JPH02295546A - Nuclear magnetic resonance image diagnosing device - Google Patents

Nuclear magnetic resonance image diagnosing device

Info

Publication number
JPH02295546A
JPH02295546A JP1115766A JP11576689A JPH02295546A JP H02295546 A JPH02295546 A JP H02295546A JP 1115766 A JP1115766 A JP 1115766A JP 11576689 A JP11576689 A JP 11576689A JP H02295546 A JPH02295546 A JP H02295546A
Authority
JP
Japan
Prior art keywords
pulse
slice
selective excitation
signal
slice plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1115766A
Other languages
Japanese (ja)
Other versions
JP2961373B2 (en
Inventor
Nobuyuki Miura
信幸 三浦
Susumu Kosugi
進 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP1115766A priority Critical patent/JP2961373B2/en
Publication of JPH02295546A publication Critical patent/JPH02295546A/en
Application granted granted Critical
Publication of JP2961373B2 publication Critical patent/JP2961373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the missing of the image occurring in SAT by adopting the constitution consisting in generating a 90 deg. pulse and 180 deg. pulse at prescribed timing to selectively excite a tilted slice surface after the generation of 1st and 2nd selective excitation signals. CONSTITUTION:A sequence memory circuit 6 generates the 1st selective excitation signal to impress the SAT pulse in the region having a prescribed thickness in the direction parallel with the body axis direction and adjacent to the slice surface at the time of obtaining the tomographic image of the specific section of the tilted object to be inspected in care of a multislice scanning by impressing the RF pulse and gradient magnetic field to the object to be inspected according to predetermined sequence. The above-mentioned circuit generates the 2nd selective excitation signal to impress the SAP pulse to the region having the prescribed thickness in the direction parallel with the slice direction and adjacent to the above-mentioned slice surface. The slice surface excited by generating the 90 deg. pulse and 180 deg. pulse at the prescribed timing after the generation of the 1st and 2nd selective excitation signals is selectively excited to generate the signal for collection of NMR signals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マルチスライススキャンの際にチルトした被
検体の特定部位の断層像を得る核磁気共鳴画像診断装置
に関し、更に詳しくは、FOV領域外にブリサチュレイ
ション・パルス(PRESATURATION  PU
LSB、以下、SATという)を適用させ、被検体の特
定部位の断層像を得る時に、再構成された画像に欠落を
生じさせることのない核磁気共鳴画像診断装置に関ずる
.(従来の技術) 核磁気共鳴画像診断装置は、一様な静磁場をつくる静磁
場コイル及びx,y,zの各方向に、各直線勾配を持つ
磁場を作る勾配磁場コイルからなる磁石部、該磁石部で
形成される磁場内に設置する被検体にRFパルスを加え
、被検体からのNMR信号を検出する送・受信部、該送
・受信部及び前記磁石部の動作を制御したり、検出デー
タの処理をして画像表示する計算機を中心とした制御画
像処理部を有している. 以上の構成において、被検体を設置し、静磁場コイルに
より所定の空間に所定強度の靜磁場が形成される.一方
、制御画像処理部の制御の下で、送・受信部は、第4図
《イ)に示すような90゛パルス及び180°パルスを
所定のタイミングで発生する選択励起パルスシークエン
ス(SATは90゛パルスを印加してイメージ面内に入
ってくる血液などを予め飽和することにより面外からの
影響を取り除くためのものである.》、及び、第4図(
口) 《ハ》 (二)に示すような勾配磁場Gx,Gy
,Gzを所定のタイミングで発生し、そのときのNMR
信号(第4図(ホ)参照)を検出する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a nuclear magnetic resonance imaging apparatus that obtains a tomographic image of a specific part of a tilted subject during multi-slice scanning. PRESATURATION PU outside
The present invention relates to a nuclear magnetic resonance imaging diagnostic apparatus that uses LSB (hereinafter referred to as SAT) to obtain a tomographic image of a specific part of a subject without causing any defects in the reconstructed image. (Prior Art) A nuclear magnetic resonance imaging diagnostic apparatus includes a magnet section that includes a static magnetic field coil that creates a uniform static magnetic field and a gradient magnetic field coil that creates a magnetic field that has linear gradients in each of the x, y, and z directions. A transmitting/receiving unit that applies an RF pulse to a subject placed within a magnetic field formed by the subject, detecting an NMR signal from the subject, and controlling the operation of the transmitting/receiving unit and the magnet unit; It has a control image processing unit centered on a computer that processes detected data and displays images. In the above configuration, a subject is placed, and a static magnetic field coil forms a quiet magnetic field of a predetermined strength in a predetermined space. On the other hand, under the control of the control image processing section, the transmitting/receiving section generates a selective excitation pulse sequence (SAT is 90 ``This is to remove influences from outside the image plane by applying pulses to saturate the blood entering the image plane in advance.'' and Figure 4 (
(c) Gradient magnetic fields Gx, Gy as shown in (2)
, Gz are generated at a predetermined timing, and the NMR at that time is
The signal (see FIG. 4 (e)) is detected.

従来では、上記シークエンスに従ってマグネット等のハ
ードウエアによって決まる座標軸(体軸方向》に垂直な
平面に対し角度θチルトさせた多数の断層像を得る(マ
ルチスライススキャン》時に、第4図の期間0、及び、
1に示すようにスライスする面のチルト角θに応じてス
ライス勾配のGx、及び、Gz方向に分配し、体軸方向
の移動面ごとにFOV領域外のSAT位置を設定してた
ため、SAT領域が移動面a,b,cとかさなり、イメ
ージの欠落を生じてしまった.(第5図参照)(発明が
解決しようとする課題) 本発明は上記事情に鑑みてなされたものであり、その目
的は、SATに起因するイメージの欠落を生じさせるこ
とのない核磁気共鳴画像診断装置を提供することにある
. 《課題を解決するための手段》 上記目的を達成する本発明の核磁気共鳴画像診断装置は
、予め定めたシークエンスに従って被検体にRFパルス
、及び、勾配磁場を印加し、マルチスライススキャンの
際にチルトした被検体の特定部位の断層像を得る時に、
シークエンス記憶回路が、体釉方向に平行な方向に所定
の厚みを有し、かつ、スライス面に隣接する領域をSA
Tパルスで印加する第1の選択励起信号と、スライス面
方向に平行な方向に所定の厚みを有し、かつ、該スライ
ス面に隣接する領域をSATパルスで印加する第2の選
択励起信号と、前記第1、及び、第2の選択励起信号発
生後に、90’パルス、及び、180゛パルスを所定の
タイミングで発生させてチルトしたスライス面を選択励
起させることにより、SATに起因するイメージの欠落
なしに該スライス面からのNMR信号を収集するための
信号を発生する手段を有する様になっている.(実施例
) 以下図面を参照して本発明について詳細に説明する。
Conventionally, when a large number of tomographic images are obtained by tilting the angle θ with respect to a plane perpendicular to the coordinate axis (body axis direction) determined by hardware such as a magnet according to the above sequence (multi-slice scan), the period 0, as well as,
As shown in 1, the slice gradient was distributed in the Gx and Gz directions according to the tilt angle θ of the plane to be sliced, and the SAT position outside the FOV area was set for each plane of movement in the body axis direction. The moving planes a, b, and c overlap, resulting in missing images. (See Figure 5) (Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and its purpose is to provide nuclear magnetic resonance images that do not cause image deletions caused by SAT. The purpose is to provide diagnostic equipment. <Means for Solving the Problems> A nuclear magnetic resonance imaging apparatus of the present invention that achieves the above object applies an RF pulse and a gradient magnetic field to a subject according to a predetermined sequence, and performs a multi-slice scan. When obtaining a tomographic image of a specific part of a tilted subject,
The sequence memory circuit SAs a region having a predetermined thickness in a direction parallel to the body glaze direction and adjacent to the slice surface.
A first selective excitation signal applied with a T pulse, and a second selective excitation signal applied with a SAT pulse to a region having a predetermined thickness in a direction parallel to the slice plane and adjacent to the slice plane. After generating the first and second selective excitation signals, a 90' pulse and a 180' pulse are generated at predetermined timings to selectively excite the tilted slice plane, thereby eliminating images caused by SAT. It has a means for generating a signal for collecting an NMR signal from the slice surface without any loss. (Example) The present invention will be described in detail below with reference to the drawings.

第1図は、本発明を実施する核磁気共鳴画像診断装置の
構成図である.図において、1は内部に被検体を挿入す
るための空間部分を有し、この空間部分を取り巻くよう
にして、被検体に一定の静磁堝を印加する静磁場コイル
と勾配磁場を発生する勾配磁場コイルと被検体内の原子
核スピンを励起するためのRFパルスを与えるRF送信
コイルと被検体からのNMR信号を検出する受信コイル
等が配置されているマグネットアセンブリである.静磁
場コイル、勾配磁場コイル、RF送信コイル、受信コイ
ルはそれぞれ静磁場電源2、勾配磁場駆動回路3、RF
電力増幅器4及び前置増幅器5に接続されている.シー
クエンス記憧回路6は計算機7からの指令に従って、ゲ
ート変調回路8を操作《所定のタイミングでRF発振回
路9のRF出力信号を変調》シ、RFパルス信号をRF
t力増幅器4からRF送信コイルに印加する.また、シ
ークエンス記憶回路6は計算機7からの指令に従い、第
2図に基づくシークエンス信号によって、勾配磁場II
動回#13、及び、AD変換器11をも操作するように
なっている.すなわちシークエンス記憶回路6は体軸方
向に平行な方向に所定の厚みを有し、かつ、スライス面
に隣接する領域をSATパルスで印加する第1の選択励
起信号と、スライス面方向に平行な方向に所定の厚みを
有し、かつ、該スライス面に隣接する領域をSATパル
スで印加する第2の選択励起信号と、前記第1、及び、
第2の選択励起信号発生後に、90゜パルス、及び、1
80“パルスを所定のタイミングで発生させてチルトし
たスライス面を選択励起し、該スライス面からのNMR
信号を収集するための信号を発生する手段を有する.1
0はRF発振回路9の出力を参照信号として、前置増幅
器5の受信信号出力を位相検波する位相検波器である.
この電力信号はAD変換器11においてディジタ信号に
変換され、計算機7に入力される.12は計算機7に種
々のパルスシークエンスの実現のための指示及び種々の
設定値を入力する為の操作コンソール、13は計算機7
で再構成された画像を表示する表示装!である. 次に本実施例の動作を第2図、及び、第3図を用いて説
明する.ここでは第3図の様に、X軸に対して角度θチ
ルトした3枚のスライス面a.b、Cをイメージングす
るものとし、初めにスライス面aのイメージング方法を
説明する.第2図はシークエンス記憶回路6内のパルス
シークエンスを表す図である.第2図において、GVは
Y軸に磁場を印加する勾配磁場である.Y軸に印加され
ているワープ勾配はY軸方向にその都度位相のことなる
磁場を印加することによりY軸方向の位相情報を与える
ためのである,GxはX軸に印加する勾配磁場であり、
GZはZ軸に印加する勾配磁場である.X軸、及び、Z
軸に印加されているスライス勾配は特定面内にあるスピ
ンのみを励起するためのものであり、リード勾配はスビ
ンエコー信号を観測するためのものである.また期間5
にX軸、及び、Y軸に印加されている勾配磁場はそれ・
ぞれの方向のスライス時に生じた位相差を取り除くため
のものであるリフェーズ勾配とそれぞれの方向の位相情
報を与えるためのもめであるディフェーズ勾配のベクト
ル和が印加されている,RFは静磁場に直角な方向に印
加する高周波回転磁場であり、90゜パルス及び180
0パルスを印加し所望のスライス面が選択励起されてい
る.TRはパルス繰り返し周期でありTR後にふたたび
90°パルスが印加され、次のビュー(VIEW)を開
始する.第3図は本願発明によるイメージング方法を説
明するための図である.まず、期間0、及び、1で体軸
方向と平行な方向に所定の厚みを有し、かつ、スライス
面に隣接する領域が選択的に励起される様に、SATパ
ルスとGx方向にスライス勾配が印加される.期間2、
及び、3でスライス面方向と平行な方向に所定の厚みを
有し、かつ、スライス面a、及び、スライス面Cに隣接
する領域が選択的に励起される様にSATパルスとGx
、及び、Gz方向にスライス勾配が印加される.この期
間2、及び、3のSATパルス印加時のスライシングの
ためのGxとGz方向の勾配の分配割合は、スライスす
る面のチルト角θに応じて変化させる.同様に、以下に
述べる期間の各方向の勾配もチルト角θに応じて分配す
る.期間4で90’パルスとスライス勾配が印加され、
スライス面aのスピンが選択的に励起される.期間5で
は、リフェーズ勾配によりスライス勾配によって乱れた
スピン位相を元に戻す一方、ディフエーズ勾配、及び、
ワープ勾配により後にNMR信号を観測するためにスピ
ンに座標に応じた位相差を与えておく.期間6では18
0°パルスとスライス勾配が印加され、スライス面aの
スピンが選択的に励起される.期間7では、期間4およ
び期間6のスライス勾配により限定されるスライス面a
にリード勾配をかけ、多数のスピン・エコー信号を収飄
し、スライス面a全体からのデータをえる. 以下同様にして、TR後に90°パルスを印加して次の
スライス面bのイメージングを開始し、その後スライス
面Cのイメージングを行なう.このように本実施例の核
磁気共鳴画像診断装置においては、イメージの欠落のな
い画像を得ることができる. 尚、本発明は上記実施例に限定するものではなく、特許
請求の範囲内で種々の変形が可能である.例えば、SA
T領域の選択順序はどのようでも良いし、また、Y方向
に対して角度θチルトした場合にも適応可能である.さ
らに、上記の説明ではスピン・エコー法となっているが
、フィールド・エコー(FIELD  ECHO)法等
のように他のフーリエ法にも適用できる. 《発明の効果》 以上の説明の通り、本発明の核磁気共鳴画像診断装置に
よれば、チルトした面が体軸方向へ移動する場合のマル
チスキャンにおいて、SAT領域をスライス面に垂直で
なく体軸方向に平行に設定しているため、SATに起因
するイメージの欠落を生じさせることなく被検体の特定
部位の断層像を得ることができる.さらに本発明によれ
ば、ズ二云スキャン(ZOOM  SCAN>をした時
にも適用できる.
FIG. 1 is a configuration diagram of a nuclear magnetic resonance imaging diagnostic apparatus that implements the present invention. In the figure, reference numeral 1 has a space for inserting the subject, a static magnetic field coil that surrounds this space and applies a constant static magnetic field to the subject, and a gradient that generates a gradient magnetic field. This is a magnet assembly that includes a magnetic field coil, an RF transmitting coil that provides RF pulses to excite nuclear spins within the subject, and a receiving coil that detects NMR signals from the subject. The static magnetic field coil, gradient magnetic field coil, RF transmitting coil, and receiving coil are each composed of a static magnetic field power supply 2, a gradient magnetic field drive circuit 3, and an RF
It is connected to a power amplifier 4 and a preamplifier 5. The sequence recording circuit 6 operates the gate modulation circuit 8 according to instructions from the computer 7 (modulates the RF output signal of the RF oscillation circuit 9 at a predetermined timing), and converts the RF pulse signal into an RF signal.
t is applied from the force amplifier 4 to the RF transmitting coil. In addition, the sequence storage circuit 6 stores the gradient magnetic field II according to a sequence signal based on FIG.
The controller #13 and the AD converter 11 are also operated. That is, the sequence storage circuit 6 has a predetermined thickness in a direction parallel to the body axis direction, and a first selective excitation signal that applies a SAT pulse to a region adjacent to the slice plane, and a direction parallel to the slice plane direction. a second selective excitation signal that has a predetermined thickness and applies a SAT pulse to a region adjacent to the slice surface;
After generation of the second selective excitation signal, a 90° pulse and a
A 80" pulse is generated at a predetermined timing to selectively excite the tilted slice surface, and NMR from the slice surface is detected.
It has means for generating signals for collecting signals. 1
0 is a phase detector that detects the phase of the received signal output of the preamplifier 5 using the output of the RF oscillation circuit 9 as a reference signal.
This power signal is converted into a digital signal by the AD converter 11 and input to the computer 7. 12 is an operation console for inputting instructions and various setting values for realizing various pulse sequences to the computer 7; 13 is the computer 7;
A display device that displays the reconstructed image! It is. Next, the operation of this embodiment will be explained using FIGS. 2 and 3. Here, as shown in Fig. 3, three slice planes a. Let us assume that images b and C are to be imaged, and first explain the imaging method for slice plane a. FIG. 2 is a diagram showing the pulse sequence in the sequence storage circuit 6. In Figure 2, GV is a gradient magnetic field that applies a magnetic field to the Y axis. The warp gradient applied to the Y-axis is to provide phase information in the Y-axis direction by applying a magnetic field with a different phase each time in the Y-axis direction.Gx is a gradient magnetic field applied to the X-axis,
GZ is a gradient magnetic field applied to the Z axis. X axis and Z
The slice gradient applied to the axis is used to excite only the spins in a specific plane, and the lead gradient is used to observe the Subin echo signal. Also period 5
The gradient magnetic field applied to the X-axis and Y-axis is
A vector sum of a rephase gradient, which is used to remove the phase difference that occurs when slicing in each direction, and a dephase gradient, which is used to provide phase information in each direction, is applied.RF is a static magnetic field. It is a high frequency rotating magnetic field applied in the direction perpendicular to the 90° pulse and 180° pulse.
The desired slice plane is selectively excited by applying 0 pulse. TR is a pulse repetition period, and after TR, a 90° pulse is applied again to start the next view. FIG. 3 is a diagram for explaining the imaging method according to the present invention. First, in periods 0 and 1, a SAT pulse and a slice gradient in the Gx direction are applied so that a region having a predetermined thickness in a direction parallel to the body axis direction and adjacent to the slice plane is selectively excited. is applied. Period 2,
3, the SAT pulse and Gx are applied so that the regions having a predetermined thickness in the direction parallel to the slice plane direction and adjacent to slice plane a and slice plane C are selectively excited.
, and a slice gradient is applied in the Gz direction. The distribution ratio of the gradients in the Gx and Gz directions for slicing during the application of the SAT pulses in periods 2 and 3 is changed according to the tilt angle θ of the plane to be sliced. Similarly, the gradient in each direction during the period described below is also distributed according to the tilt angle θ. In period 4, a 90′ pulse and a slice gradient are applied;
Spins on slice plane a are selectively excited. In period 5, the rephase gradient restores the spin phase disturbed by the slice gradient, while the defase gradient and
The warp gradient gives the spins a phase difference according to their coordinates in order to later observe the NMR signal. 18 in period 6
A 0° pulse and a slice gradient are applied to selectively excite spins on slice plane a. In period 7, the slice plane a is limited by the slice gradients of periods 4 and 6.
A lead gradient is applied to , a large number of spin echo signals are collected, and data from the entire slice plane a is obtained. Thereafter, in the same manner, after TR, a 90° pulse is applied to start imaging the next slice plane b, and then imaging of the slice plane C is performed. In this manner, the nuclear magnetic resonance imaging apparatus of this embodiment can obtain images without image deletion. Note that the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the claims. For example, S.A.
The selection order of the T area may be arbitrary, and it is also applicable to cases where the T area is tilted at an angle θ with respect to the Y direction. Furthermore, although the above explanation uses the spin echo method, it can also be applied to other Fourier methods such as the field echo (FIELD ECHO) method. <<Effects of the Invention>> As explained above, according to the nuclear magnetic resonance imaging apparatus of the present invention, in multi-scanning when the tilted plane moves in the body axis direction, the SAT region is not perpendicular to the slice plane but is Since it is set parallel to the axial direction, it is possible to obtain a tomographic image of a specific part of the subject without image loss caused by SAT. Furthermore, according to the present invention, it can also be applied when ZOOM SCAN is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

・第1図は本願発明の一実施例を表す構成図、第2図は
本願発明の一実施例のパルスシークエンスを表す図、第
・3図は本廟発明によるイメージング方法を説明するた
めの図、第4図はSATパルスに起因してイメージの欠
落を生じるパルスシークエンスを表す図、第5図はSA
T頒域を説明するための図である。 1・・・マグネットアセンブリ、2・・・静磁場電源、
3・・・勾配磁場駆動回路、4・・・RF電力増幅器、
5・・・前置増幅器、6・・・シークエンスの記憶回路
、7・・・計算機、8・・・ゲート変調回路、9・・・
RF発振回路、10・・・位相検波器、11・・・AD
変換器、12・・・操作コンソール、13・・・表示装
置、 特許出顯人 横河メディカルシステム株式会社
・Figure 1 is a configuration diagram representing an embodiment of the present invention, Figure 2 is a diagram representing a pulse sequence of an embodiment of the present invention, and Figures 3 are diagrams for explaining the imaging method according to the present invention. , Figure 4 is a diagram showing a pulse sequence that causes image loss due to the SAT pulse, and Figure 5 is a diagram showing the SA pulse sequence.
FIG. 3 is a diagram for explaining a T distribution area. 1... Magnet assembly, 2... Static magnetic field power supply,
3... Gradient magnetic field drive circuit, 4... RF power amplifier,
5... Preamplifier, 6... Sequence storage circuit, 7... Computer, 8... Gate modulation circuit, 9...
RF oscillation circuit, 10...phase detector, 11...AD
Converter, 12...Operation console, 13...Display device, Yokogawa Medical Systems Co., Ltd.

Claims (1)

【特許請求の範囲】 静磁場内に設置される被検体に、予め定めたシークエン
スに従ってRFパルス、及び、勾配磁場を印加し、体軸
方向に移動するマルチスライススキャンの際にチルトし
たスライス面からのNMR信号を収集するための信号を
発生するシークエンス記憶回路を備え、収集したNMR
信号に基づいて被検体の断層像を得る核磁気共鳴画像診
断装置において、 前記シークエンス記憶回路が、体軸方向に平行な方向に
所定の厚みを有し、かつ、スライス面に隣接する領域を
SATパルスで印加する第1の選択励起信号と、 スライス面方向に平行な方向に所定の厚みを有し、かつ
、該スライス面に隣接する領域をSATパルスで印加す
る第2の選択励起信号と、 前記第1、及び、第2の選択励起信号発生後に、90゜
パルス、及び、180゜パルスを所定のタイミングで発
生させてチルトしたスライス面を選択励起し、該スライ
ス面からのNMR信号を収集するための信号を発生する
ように構成されたことを特徴とする核磁気共鳴画像診断
装置。
[Claims] RF pulses and gradient magnetic fields are applied to a subject placed in a static magnetic field according to a predetermined sequence, and the object is scanned from a tilted slice plane during a multi-slice scan that moves in the body axis direction. a sequence storage circuit for generating a signal for collecting NMR signals;
In a nuclear magnetic resonance imaging diagnostic apparatus that obtains a tomographic image of a subject based on signals, the sequence storage circuit stores an area having a predetermined thickness in a direction parallel to the body axis direction and adjacent to a slice plane in SAT. a first selective excitation signal that is applied as a pulse; a second selective excitation signal that has a predetermined thickness in a direction parallel to the slice plane and that is applied to a region adjacent to the slice plane as a SAT pulse; After generating the first and second selective excitation signals, a 90° pulse and a 180° pulse are generated at predetermined timing to selectively excite the tilted slice plane, and collect NMR signals from the slice plane. A nuclear magnetic resonance imaging diagnostic apparatus, characterized in that it is configured to generate a signal for the purpose of:
JP1115766A 1989-05-09 1989-05-09 Nuclear magnetic resonance imaging system Expired - Lifetime JP2961373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115766A JP2961373B2 (en) 1989-05-09 1989-05-09 Nuclear magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115766A JP2961373B2 (en) 1989-05-09 1989-05-09 Nuclear magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JPH02295546A true JPH02295546A (en) 1990-12-06
JP2961373B2 JP2961373B2 (en) 1999-10-12

Family

ID=14670521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115766A Expired - Lifetime JP2961373B2 (en) 1989-05-09 1989-05-09 Nuclear magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP2961373B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152942A (en) * 1984-01-23 1985-08-12 Toshiba Corp Nmr-ct scan planning system
JPS62197048A (en) * 1986-02-26 1987-08-31 横河メディカルシステム株式会社 Nuclear magnetic resonance tomographic image pickup apparatus
JPS63122439A (en) * 1986-11-11 1988-05-26 株式会社東芝 Magnetic resonance imaging apparatus
JPS63206231A (en) * 1987-02-23 1988-08-25 株式会社東芝 Magnetic resonance imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152942A (en) * 1984-01-23 1985-08-12 Toshiba Corp Nmr-ct scan planning system
JPS62197048A (en) * 1986-02-26 1987-08-31 横河メディカルシステム株式会社 Nuclear magnetic resonance tomographic image pickup apparatus
JPS63122439A (en) * 1986-11-11 1988-05-26 株式会社東芝 Magnetic resonance imaging apparatus
JPS63206231A (en) * 1987-02-23 1988-08-25 株式会社東芝 Magnetic resonance imaging method

Also Published As

Publication number Publication date
JP2961373B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US6528996B1 (en) Diffusion-weighted imaging method and apparatus for fast pulse sequence with MPG pulses
JPH02255126A (en) Magnetic resonance imaging method
JP2005021691A (en) System and method for phase encode placement
US4786871A (en) NMR imaging method and apparatus
JP4576534B2 (en) Magnetic resonance imaging apparatus and imaging method
JPH11113882A (en) Diffusion spectrum mri
JPH02295546A (en) Nuclear magnetic resonance image diagnosing device
EP1102081B1 (en) Method and apparatus to compensate for image artifacts caused by magnet vibration in an MR imaging system
JPH049414B2 (en)
JPS63109847A (en) Nuclear magnetic resonance imaging apparatus
JP3526347B2 (en) Magnetic resonance imaging system
JPS60185149A (en) Nmr imaging method
JP4400957B2 (en) Magnetic resonance imaging system
JPH05123314A (en) Multislice image pick-up method in magnetic resonance imaging device
JPH0568672A (en) Gradient magnetic field impressing method for magnetic resonance imaging device
JPS63122440A (en) Magnetic resonance imaging apparatus
JP2884243B2 (en) Nuclear magnetic resonance imaging system
JP2703888B2 (en) Magnetic resonance imaging equipment
JPH1119065A (en) Mri imaging apparatus
JPH0245037A (en) Method for magnetic resonance imaging
JP3453963B2 (en) Nuclear magnetic resonance imaging equipment
JPH05137709A (en) Magnetic resonance imaging device
JPH02271831A (en) Method for photographing curved image in nuclear magnetic resonance photographing
JPH0938065A (en) Nuclear magnetic resonance inspection device
JPH01277545A (en) Magnetic resonance imaging method