JPH02295524A - Germ-free molding - Google Patents

Germ-free molding

Info

Publication number
JPH02295524A
JPH02295524A JP11583389A JP11583389A JPH02295524A JP H02295524 A JPH02295524 A JP H02295524A JP 11583389 A JP11583389 A JP 11583389A JP 11583389 A JP11583389 A JP 11583389A JP H02295524 A JPH02295524 A JP H02295524A
Authority
JP
Japan
Prior art keywords
zeolite
molding
ions
antibacterial
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11583389A
Other languages
Japanese (ja)
Other versions
JP2784937B2 (en
Inventor
Shinji Uchida
眞志 内田
Yasuo Kurihara
靖夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINAGAWA NENRYO KK
SHINANEN NEW CERAMIC KK
Shinagawa Fuel Co Ltd
Original Assignee
SHINAGAWA NENRYO KK
SHINANEN NEW CERAMIC KK
Shinagawa Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14672249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02295524(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SHINAGAWA NENRYO KK, SHINANEN NEW CERAMIC KK, Shinagawa Fuel Co Ltd filed Critical SHINAGAWA NENRYO KK
Priority to JP11583389A priority Critical patent/JP2784937B2/en
Publication of JPH02295524A publication Critical patent/JPH02295524A/en
Application granted granted Critical
Publication of JP2784937B2 publication Critical patent/JP2784937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices For Warming Or Keeping Food Or Tableware Hot (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Packages (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

PURPOSE:To suppress the propagation of microorganisms on the surface of a resin molding contg. antimicrobial powder over a long-period of time and to maintain this part in a germ-free state by polishing the surface of the molding. CONSTITUTION:The surface of the resin molding, such as polyethylene, contg. the antimicrobial powder is polished. This antimicrobial powder is produced by bringing zeolite into an aq. sol. mixture contg. antimicrobial metal ions of, for example, copper, silver, zinc, tin, etc., to substitute the above mentioned ions with the ion-exchangeable ions in the zeolite. Namely, the surface area of the resin molding is increased by the surface polishing of the molding and the antimicrobial powder eventually exists much on the surface. The propagation of the microorganisms on the surface of the molding is thus suppressed over a long period of time and the surface is maintained in the germ-free state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無菌成型品に関し、詳しくは抗閑性粉体を含有
する樹脂成型品の表面を研磨し、抗薗効果を改善した無
菌成,型品に関するものである.〔従来の技術〕 食品が直接接触するもののうち、まな板、弁当箱、はし
、しゃもじ、食器等の成型品は家庭や食堂では水洗いな
ど行っても食物残滓があり、微生物の繁殖により良好な
衛生杖態を保つことは難しかった.この改善策としては
紫外線照射(実開昭61−171936号他)、加熱処
理(実開昭59−139242号他)をはじめ、次亜塩
素酸塩、エチルアルコール等の各種殺菌剤を使用する方
法が開示されている.しかしいずれの方法も特別な装置
が必要であったり、抗菌効果の持続性がなかったり満足
いくものがなかった. 〔発明が解決しようとする課題〕 まな板をはじめ食品が直接接触する成型品は水洗い等で
は完全に滅菌できず、微生物が多数存在し、繁殖する.
従ってこれらを再び使用した場合、食品が微生物で汚染
され、食中毒を起こす等問題があった. そこで本発明の目的は人体に対する安全性の高い抗菌性
粉体を合成樹脂に含存することによってその表面での微
生物の繁殖を抑えることができ、しかもその状態を長期
間に渡って保つにとができ、かつ従来品とほぼ同等の方
法によって製造できるml成型品を提供することにある
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to aseptic molded products, and more specifically to aseptic molded products that have improved anti-slip effect by polishing the surface of resin molded products containing anti-slip powder. This is related to molded products. [Prior art] Molded products that come into direct contact with food, such as cutting boards, lunch boxes, chopsticks, rice scoops, and tableware, contain food residue even after washing with water in homes and cafeterias, and microorganisms propagate, resulting in poor hygiene. It was difficult to maintain a cane position. Measures to improve this include ultraviolet irradiation (Utility Model Application Publication No. 171936/1988, etc.), heat treatment (Utility Model Application No. 59-139242, etc.), and the use of various disinfectants such as hypochlorite and ethyl alcohol. is disclosed. However, none of these methods required special equipment, did not have a long-lasting antibacterial effect, or was unsatisfactory. [Problem to be solved by the invention] Molded products that come into direct contact with food, such as cutting boards, cannot be completely sterilized by washing with water, and many microorganisms exist and multiply.
Therefore, if these were used again, there were problems such as food being contaminated with microorganisms and causing food poisoning. Therefore, the purpose of the present invention is to contain antibacterial powder that is highly safe for the human body in a synthetic resin, thereby suppressing the proliferation of microorganisms on the surface of the resin, and also being able to maintain this state for a long period of time. The object of the present invention is to provide a ml molded product that can be manufactured by a method substantially the same as that of conventional products.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記課題に鑑みてなされたもので、抗菌性粉体
を含有する樹脂成型品の表面を研磨し、抗閑効果を改善
した無閑成型品に関する。
The present invention has been made in view of the above-mentioned problems, and relates to a blank molded product in which the surface of a resin molded product containing antibacterial powder is polished to improve the anti-sink effect.

以下本発明において説明する. 本発明において、抗菌性粉体は液体状及び固体状の抗菌
性薬剤を多孔質の無機担体に保持させることにより樹脂
に直接練り込み、また徐々に有効成分を放出する特徴を
有している. 抗菌性薬剤としては例えば、銀、銅、亜鉛、水銀、鉛、
すす、ビスマス、カドミウム又はタリウム等の金属のイ
オン及びその化合物や安定化塩素、次亜塩素酸塩、クロ
ラミン、ヨウ化エチレン等のハロゲン化合物やアルコー
ル類、フェノール類、エーテル類、グアニジン類、チア
ゾール類、第四級アンモニウム塩、チオカーバメイト類
、界面活性剤等の育機化合物を挙げることができ、好ま
しくは抗菌力強く、さらに人体に対する安全性が高い観
点より銀、銅、亜鉛及びすすのイオンまたはその化合物
が適当である. 本発明において無機担体は抗菌性薬剤を吸着、結合、イ
オン交換などによって担持し、抗菌性薬剤が水に溶解、
分解せずに安定して抗菌力を発揮しうる目的で用いる。
The present invention will be explained below. In the present invention, the antibacterial powder has the characteristic that liquid and solid antibacterial agents are held in a porous inorganic carrier so that they can be directly kneaded into the resin, and the active ingredients can be gradually released. Examples of antibacterial agents include silver, copper, zinc, mercury, lead,
Metal ions and their compounds such as soot, bismuth, cadmium or thallium, halogen compounds such as stabilized chlorine, hypochlorite, chloramine, ethylene iodide, alcohols, phenols, ethers, guanidines, thiazoles , quaternary ammonium salts, thiocarbamates, and surfactants. Preferably, silver, copper, zinc, and soot ions or their Compounds are suitable. In the present invention, the inorganic carrier supports the antibacterial agent by adsorption, binding, ion exchange, etc., and the antibacterial agent dissolves in water.
It is used for the purpose of stably exhibiting antibacterial activity without decomposition.

無機風体としてはシルカゲル、アルミナ、結晶性アルミ
ノケイ酸塩(合成あるいは天然)、無定形アルミノケイ
酸塩、活性白土、セピアライト、粘土物質、活性炭を挙
げることができるが、多孔質で比表面積が大きく抗菌性
薬剤を多く担持できるという点からアルミノケイ酸塩が
好ましい. アルミノケイ酸塩としては一般にゼオライトと呼ばれる
結晶性アルミノケイ酸塩や特開昭53−30500号、
特開昭61−174111号等に記載の無定形アルミノ
ケイ酸塩を挙げることができる. ここで「ゼオライト」としては、天然及び合成ゼオライ
トのいずれも用いることができる.ゼオライトは、一殻
に三次元骨格構造を有するアルミノケイ酸塩であり、一
触式としてXMt八〇・^Igos・YSiO,  ・
zntoで表示される.ここでMはイオン?換可能なイ
オンの金属イオンである.nは(金属》イオンの原子価
である.X及びYはそれぞれの金属酸化物、シリカ係数
、2は結晶水の数を表示している.ゼオライトの具体例
としては、例えばA一型ゼオライト、X一型ゼオライト
、Y一型ゼオライト、T一型ゼオライト、高シリカゼオ
ライト、ソーダライト、モルデナイト、アナルサイム、
クリノブチロライト、チャバサイト、エリオナイト等を
挙げることができる.ただしこれらに限定されるもので
はない. 本発明においては無定形アルミノケイ酸塩も適用できる
。無定形アルミノケイ酸塩(以下AASという)は、一
般に組成式xMgO−Al*oi  ・ySiOz・z
ll■0で表示され、ここでMは一般にナトリウムやカ
リウムのアルカリ金属元素である.またX、y,zはそ
れぞれ金属酸化物、シリヵ、結晶水のモル比率を示して
いる.AASはゼオライトと称せられている結晶性アル
ミノケイ酸塩と異なり、X線回折分析でも回折パターン
が現れない非品質の物質であり、その合成工程にて数1
0人の極《微細なゼオライト結晶が生成し、その表面に
stow、^lx’s 、MtOなどが複雑に組合され
た非品質物質が付着した構造と考えられている.AAS
の製造は一般にはアルミニウム塩溶液、ケイ素化合物溶
液及びアルカリ金属塩溶液を所定の濃度で60℃以下の
低温度域で反応させ、結晶化が進行する前に水洗して製
造される.このような方法で製造されたAASは、ゼオ
ライトとほぼ同様のイオン交換性能を有する.製造法と
しては例えば特開昭53−30500号、特開昭61−
174111号などに記載された方法がある。
Examples of inorganic gases include silica gel, alumina, crystalline aluminosilicate (synthetic or natural), amorphous aluminosilicate, activated clay, sepialite, clay materials, and activated carbon, which are porous and have a large specific surface area, making them antibacterial. Aluminosilicates are preferred because they can support a large amount of sex drugs. Examples of aluminosilicate include crystalline aluminosilicate commonly called zeolite, JP-A No. 53-30500,
Examples include amorphous aluminosilicates described in JP-A-61-174111 and the like. As the "zeolite" here, both natural and synthetic zeolites can be used. Zeolite is an aluminosilicate with a three-dimensional skeleton structure in one shell, and as a monocatalytic type, XMt80・^Igos・YSiO,・
Displayed in znto. Is M here an ion? It is a metal ion that can be exchanged. n is the valence of the (metal) ion. X1 type zeolite, Y1 type zeolite, T1 type zeolite, high silica zeolite, sodalite, mordenite, analcyme,
Examples include clinobutyrolite, chabasite, and erionite. However, it is not limited to these. Amorphous aluminosilicates can also be used in the present invention. Amorphous aluminosilicate (hereinafter referred to as AAS) generally has the composition formula xMgO-Al*oi ・ySiOz・z
It is expressed as ll■0, where M is generally an alkali metal element such as sodium or potassium. Furthermore, X, y, and z indicate the molar ratio of metal oxide, silica, and crystal water, respectively. Unlike crystalline aluminosilicate, which is called zeolite, AAS is a low-quality material that does not show a diffraction pattern even in X-ray diffraction analysis.
It is thought that the structure consists of ultra-fine zeolite crystals and a complex combination of non-quality substances such as stow, lx's, MtO, etc. attached to their surfaces. A.A.S.
is generally produced by reacting an aluminum salt solution, a silicon compound solution, and an alkali metal salt solution at a predetermined concentration at a low temperature of 60°C or less, and washing with water before crystallization proceeds. AAS produced by this method has ion exchange performance almost similar to that of zeolite. Examples of manufacturing methods include JP-A-53-30500 and JP-A-61-
There is a method described in No. 174111 and the like.

本発明で用いる無機担体の粒度は構脂中に分散よ《練り
込める観点より、50μm以下、好ましくは3μm以下
とする. 以下本発明で用いる抗菌性粉体の一例として銀イオン等
をイオン交換により結合させた抗菌性ゼオライトの製造
方法について説明する.例えば本発明で用いる抗菌性ゼ
オライトは、予め調製した銀イオン、銅イオン、亜鉛イ
オン、すずイオン等の抗菌性金属イオンを含有する混合
水溶液にゼオライトを接触させて、ゼオライト中のイオ
ン交換可能なイオンと上記イオンとを置換させる.接触
は、10〜70℃、好ましくは40〜60℃で3〜24
時間、好ましくは10〜24時間バッチ式又は連続式(
例えばカラム法)によって行うことができる.向上記混
合水溶液の9Hは3〜10、好ましくは5〜7に調整す
ることが適当である.該調整により、銀の酸化物等のゼ
オライト表面又は細孔内への析出を防止できるので好ま
しい。又、混合水溶液中の各イオンは、通常いずれも塩
として供給される.例えば銀イオンは、硝酸恨、硫酸銀
、過塩素酸銀、酢酸銀、ジアミン銀硝酸塩、ジアンミン
銀硫酸塩等、銅イオンは、硝aM4<■)、硫酸銅、過
塩素酸銅、酢酸銅、テトラシアノ銅酸カリウム等、亜鉛
イオンは硝酸亜鉛(■)、硫酸亜鉛、過塩素酸亜鉛、チ
オシアン酸亜鉛、酢酸亜鉛等、すずイオンは、硫酸すず
、硝酸すず等を用いることができる.ゼオライト中の恨
イオン等の含有量は前記混合溶液中の各イオン(塩)濃
度を調節することによって、適宜制御することができる
.例えば抗菌性ゼオライトが恨イオンを含有する場合、
前記水溶液中の恨イオン濃度を0.002M/ ff〜
0.15M/βとすることによって、適宜、銀イオン含
有it O.1〜5%の抗閑性ゼオライトを得ることが
できる.又、抗菌性ゼオライトがさらに銅イオン、亜鉛
イオンを含有する場合、前記水溶液中の銅イオン濃度を
0.1M/ 1〜2.3M/ n−亜鉛イオン濃度を0
.15M/1〜2.8M/ 1 、すずイオン濃度を0
.3M/ fi 〜1.2M/lとすることにより、適
宜銅イオン含有量0.1〜18%、亜鉛イオン含有量0
.1〜18%、すずイオン含有it O.1〜7%の抗
菌性ゼオライトを得ることができる. 本発明においては、前記の如き混合水溶液以外に各イオ
ンを単独で含有する水溶液を用い、各水溶液とゼオライ
トとを逐次接触させることによって、イオン交換するこ
ともできる。各水溶液中の各イオンの濃度は、前記混合
水溶液中の各イオン濃度に準じて定めることができる. イオン交換が終了したゼオライトは、充分に水洗した後
、乾燥する.乾燥は、常圧で105〜115℃、又は減
圧( 1 〜30torr)下70〜90℃で行うこと
が好ましい. 尚、本明細書において、%とは110℃乾燥基準の重量
%をいう。
The particle size of the inorganic carrier used in the present invention is set to 50 μm or less, preferably 3 μm or less, from the viewpoint of dispersion and kneading into the structure fat. Below, as an example of the antibacterial powder used in the present invention, a method for producing antibacterial zeolite, in which silver ions and the like are bonded by ion exchange, will be explained. For example, the antibacterial zeolite used in the present invention can be prepared by contacting the zeolite with a mixed aqueous solution containing antibacterial metal ions such as silver ions, copper ions, zinc ions, tin ions, etc., prepared in advance, to obtain ion-exchangeable ions in the zeolite. and the above ion. Contacting is carried out at 10-70°C, preferably 40-60°C for 3-24°C.
time, preferably 10 to 24 hours batchwise or continuously (
For example, this can be done using the column method). It is appropriate to adjust the 9H of the above mixed aqueous solution to 3 to 10, preferably 5 to 7. This adjustment is preferable because it can prevent silver oxides and the like from being deposited on the zeolite surface or into the pores. Furthermore, each ion in the mixed aqueous solution is usually supplied as a salt. For example, silver ions include nitrate, silver sulfate, silver perchlorate, silver acetate, diamine silver nitrate, diammine silver sulfate, etc.; copper ions include nitrate (aM4<■), copper sulfate, copper perchlorate, copper acetate, etc. Potassium tetracyanocuprate, etc., zinc ions, such as zinc nitrate (■), zinc sulfate, zinc perchlorate, zinc thiocyanate, zinc acetate, etc., and tin ions, tin sulfate, tin nitrate, etc. can be used. The content of ions, etc. in the zeolite can be appropriately controlled by adjusting the concentration of each ion (salt) in the mixed solution. For example, when antibacterial zeolite contains anti-ion,
The concentration of ions in the aqueous solution is 0.002M/ff~
By setting it as 0.15M/β, it is possible to appropriately add silver ion-containing it O. It is possible to obtain 1 to 5% anti-stagnation zeolite. In addition, when the antibacterial zeolite further contains copper ions and zinc ions, the copper ion concentration in the aqueous solution is 0.1M/1 to 2.3M/n-zinc ion concentration is 0.
.. 15M/1~2.8M/1, tin ion concentration 0
.. By setting 3M/fi to 1.2M/l, the copper ion content is 0.1 to 18% and the zinc ion content is 0.
.. 1-18%, tin ion containing it O. 1-7% antibacterial zeolite can be obtained. In the present invention, in addition to the mixed aqueous solution as described above, ion exchange can also be performed by using an aqueous solution containing each ion individually and bringing each aqueous solution into contact with the zeolite sequentially. The concentration of each ion in each aqueous solution can be determined according to the concentration of each ion in the mixed aqueous solution. After ion exchange, the zeolite is thoroughly washed with water and then dried. Drying is preferably carried out at 105 to 115°C under normal pressure or 70 to 90°C under reduced pressure (1 to 30 torr). In this specification, % refers to % by weight on a dry basis at 110°C.

抗菌性金属のうち銀の添加量は0.1〜50%好ましく
は1〜15%とすることが優れた殺菌力を示すという観
点から適当である.またさらに銅、亜鉛、水銀、錫、鉛
、ビスマス、カドミウム、クロム及びタリウムのいずれ
か1つあるいは2つ以上の金属を0.5〜15%含有す
ることが好ましい.本発明において研磨加工の程度にも
よるが、抗閑性粉体の添加量は樹脂成型品に対して0.
1〜10重量部、好ましくは0.5〜5重量部とするこ
とがその抗薗力の点から好ましい. 本発明を適用できる被加工物としては容易に成型できる
樹脂であれば熱可塑性樹脂、熱硬化性樹脂あるいはゴム
等いずれも使用できる.この内、研磨加工工程中に生じ
る摩耗熱により溶融しないポリプロピレン、ポリエステ
ル、ポリアミド、フェノール樹脂、メラミン樹脂、ポリ
テレフタレート等及びこれらの繊維強化プラスチック(
FRP)、無機微粒子充填プラスチックが好ましい.上
記の樹脂を成型する方法は従来より知られているブロー
成型、圧延成型、押出成型、射出成型などいずれの方法
でもよい.その形状は従来より製造されているものと同
様でよい. 本発明において研磨方法は、従来よりプラスチック成型
品のパリ取り、研掃、切削等を行っていた方法をいずれ
も適用できる.例えば、バレル式加工法、インペラ一式
加工法、乾式ブラスト式加工法、湿式ブラスト式加工法
、ワイヤーブラシ加工法等を挙げることができるが、こ
のうち加工の容易さ、加工精度より湿式ブラスト式加工
法が好ましい. 本発明において研磨条件は抗薗力を充分発揮させる観点
より加工前に比べて表面積が115%以上、好ましくは
130%以上とするように調整する.湿式プラスト加工
方法の場合、加圧空気圧力を2〜14kg/catG、
ノズルロ流速を35 〜250m /分、研磨材吐出量
を800〜3000cc/分と調整し、ムラなく表面処
理することにより加工前に比べて表面積が115%以上
の成型品を得ることができる。
Among the antibacterial metals, it is appropriate to add silver in an amount of 0.1 to 50%, preferably 1 to 15%, from the viewpoint of exhibiting excellent bactericidal activity. Furthermore, it is preferable to contain 0.5 to 15% of one or more of copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium. In the present invention, although it depends on the degree of polishing, the amount of anti-slip powder added to the resin molded product is 0.
It is preferable to use 1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, from the viewpoint of anti-polishing power. As the workpiece to which the present invention can be applied, any resin that can be easily molded can be used, such as thermoplastic resin, thermosetting resin, or rubber. Among these, polypropylene, polyester, polyamide, phenol resin, melamine resin, polyterephthalate, etc., which do not melt due to the heat of abrasion generated during the polishing process, and their fiber-reinforced plastics (
FRP) and plastics filled with inorganic fine particles are preferred. The above resin may be molded by any conventionally known method such as blow molding, rolling molding, extrusion molding, or injection molding. Its shape may be the same as conventionally manufactured products. As the polishing method in the present invention, any conventional method for deburring, grinding, cutting, etc. of plastic molded products can be applied. For example, there are barrel processing methods, impeller set processing methods, dry blast processing methods, wet blast processing methods, wire brush processing methods, etc., but among these methods, wet blast processing is preferred due to ease of processing and processing accuracy. Law is preferred. In the present invention, the polishing conditions are adjusted so that the surface area is 115% or more, preferably 130% or more, compared to before processing, from the viewpoint of fully demonstrating the anti-polishing force. In the case of wet plast processing method, pressurized air pressure is 2 to 14 kg/catG,
By adjusting the nozzle flow rate to 35 to 250 m/min and the abrasive discharge rate to 800 to 3,000 cc/min, and performing an even surface treatment, a molded product with a surface area of 115% or more compared to before processing can be obtained.

本発明で研磨処理に用いる研磨材としては、研磨材とし
て用いられているものはいずれも適用できる。例えば、
硅砂、シラス、くるみ殻扮等の天然物、ガラスビーズ、
酸化チタン、炭化ケイ素、シリカ、アルミナ、カーボラ
ンダム、金属砂やフェノール樹脂、メラミン樹脂、エボ
キシ樹脂、尿素樹脂、ポリエステル樹脂、グアナミン樹
脂等の合成樹脂等、水、氷、ドライアイス等を挙げるこ
とができるが、このうち加工後被加工物に残留しに<<
、人体に対して安全性が高いという観点より、酸化チタ
ン、シリカ、アルミナやフェノール樹脂、メラミン樹脂
、エポキシ樹脂、尿素樹脂、ポリエステル樹脂、グアナ
ミン樹脂等の合成樹脂等、水、氷、ドライアイスが好ま
しい。研磨材の粒度は50〜150メッシェ、好ましく
は60〜80メッシュとすることが加工しやすく、かつ
被加工物に残留しにくい観点より良い. 本発明で研磨処理に用いる研磨材の中に抗菌性粉体を配
合し、被加工物表面に抗菌性扮体を直接付着させる加工
方法をとることもできる.この場合、抗菌性粉体の配合
割合は研磨材に対して10〜50%、好ましくは20〜
30%とする.本発明の無菌成型品は細菌、真菌等に対
する抗菌力に優れており、耐微生物性の要求される各分
野の樹脂成型品に適用できる。例えば、まな板、はし、
しゃもじ、弁当箱、食品トレー、食品コンテナー等の食
品接触器具、ごみ箱、流し台、排水ダクト等の台所器具
、浴槽、風呂桶、便器、トイレ水タンク等のバストイレ
タリー器具に用いることが好ましいが、これらに限定さ
れるものではない. 〔発明の効果〕 以上のように本願発明の無菌成型品は、抗菌性粉体を含
有する樹脂成型品の表面を研磨したものであるから、そ
の表面積は大きくなり、抗閑性粉体が多く表面に存在す
ることとなり、成型品表面での微生物の繁殖を長期間に
わたって抑えて、そこを無菌状態に保ち得る効果がある
. しかもそのような無菌成型品の製造は、抗菌性扮体を含
有させて形成した樹脂成型品の表面を研磨するのみであ
るから、従来の梼脂成型品の製造方法と略同等の方法で
製造できる効果もある.〔実施例〕 以下本発明を実施例によりさらに詳細に説明する. 参考例(抗菌性粉体の調製) アルミノケイ酸塩は市販のA一型ゼオライト(NazO
  −^1zOs:1.9SiOx  ・XH*0:平
均粒径1.5μ一)、市版のY一型ゼオライト(1.I
Na20 H AI!os1.4siOx  ・XH*
0:平均粒径0.7 μ!1)、特開昭61−1741
11号に準拠して得た無定形アルミノケイ酸塩(0.9
3NaJ  H AI*Oz  ’ 2.55SiOz
 ・XHgO:平均粒径0.9 μl》の3種類を使用
した.イオン交換の為の各イオンを従供する塩として八
gNo, 、Cu(NOs)露、Zn(NOx)ts 
SnSO<の4種類を使用した.表1に各サンプル調製
時に使用したゼオライトの種類と混合水溶液に含まれる
塩の種類及び濃度を示した.No.l〜No.9の9種
類の抗菌性アルミノケイ酸塩のサンプルを得た. 各サンプルとも、110℃で加熱乾燥した粉末1kgに
水を加えて、l,31のスラリーとし、その後攪拌して
脱気し、さらに適量の0.5N硝酸溶液と水を加えてp
Hを5〜7に調整し、全容を1.8 1のスラリーとし
た。次にイオン交換の為、所定濃度の所定の塩の混合水
溶液31を加えて全容を4.81とし、このスラリー液
を40〜60℃に保持しlO〜48時間攪拌しつつ平衡
状態に到達させた状態に保持した.イオン交換終了後ア
ルミノケイ酸塩相を濾過し室温の水または温水でアルミ
ノケイ酸塩相中の過剰の銀イオン、銅イオン、亜鉛イオ
ンまたはすずイオンがなくなる迄水洗した.次にサンプ
ルを110℃で加熱乾燥し、9種類のサンプルを得た.
得られたNo.1=No.9の抗菌性アルミノケイ酸塩
サンプルに関するデータを表1に示す. 実施例(無菌成型品の製造.表2の実施例1〜11参照
) 参考例で得た各抗菌性粉体と高密度ポリエチレン(三菱
油化ユカロンHD−JX22)を混合し、まな板(30
cs X 65cm X 12鶴)を射出成型にて成型
した。
As the abrasive material used in the polishing process in the present invention, any abrasive material used as an abrasive material can be used. for example,
Natural products such as silica sand, whitebait, and walnut shells, glass beads,
Titanium oxide, silicon carbide, silica, alumina, carborundum, metal sand, synthetic resins such as phenol resin, melamine resin, epoxy resin, urea resin, polyester resin, guanamine resin, water, ice, dry ice, etc. However, it remains on the workpiece after machining.
From the viewpoint of high safety for the human body, water, ice, dry ice, etc. are preferable. The particle size of the abrasive is preferably 50 to 150 mesh, preferably 60 to 80 mesh, from the viewpoint of ease of processing and less residue on the workpiece. In the present invention, it is also possible to incorporate antibacterial powder into the abrasive material used in the polishing process, and to apply a processing method in which the antibacterial agent is directly attached to the surface of the workpiece. In this case, the blending ratio of antibacterial powder is 10 to 50%, preferably 20 to 50%, based on the abrasive material.
It shall be 30%. The aseptic molded product of the present invention has excellent antibacterial activity against bacteria, fungi, etc., and can be applied to resin molded products in various fields where microbial resistance is required. For example, cutting boards, chopsticks,
It is preferable to use it for food contact equipment such as rice scoops, lunch boxes, food trays, and food containers, kitchen equipment such as trash cans, sinks, and drainage ducts, and bathroom toiletry equipment such as bathtubs, bathtubs, toilet bowls, and toilet water tanks. It is not limited to. [Effects of the Invention] As described above, since the aseptic molded product of the present invention is a resin molded product containing antibacterial powder whose surface is polished, its surface area is large and the anti-stagnation powder is contained in a large amount. It exists on the surface and has the effect of suppressing the growth of microorganisms on the surface of the molded product over a long period of time, keeping it sterile. Moreover, since the production of such aseptic molded products involves only polishing the surface of the resin molded product containing an antibacterial dressing, it can be manufactured using a method that is almost the same as the manufacturing method of conventional resin molded products. There are some effects that can be achieved. [Example] The present invention will be explained in more detail below with reference to Examples. Reference example (preparation of antibacterial powder) Aluminosilicate is commercially available type A zeolite (NazO
-^1zOs: 1.9SiOx ・XH*0: Average particle size 1.5μ1), City version Y1 type zeolite (1.I
Na20H AI! os1.4siOx ・XH*
0: Average particle size 0.7 μ! 1), Japanese Patent Publication No. 61-1741
Amorphous aluminosilicate (0.9
3NaJ H AI*Oz ' 2.55SiOz
・XHgO: Three types with average particle size of 0.9 μl were used. Eight grams of salt to provide each ion for ion exchange: No., Cu(NOs), Zn(NOx)ts
Four types of SnSO were used. Table 1 shows the type of zeolite used in preparing each sample and the type and concentration of salts contained in the mixed aqueous solution. No. l~No. Nine types of antibacterial aluminosilicate samples were obtained. For each sample, water was added to 1 kg of powder that had been heat-dried at 110°C to make a 1.31 mm slurry, which was then stirred and degassed, and an appropriate amount of 0.5N nitric acid solution and water were added to make a slurry.
H was adjusted to 5 to 7, and the entire slurry was made into a 1.81 slurry. Next, for ion exchange, a mixed aqueous solution 31 of a predetermined salt with a predetermined concentration was added to bring the total volume to 4.81, and this slurry liquid was maintained at 40 to 60°C and stirred for 10 to 48 hours to reach an equilibrium state. It was kept in the same state. After ion exchange, the aluminosilicate phase was filtered and washed with room temperature water or hot water until excess silver, copper, zinc, or tin ions were removed from the aluminosilicate phase. Next, the samples were heated and dried at 110°C to obtain nine types of samples.
The obtained No. 1=No. Data for the 9 antibacterial aluminosilicate samples are shown in Table 1. Examples (Manufacture of aseptic molded products. See Examples 1 to 11 in Table 2) Each antibacterial powder obtained in the reference example was mixed with high-density polyethylene (Mitsubishi Yucalon HD-JX22), and a cutting board (30
cs x 65cm x 12 cranes) was molded by injection molding.

これらをさらに不二精機製造所製湿式プラスト加工機L
H−5にて下記の条件にてブラスト加工した。なお樹脂
配合比、研磨材材質等については表2に示す. 加圧空気圧力:   5kg/as” Qノズル口流連
:  60m/分 ノズル径  :  8龍 投射距離  :  50am 研磨材吐出1 : 2000 cc /分尚比較例とし
て、表2の比較例1〜3に示す如く、研磨加工のしてな
いまな板も製造した.試験例(抗菌力試験)
Wet-type plastic processing machine L manufactured by Fuji Seiki Seisakusho
Blasting was carried out using H-5 under the following conditions. The resin compounding ratio, abrasive material, etc. are shown in Table 2. Pressurized air pressure: 5 kg/as'' Q nozzle flow rate: 60 m/min Nozzle diameter: 8 dragons Projection distance: 50 am Abrasive material discharge 1: 2000 cc/min As comparative examples, Comparative Examples 1 to 3 in Table 2 are shown. We also manufactured a cutting board that was not polished.Test example (antibacterial activity test)

Claims (1)

【特許請求の範囲】 1、抗菌性粉体を含有する樹脂成型品の表面を研磨した
ことを特徴とする無菌成型品。 2、樹脂成型品の表面が研磨されて、加工前に比べて表
面積が115%以上となっている請求項1記載の無菌成
型品。 3、樹脂成型品の表面が抗菌性粉体を配合したブラスト
加工研磨材によって研磨されている請求項1又は2記載
の無菌成型品。
[Scope of Claims] 1. An aseptic molded product, characterized in that the surface of the resin molded product containing antibacterial powder is polished. 2. The aseptic molded product according to claim 1, wherein the surface of the resin molded product is polished so that the surface area is 115% or more compared to that before processing. 3. The aseptic molded product according to claim 1 or 2, wherein the surface of the resin molded product is polished with a blasting abrasive material containing antibacterial powder.
JP11583389A 1989-05-08 1989-05-08 Aseptic molded products Expired - Lifetime JP2784937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11583389A JP2784937B2 (en) 1989-05-08 1989-05-08 Aseptic molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11583389A JP2784937B2 (en) 1989-05-08 1989-05-08 Aseptic molded products

Publications (2)

Publication Number Publication Date
JPH02295524A true JPH02295524A (en) 1990-12-06
JP2784937B2 JP2784937B2 (en) 1998-08-13

Family

ID=14672249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11583389A Expired - Lifetime JP2784937B2 (en) 1989-05-08 1989-05-08 Aseptic molded products

Country Status (1)

Country Link
JP (1) JP2784937B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295127A (en) * 1992-04-20 1993-11-09 Matsushita Electric Ind Co Ltd Antifungal molded resin product
US5433424A (en) * 1993-02-16 1995-07-18 Daikyo Co., Ltd. Anti-bacterial chopping board
JPH08299070A (en) * 1996-05-30 1996-11-19 Matsushita Electric Ind Co Ltd Kitchen furniture
JPH08299071A (en) * 1996-05-30 1996-11-19 Matsushita Electric Ind Co Ltd Kitchen device
US6495367B1 (en) * 1994-09-19 2002-12-17 Sekisui Kagaku Kogyo Kabushiki Kaisha Method of accelerating blood coagulation using an antimicrobial metal
JP2007022944A (en) * 2005-07-13 2007-02-01 Narupura:Kk Antibacterial and antifungal plastic molding product and method for producing the same
JP2009209201A (en) * 2008-02-29 2009-09-17 Toyo Seikan Kaisha Ltd Ultrafine metal particle-containing molded article
JP2009209199A (en) * 2008-02-29 2009-09-17 Toyo Seikan Kaisha Ltd Resin-molded article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295127A (en) * 1992-04-20 1993-11-09 Matsushita Electric Ind Co Ltd Antifungal molded resin product
US5433424A (en) * 1993-02-16 1995-07-18 Daikyo Co., Ltd. Anti-bacterial chopping board
US5562872A (en) * 1993-02-16 1996-10-08 Daikyo Co., Ltd. A method for manufacturing an antibacterial chopping board
US6495367B1 (en) * 1994-09-19 2002-12-17 Sekisui Kagaku Kogyo Kabushiki Kaisha Method of accelerating blood coagulation using an antimicrobial metal
JPH08299070A (en) * 1996-05-30 1996-11-19 Matsushita Electric Ind Co Ltd Kitchen furniture
JPH08299071A (en) * 1996-05-30 1996-11-19 Matsushita Electric Ind Co Ltd Kitchen device
JP2007022944A (en) * 2005-07-13 2007-02-01 Narupura:Kk Antibacterial and antifungal plastic molding product and method for producing the same
JP2009209201A (en) * 2008-02-29 2009-09-17 Toyo Seikan Kaisha Ltd Ultrafine metal particle-containing molded article
JP2009209199A (en) * 2008-02-29 2009-09-17 Toyo Seikan Kaisha Ltd Resin-molded article

Also Published As

Publication number Publication date
JP2784937B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
EP2208420B1 (en) Silver-containing inorganic antibacterial
EP2213173B1 (en) Silver-containing inorganic antibacterial
US8231883B2 (en) Silver-based inorganic antimicrobial agent and method for preparing the same
EP2677007B1 (en) Antibacterial resin composition
JP2005501113A (en) Antibacterial glass powder that suppresses inflammation and heals wounds, and method of using the same
CN110590241B (en) Long-acting antibacterial artificial stone and preparation process thereof
JPH02295524A (en) Germ-free molding
JP2846051B2 (en) Antibacterial container
JPH02251292A (en) Sterilizing material for cooling tower
JPH09249511A (en) Antimicrobial agent and its production
JP3578514B2 (en) Antibacterial resin
CN106479042A (en) A kind of air conditioner housing
JPH01153514A (en) Submicron a type zeolite and production thereof
WO2000064259A1 (en) Cooler chest with antimicrobial properties
JP3085682B2 (en) Antimicrobial composition
JP3467447B2 (en) Inorganic antibacterial material using calcium silicates
JPH1045410A (en) Antibacterial silver zeolite, its production and antibacterial resin composition containing same
JPH0372102B2 (en)
JPH04215983A (en) Laminated tube container
JPH0218491A (en) Antimicrobial anti-fogging agent
JPH03161409A (en) Antibacterial agent and antibacterial resin composition
CN106366442A (en) Antibacterial resin based on ultraviolet light absorption
JPH11349421A (en) Antimicrobial material
JPH0747282A (en) Catalyst for manufacturing lipid-decomposable water
JPH03188168A (en) Drink can and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

EXPY Cancellation because of completion of term