径に対し、
500Hzの照射で約70%の穴径増大の効果がみられ
た。
Section 22 describes the relationship between the repetition frequency of the beam pulse and the machined hole diameter. In the case of electron beams, evaporated matter (10) is generated during processing of materials such as ceramics and synthetic resins.
Due to the scattering, the irradiated electron beam is scattered by these evaporated particles. This scattering effect becomes more pronounced as the repetition frequency of the beam increases. The reason for this is thought to be that the interval between beam irradiations becomes short, making it difficult for particles to diffuse. Therefore, even if the same electron beam is irradiated, if the repetition frequency is increased, the diameter of the machined hole will increase due to the scattering effect (and the depth of the machined hole will also decrease at the same time). Experimentally, under the processing conditions of the example above, for the hole diameter at 10Hz,
The effect of increasing the hole diameter by about 70% was observed with irradiation at 500 Hz.

このような加工現象によって、最初のlOパルスでは繰
り返し周波数が高いので加工穴径が大きくなり穴開口部
が形成され、つぎの10パルスでは繰り返し周波数が低
いので加工穴径が小さくなりガイド部分が形成される。
Due to this machining phenomenon, in the first 10 pulses, the repetition frequency is high, so the diameter of the machined hole becomes large and a hole opening is formed, and in the next 10 pulses, the repetition frequency is low, so the diameter of the machined hole becomes small and a guide part is formed. be done.

結果として、第2図にあるような、所望の『じょうご』
型の断面形状を有するチップキャリアに適した穴(5〉
の加工を自動的に行うことができる。
As a result, the desired "funnel" as shown in Figure 2 is created.
A hole suitable for a chip carrier with a cross-sectional shape of the mold (5)
can be processed automatically.

従来例の球面収差を利用する方法と比較して本発明が優
れている点は、ビームのパワー密度分布(形状)でなく
、加工現象を効果的に利用してガイド部分を形成するた
め、ビーム偏向時にも穴開口部とガイド部との同軸度な
どの穴精度を容易に高《維持できることである。いいか
たれば、ビームの形状を、ビーム偏向時に無偏向時と同
じ形状に維持するための補正などは、本発明による方法
の方が大幅に尤度がある。
The advantage of the present invention compared to conventional methods that utilize spherical aberration is that the guide portion is formed by effectively utilizing processing phenomena rather than the power density distribution (shape) of the beam. Even during deflection, hole accuracy such as coaxiality between the hole opening and the guide portion can be easily maintained at a high level. In other words, the method according to the present invention is much more likely to perform corrections to maintain the beam shape during beam deflection to the same shape as when the beam is not deflected.

なお、ビーム《8〉を偏向すると、通常、試料《6〉と
収束レンズ《3》との焦点距離が長《なるので、偏向距
離に応じて補正用補助収束レンズを収束レンズ〈3》の
近辺に用いて補正することもある。
Note that when the beam 《8〉 is deflected, the focal length between the sample 《6〉 and the converging lens 《3》 becomes longer. It may also be used for correction.

また、上記実施例では、繰り返し周波数を10}1Kか
らlk}lzまで変化させているがこれは他の値であり
もよい。
Further, in the above embodiment, the repetition frequency is changed from 10}1K to lk}lz, but this may be another value.

また、上記実施例では、繰り返し周波数を最初低《設定
して口径の相対的に細い貫通穴を形成し、続いて高《再
設定して口径の大きい穴開孔部を形成し、 『じょうご
』型の断面形状を有する穴を得ているが、これは、所望
の形状を帰るために他の全く異なる制御方法を採用し、
コンビ晶一夕にプログラムして加工を行わせてもよく、
上記実施例と同様の効果を奏する。具体的には、例えば
、穴あけ加工前半は口径の大きい穴開孔部を形成するた
めに繰り返し周波数を高《設定し、穴あけ加工後半は口
径の相対的に細い貫通穴を形成するために繰り返し周波
数を自動的に低《変化させなから「じょうご』型の断面
形状を有する穴を得てもよく、また、1枚の試料に複数
の穴を形成するのに、先ず口径の細い貫通穴(または口
径の大きい大開孔部)を複数個形成した後、これらの貫
通穴(または大開孔部)に口径の大きい穴開孔部(また
は口径の細い貫通穴)を形成して『じょうご』型の断面
形状を有する加工穴を得てもよい。
In addition, in the above embodiment, the repetition frequency is first set to low to form a through hole with a relatively small diameter, and then set to high again to form a hole with a large diameter. Although we have obtained a hole with the cross-sectional shape of the mold, this employs a completely different control method to return the desired shape,
You can also program the combination to Ichiyo and have it perform the processing.
The same effects as in the above embodiment are achieved. Specifically, for example, in the first half of the drilling process, the repetition frequency is set to high in order to form a hole with a large diameter, and in the second half of the drilling process, the repetition frequency is set to high in order to form a through hole with a relatively small diameter. It is also possible to obtain a hole with a "funnel" cross-sectional shape by automatically changing the After forming multiple large-diameter large openings (or large openings), large-diameter openings (or narrow-diameter through-holes) are formed in these through-holes (or large openings) to create a "funnel"-shaped cross section. A machined hole having a shape may be obtained.

なお、周波数を変化させる具体的手段としては例えば、
パルスジェネレータ(l2》をコンビ二一タによって制
御すればよい。コンピュータによって制御可能なD/A
変換器・パルスジェネレータは比較的容易に入手可能で
ある。
In addition, as specific means for changing the frequency, for example,
The pulse generator (l2) can be controlled by a combinatorial controller.D/A that can be controlled by a computer
Converters and pulse generators are relatively easily available.

また、上記実施例では、スティグマトール、アパーチャ
等の電子ビーム整形用の電子光学系機器が付加されてい
ないが、付加されていても、上記実施例と同様の効果を
奏する。
Further, in the above embodiment, although electron optical system equipment for electron beam shaping such as a stigmator and an aperture is not added, even if it is added, the same effects as in the above embodiment can be achieved.

また、上記実施例では、磁界型の収束器・偏向器を用い
ているが,それらは電界型であってもよ《、上記実施例
と同様の効果を奏する。
Further, in the above embodiments, magnetic field type concentrators and deflectors are used, but they may also be electric field type concentrators and deflectors.

また、上記実施例では、偏向器を2組用いているが、そ
れらは1組であっても3組以上であってもよく、上記実
施例と同様の効果を奏する。
Further, in the above embodiment, two sets of deflectors are used, but the number of deflectors may be one set or three or more sets, and the same effects as in the above embodiment can be obtained.

また上記実施例では、電子ビームを用いているが、それ
は他のエネルギービーム例えばレーザビーム等であって
もよ《、上記実施例と同様の効果を奏する。
Further, although an electron beam is used in the above embodiment, other energy beams such as a laser beam may also be used, and the same effects as in the above embodiment can be obtained.

なお参考として、上記実施例では、繰り返し周波数を変
化させているが、これは、照射パルス幅を変化させても
、繰り返し周波数変化とパルス幅変化との複合であって
も、上記実施例と同様の効果を奏する。具体的には、パ
ルス幅を200μs程度に長《すると、穴径を数十%〜
100%程度大ま くできる。
For reference, in the above embodiment, the repetition frequency is changed; however, this can be done in the same way as in the above embodiment, even if the irradiation pulse width is changed or a combination of repetition frequency change and pulse width change is used. It has the effect of Specifically, if the pulse width is increased to about 200 μs, the hole diameter can be reduced by several tens of percent.
I can do about 100% of the time.

また、照射ビーム電流を変化させても、繰り返し周波数
変化と照射ビーム電流変化との複合であっても、上記実
施例と同様の効果を奏する。具体的には、ビーム電流を
太き《すると、穴径を太き《 できる。
Further, even if the irradiation beam current is changed, even if the repetition frequency is changed and the irradiation beam current is changed in combination, the same effects as in the above embodiments can be obtained. Specifically, by increasing the beam current, the hole diameter can be increased.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、l穴あたり複数のビ
ームパルスをもって穴あけ加工するエネルギービーム穴
あけ加工方法において、上記ビームの繰り返し周波数を
変化させて『じょうご』型の断面形状を有する加工穴を
形成するので、散乱効果を利用して加工でき、 『じょ
うご』型の断面形状の穴を精度よ《、高速に多数加工す
ることができる効果がある。
As described above, according to the present invention, in an energy beam drilling method in which holes are drilled using a plurality of beam pulses per hole, the repetition frequency of the beam is changed to drill holes having a "funnel"-shaped cross-sectional shape. Because it is formed, it can be processed using the scattering effect, and it has the effect of being able to process a large number of holes with a ``funnel'' cross-sectional shape with high accuracy and at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による電子ビーム穴あけ加
工方法を説明する構成図、第2図は第1図の方法によっ
て得られた試料の加工穴断面を示す模式図、第3図は従
来の電子ビーム穴あけ加工方法を説明する構成図、第4
図は従来の電子ビーム穴あけ加工方法によりて得られた
試料の加工穴断面を示す模式図、第5図は球面収差があ
る場合の各位置における電流密度分布を示す説明図、第
6図(A)、 (B)はそれぞれコマ収差がある場合お
よび無い場合のパワー密度分布を示す説明図である。 図において、(1)は電子銃、(2)は軸合わせコイル
、<3》は収束レンズ、(4)は偏向レンズ、(5)は
加工穴、(6)は試料、(8)は電子ビーム、(9)は
垂直照射用偏向レンズ、《lO)は試料の蒸発物、(1
1)はD/A変換器および電流アンプ、《l2》パルス
ジェネレータ、《l3》は制御用コンビ二一タを示す。 なお、図中同一符号は同一または相当部分な示す。
FIG. 1 is a block diagram illustrating an electron beam drilling method according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing a cross section of a drilled hole in a sample obtained by the method of FIG. 1, and FIG. 3 is a conventional method. 4th block diagram explaining the electron beam drilling method of
The figure is a schematic diagram showing the cross section of a drilled hole in a sample obtained by the conventional electron beam drilling method, Figure 5 is an explanatory diagram showing the current density distribution at each position when there is spherical aberration, and Figure 6 (A ) and (B) are explanatory diagrams showing power density distributions with and without coma, respectively. In the figure, (1) is the electron gun, (2) is the alignment coil, <3> is the converging lens, (4) is the deflection lens, (5) is the machined hole, (6) is the sample, and (8) is the electron beam, (9) is a deflection lens for vertical irradiation, <<lO> is the evaporated material of the sample, (1
1) indicates a D/A converter and a current amplifier, <<l2>> a pulse generator, and <<l3>> a control combinator. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  1穴あたり複数のビームパルスをもつて穴あけ加工す
るエネルギービーム穴あけ加工方法において、上記ビー
ムの繰り返し周波数を変化させて「じようご」型の断面
形状を有する加工穴を形成することを特徴とするエネル
ギービーム穴あけ加工方法。
An energy beam drilling method in which holes are drilled using a plurality of beam pulses per hole, characterized in that the repetition frequency of the beam is changed to form a processed hole having a "funnel" type cross-sectional shape. Energy beam drilling method.
JP1117107A 1989-05-10 1989-05-10 Energy beam drilling method Pending JPH02295689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1117107A JPH02295689A (en) 1989-05-10 1989-05-10 Energy beam drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1117107A JPH02295689A (en) 1989-05-10 1989-05-10 Energy beam drilling method

Publications (1)

Publication Number Publication Date
JPH02295689A true JPH02295689A (en) 1990-12-06

Family

ID=14703580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117107A Pending JPH02295689A (en) 1989-05-10 1989-05-10 Energy beam drilling method

Country Status (1)

Country Link
JP (1) JPH02295689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132109A (en) * 2003-10-28 2005-05-26 Shih-Sheng Yang Method for manufacturing mold for plastic molding and method for producing pattern on plastic molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132109A (en) * 2003-10-28 2005-05-26 Shih-Sheng Yang Method for manufacturing mold for plastic molding and method for producing pattern on plastic molded article
JP4489556B2 (en) * 2003-10-28 2010-06-23 士聖 楊 Method for producing mold for plastic molding and method for producing pattern of plastic molded product

Similar Documents

Publication Publication Date Title
KR101638766B1 (en) Beamlet blanker arrangement
EP1385193B1 (en) Objective lens for an electron microscopy system, and electron microscopy system
US20200211810A1 (en) Apparatus for generating a multiplicity of particle beams, and multi-beam particle beam systems
TWI421915B (en) Methods and apparatus for glitch recovery in stationary-beam ion implantation process using fast ion beam control
JP2007524192A (en) Electrostatic collimating lens for ion beam
DE60105199T2 (en) SEM WITH A SECONDARY ELECTRODE DETECTOR WITH A CENTRAL ELECTRODE
DE2627987A1 (en) ION IMPLANTATION DEVICE
JPH02295689A (en) Energy beam drilling method
JP2004134380A (en) Device operated by charged particle beam
EP0035556B1 (en) Electron beam system
JPH11329321A (en) Tandem acceleration electrostatic lens
US3417224A (en) Method and device for working material by means of a corpuscular beam
JP2000058550A (en) Adjusting method and means for carrier life of semiconductor element
US6977384B2 (en) Shaped sputter shields for improved ion column operation
US3903421A (en) Device for irradiation with energy rich electrons
CN213876307U (en) Integrated circuit proton direct writing system
JPH0539555Y2 (en)
JP2713498B2 (en) Energy beam processing method
JPS6221474A (en) Electron beam machine
JPS6074249A (en) Ion beam apparatus
JPH02236933A (en) Beam irradiation device
JPH0315145A (en) Focused ion beam device
JPH0817800A (en) Focused ion beam apparatus and sample processing method using it
JPS60208826A (en) Method of applying focusing ion beams
JPH01202380A (en) Electron beam piercing device