JPH0229500B2 - - Google Patents

Info

Publication number
JPH0229500B2
JPH0229500B2 JP62083736A JP8373687A JPH0229500B2 JP H0229500 B2 JPH0229500 B2 JP H0229500B2 JP 62083736 A JP62083736 A JP 62083736A JP 8373687 A JP8373687 A JP 8373687A JP H0229500 B2 JPH0229500 B2 JP H0229500B2
Authority
JP
Japan
Prior art keywords
prepreg sheet
tubular body
sheet
sheets
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62083736A
Other languages
Japanese (ja)
Other versions
JPS63249629A (en
Inventor
Saburo Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Sangyo Inc
Original Assignee
Koei Sangyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Sangyo Inc filed Critical Koei Sangyo Inc
Priority to JP62083736A priority Critical patent/JPS63249629A/en
Priority to KR1019870004475A priority patent/KR920008924B1/en
Publication of JPS63249629A publication Critical patent/JPS63249629A/en
Publication of JPH0229500B2 publication Critical patent/JPH0229500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fishing Rods (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、弾性係数、曲げ強度の相違する繊維
からなる2種以上のプリプレーグシートを接続し
て形成した複合管状体に関し、特に釣り竿を形成
するのに好適な複合管状体に関する。 (従来の技術) 近年、カーボン繊維、ガラス繊維、アラミド繊
維、アルミナ繊維等を用いた釣竿は常用されてい
る。これら釣竿はこれらのカーボン繊維等の繊維
を引揃えて或は織布、不織布にして、熱硬化性樹
脂、例えばエポキシ樹脂のような未硬化の状態で
含浸させてプリプレーグシートを作製し、このプ
リプレーグシートを繊維の長手方向に沿つた軸に
捲回して管状体に形成し、これを加熱して硬化す
る処理を施したものである。そして自然竹のよう
に細径の先端から根元に至るまで次第に径が増加
し全体として自然な撓みを備えるものが最適とさ
れて来た。 しかし前記カーボン繊維、ガラス繊維、アラミ
ド繊維、アルミナ繊維の単一繊維を用いた釣竿は
その先端から根元まで同一材で構成されているた
め、例えば、カーボン繊維のように曲げ剛性が大
きいもの(弾性係数:24t/mm2)にあつては、竿
全体の剛性が高められて先端に自然な撓みが得ら
れず所謂アタリの感度が低下する問題がある。ま
たガラス繊維(弾性係数:0.7t/mm2)、アラミド
繊維(弾性係数:1.2t/mm2)、アルミナ繊維(弾
性係数:1.2t/mm2)のように曲げ剛性が小さいも
のにあつては、先端に自然な撓みが与えられ所謂
アタリの感度は好適であるが竿全体の剛性が低下
して竿全体が大きく曲がつて取扱いが悪いという
不都合が生じる。 また第11図示のように釣竿の先端側の竿杆a
に例えばガラス繊維のプリプレーグシートからな
る管状部材を用い、根元側の竿杆bに例えばカー
ボン繊維のプリプレーグシートからなる管状体を
用い、両竿杆a,bの接続部cに両竿杆a,bの
夫々に亘る筒状或いは棒状の接続部材dを内嵌し
て接続した継竿は知られている。このような構成
によるときは、先端側の竿杆aと根元側の竿杆b
との接続部cは曲げ強度が極端に異なるため先端
側の竿杆aは曲がるが、根元側の竿杆bは曲がら
ないという現象が生じて接続部cに無理な力が掛
り、ときには接続部cが破損することもあり、到
底釣竿全体に自然な撓みは求められなかつた。 (発明が解決しようとする問題点) 本発明は、かかる従来の不都合を解消し、接合
部が破損することなく全体に亘つて自然竹のよう
な全体として自然な撓みを備える複合管状体を提
供しようとするものである。 (問題点を解決するための手段) 本発明は前記問題点を解消するためになされた
ものであつて、カーボン繊維を引き揃えて熱硬化
性樹脂を含浸させた第1プリプレーグシートとガ
ラス繊維、アラミド繊維又はアルミナ繊維から選
択された1種以上の繊維の引き揃え又は織布に熱
硬化性樹脂を含浸させた第2プリプレーグシート
とからなる複合管状体において、未硬化の熱硬化
性樹脂を含浸させた第1プリプレーグシートのカ
ーボンの引き揃え方向に交叉する側縁を該シート
の中央を通る繊維の引き揃え方向に対して25乃至
70度の角度を与えて形成し、該側縁に未硬化の熱
硬化性樹脂を含浸させた第2プリプレーグシート
の側縁を接続して複合部を形成し、第1プリプレ
ーグシートの繊維の引き揃え方向に沿つたマンド
レルに両シートを巻回して管状体に形成し、前記
接合部を該管状体の周を少なくとも2周する螺旋
状に形成し、前記熱硬化性樹脂を加熱して硬化さ
せたことを特徴とする。 (作用) 本発明は、前記の構成を採用したので管状体の
接合部における両プリプレーグシート中の曲げ強
度の大きい第1プリプレーグシートの比率が第1
プリプレーグシート側から曲げ強度の小さい第2
プリプレーグシート側に亘つて徐々に低減し、そ
れに伴つて曲げ強度もその剛性が高い第1プリプ
レーグシート側からその剛性が低い第2プリプレ
ーグシート側に亘つて徐々に低減する構成とな
り、接合部における曲げ強度の顕著な差異が解消
される。 そして、第1プリプレーグシートの接合部を形
成する側縁の傾斜角Θが25度以上では第1プリプ
レーグシートのカーボン繊維の線膨張係数(係数
値=0)と第2プリプレーグシートのガラス繊維
(係数値=3.2×10-6/℃)、アラミド繊維(係数
値=−2.0×10-6/℃)、アルミナ繊維(係数値=
8.8×10-6/℃)の線膨張係数との差が極めて大
きいにもかかわらず、両プリプレーグシートが接
合部で適度に重合してそれぞれの繊維の割合が適
当となる。従つて、これを管状体に形成して、更
に、含浸させた熱硬化性樹脂を加熱硬化させたと
きに線膨張の差によつて接合部に歪みが生じて曲
がるようなことがない。また、傾斜角Θが70度に
近いときであつても、両プリプレーグシートが接
合部で適度に重合して、これを管状体に形成した
ときの接合部領域の剛性、曲げ強度は第2プリプ
レーグシートの繊維のみで形成したもの以上とな
り、そして、第1プリプレーグシートのみで形成
された管状体部分との曲げ強度の差が少なくな
る。 更に、両シートを管状体に形成したときに、前
記接合部が螺旋状に形成され、この螺旋状の接合
部が管状体の周を2回以上旋回させた構造として
第1プリプレーグシートと第2プリプレーグシー
トとの重合する領域を拡大して接合領域自体の曲
げ強度を強化する。 (実施例) 本発明の実施の一例を示す第1図乃至第5図に
従つて更に詳説する。 図面で、1は第1図示のように多数のカーボン
繊維1aを引揃えてエポキシ樹脂からなる未硬化
の熱硬化性樹脂1bを含浸させて形成した第1プ
リプレーグシート、2は多数のガラス繊維2aを
織り込んだ織布にエポキシ樹脂からなる熱硬化性
樹脂2bを含浸させて形成した第2プリプレーグ
シートである。 前記第2プリプレーグシート2は、ガラス繊維
に代えてアラミド繊維又はアルミナ繊維を用いる
ことができ、更にこれらの繊維を単一又は併用し
て用いることができる。 該第1プリプレーグシート1のカーボン繊維の
引き揃え方向に交叉する側縁3を、第1図示のよ
うに該シート1の中央を通る繊維の引き揃え方向
に対する角Θを25度乃至70度に形成した。 そして、第1プリプレーグシート1の前記側縁
3に前記第2プリプレーグシート2の側縁4を突
き合せ、両側縁3,4を加熱して含浸されたエポ
キシ樹脂1b,2bを溶融状態とし、ガラススク
リムシートからなるテープ5を粘着して接合部6
を形成した。 前記ガラススクリムシートに代えてカーボン繊
維の不織布を用いることができ、更に紙シートを
用いることができる。 このようにして接合した両シート1,2を第1
図仮想線示のマンドレル7に捲回して第2図示の
管状体8に形成した。 この管状体8を形成するときに、両シート1,
2をマンドレル7に2回以上捲回して前記接合部
6が管状体8の周を2周以上にわたつて螺旋状に
形成するようにした。 次いでマンドレル7に捲回した状態でテープを
巻き付け加熱処理を施して、含浸された熱硬化性
樹脂を硬化させ、放冷した後にマンドレル7を抜
き取り完成した。このようにして製造された管状
体8は第3図示のように接合部6が螺旋状に配設
されているので、この領域では第1プリプレーグ
シート1と第2プリプレーグシート2との比率が
第1プリプレーグシート1側に近くなる程次第に
カーボン繊維の比率がが高く、第2プリプレーグ
シート2側に近くなる程次第に低くなり、逆にガ
ラス繊維の比率が高まる。 従つて、この接合領域では、曲げ強度もその剛
性が高い第1プリプレーグシート1側からその剛
性が低い第2プリプレーグシート2側に亘つて
徐々に低減し管状体8の全長に亘つて次第に撓み
易さが変化する性質を与える。 前記実施例では、両シート1,2の側縁3,4
の接合をガラススクリムシートからなるテープ5
を用いて行つたが、該テープ5を熱溶融性合成樹
脂フイルムであつて両シート1,2に接着し易
い、例えばホツトメルトタイプのエポキシ樹脂フ
イルム、ポリエステル樹脂フイルムを用いるとき
は、接合するときに、該テープ5を加熱圧接する
ことにより、該テープ5を溶融してテープ5の厚
みをなくすることができる。 また、両シート1,2の接合する構造として
は、第4図乃至第10図の構成を採用することが
できる。 第4図は、両シート1,2の側縁3,4を突き
合せ、両側縁3,4の突き合せ部分を加熱して、
該部分に含浸されている未硬化の熱硬化性樹脂1
b,2bを溶融して両側縁3,4を接着したもの
である。 このとき、両シート1,2の側縁3,4を互に
重合させてもよいが、各シート1,2の厚さが大
きいときには、接合部6に段差が生じるので好ま
しくない。 第5図乃至第8図示の実施例は両シート1,2
が夫々、2層以上に積層したものを用いたときの
接合構造を示す。 第5図及び第6図示の実施例では、第1プリプ
レーグシート1を上層10と下層11とで構成
し、接合部を形成する側縁で上層10と下層11
より外方へ突出させて互に接着して形成した。ま
た第2プリプレーグシート2を上層10と下層2
1とで構成し、接合部を形成する側縁で下層21
を上層より外方へ突出させて互に接着して形成し
た。そして、第5図示のように互に突き合せて加
熱圧接して両シート1,2に含浸した熱硬化性樹
脂1b,2bにより接合した。 第7図及び第8図の実施例は、両シート1,2
を夫々、3層に積層して構成したものである。 第7図示では第1プリプレーグシート1の上層
110、中間層111、下層112を接合部を形
成する側縁で互にずらして段階状に積層して互に
積層して接着し、第2プリプレーグシート2の上
層210、中間層211、下層212を接合部を
形成する側縁で同様ににずらして段階状に積層し
て両シート1,2を突き合せて前記実施例と同様
に加熱圧接して熱硬化性樹脂1b,2bにより接
着して接合した。 第8図は、第7図の実施例を変更したもので第
2プリプレーグシート2の接合部を形成する側縁
で中間層211を上層210及び下層212から
突出させて形成し、他方第1プリプレーグシート
1は逆に上層110及び下層112を中間層11
1より突出させて形成し、両シート1,2を突き
合せて前記実施例と同様に加熱圧接して熱硬化性
樹脂1b,2bで接着して接合した。 第9図及び第10図は、第5図及び第6図の実
施例を変更したもので、第1プリプレーグシート
1の接合部を形成する側縁で上層10と下層11
との傾斜方向を逆にして積層し、同様に第2プリ
プレーグシート2の上層20と下層21との傾斜
方向を逆にして、第10図示のように両シート
1,2を突き合せて前記実施例と同様に加熱圧接
して熱硬化性樹脂1b,2bにより接着して接合
した。前記の実施例では、いずれも第2プリプレ
ーグシート2は織布を用いたが、ガラス繊維を引
き揃えたプリプレーグシートを用いても本発明の
目的を達成することができる。 次に、更に具体的実施例について説明する。 基本的構成は第1図乃至第3図の構成を採用し
た。 カーボン繊維を引揃えてエポキシ樹脂を含浸さ
せて形成した厚さ0.16mm、目付量150g/m2、シ
ート寸法幅50mm、長さ300mmのカーボンプリプレ
ーグシート1と、品番#182のガラス繊維を織り
込んだ織布にエポキシ樹脂を含浸させて形成した
厚さ0.18mm、目付量220g/m2、シート寸法幅50
mm、長さ300mmのガラスプリプレーグシート2を
用いた。 該カーボンプリプレーグシート1の接合部6を
形成する側縁3の前記傾斜角Θ(これに対応して
変化する接合部の幅W)を第1表の通り、種々変
えたものを製作し、該シート1の側縁3に前記ガ
ラスプリプレーグシート2の側縁4を突き合せて
ガラススクリムシートからなるテープ5を両シー
ト1,2に亘つて接着して接合した。 次いで両シート1,2をマンドレルに捲回して
管状体にすると共に、接合部を管状体の周を4周
させた螺旋状構造とし加熱硬化処理(温度130℃、
加熱時間1.5時間)を施して熱硬化させて製作し
た。 このようにして製作した各管状体の接合部領域
の曲げ強度及び成形した後の接合部の加熱変形に
よる曲りの有無は第1表の通りである。
(Industrial Application Field) The present invention relates to a composite tubular body formed by connecting two or more types of prepreg sheets made of fibers with different elastic modulus and bending strength, and particularly to a composite tubular body suitable for forming a fishing rod. Regarding a tubular body. (Prior Art) In recent years, fishing rods made of carbon fiber, glass fiber, aramid fiber, alumina fiber, etc. have been commonly used. These fishing rods are made by making prepreg sheets by aligning these carbon fibers or making them into woven or non-woven fabrics and impregnating them with thermosetting resin, such as epoxy resin, in an uncured state. A prepreg sheet is wound around an axis along the longitudinal direction of the fibers to form a tubular body, which is then heated and hardened. And, like natural bamboo, the diameter gradually increases from the thin tip to the root, and it has been considered optimal to have natural flexure as a whole. However, fishing rods made of single fibers such as carbon fiber, glass fiber, aramid fiber, or alumina fiber are made of the same material from the tip to the base. With a coefficient of 24t/mm 2 ), there is a problem that the rigidity of the entire rod is increased and natural flexure cannot be obtained at the tip, resulting in a decrease in the so-called strike sensitivity. Also, for materials with low bending rigidity such as glass fiber (modulus of elasticity: 0.7t/mm 2 ), aramid fiber (modulus of elasticity: 1.2t/mm 2 ), and alumina fiber (modulus of elasticity: 1.2t/mm 2 ). Although the tip is given a natural bend and the so-called hit sensitivity is suitable, the rigidity of the entire rod is reduced and the entire rod is bent significantly, making it difficult to handle. Also, as shown in Figure 11, the rod a on the tip side of the fishing rod
For example, a tubular member made of a prepreg sheet of glass fiber is used for the rod, a tubular member made of a prepreg sheet of carbon fiber is used for the rod b on the base side, and a tubular member made of a prepreg sheet of carbon fiber is used for the rod rod b on the base side. A connecting rod in which a cylindrical or rod-shaped connecting member d extending over each of a and b is inserted and connected is known. When using such a configuration, the tip side rod a and the base side rod b
Since the bending strength of the connecting part c between the two ends is extremely different, a phenomenon occurs in which the rod a on the tip side bends, but the rod rod b on the base side does not bend, resulting in excessive force being applied to the connecting part c, and sometimes the connecting part c could be damaged, and it was impossible to require the entire fishing rod to have natural bending. (Problems to be Solved by the Invention) The present invention eliminates such conventional inconveniences and provides a composite tubular body that has natural flexure as a whole like natural bamboo without causing damage to the joints. This is what I am trying to do. (Means for Solving the Problems) The present invention has been made to solve the above problems, and provides a first prepreg sheet made of aligned carbon fibers and impregnated with a thermosetting resin, and a glass fiber. , a second prepreg sheet made of an aligned or woven fabric of one or more fibers selected from aramid fibers or alumina fibers impregnated with a thermosetting resin, in which an uncured thermosetting resin is used. The side edge of the first prepreg sheet impregnated with carbon fibers that intersects with the direction of alignment of the carbon fibers is 25 to
The side edges of a second prepreg sheet formed at an angle of 70 degrees and impregnated with an uncured thermosetting resin are connected to form a composite part, and the fibers of the first prepreg sheet are connected. Both sheets are wound around a mandrel along the alignment direction to form a tubular body, the joined portion is formed in a spiral shape that goes around the circumference of the tubular body at least twice, and the thermosetting resin is heated. It is characterized by being hardened. (Function) Since the present invention employs the above configuration, the ratio of the first prepreg sheet having a higher bending strength among both prepreg sheets at the joint portion of the tubular body is the first prepreg sheet.
2nd layer with lower bending strength from the prepreg sheet side
The bending strength gradually decreases from the first prepreg sheet side where the rigidity is high to the second prepreg sheet side where the rigidity is low. Significant differences in bending strength between sections are eliminated. If the inclination angle Θ of the side edge forming the joint of the first prepreg sheet is 25 degrees or more, the linear expansion coefficient (coefficient value = 0) of the carbon fiber of the first prepreg sheet and the glass of the second prepreg sheet Fiber (coefficient value = 3.2×10 -6 /℃), aramid fiber (coefficient value = -2.0×10 -6 /℃), alumina fiber (coefficient value =
Despite the extremely large difference in linear expansion coefficient (8.8×10 -6 /°C), both prepreg sheets polymerize moderately at the joint, and the proportion of each fiber becomes appropriate. Therefore, when this is formed into a tubular body and the impregnated thermosetting resin is heated and cured, there is no possibility that the bonded portion will be distorted and bent due to the difference in linear expansion. Furthermore, even when the inclination angle Θ is close to 70 degrees, the rigidity and bending strength of the joint region when both prepreg sheets are moderately polymerized at the joint and formed into a tubular body are second to none. The bending strength is greater than that formed only from the fibers of the prepreg sheet, and the difference in bending strength from the tubular body portion formed only from the first prepreg sheet is reduced. Furthermore, when both sheets are formed into a tubular body, the joint portion is formed in a spiral shape, and the spiral joint portion turns around the tubular body two or more times. 2. The area where the material overlaps with the prepreg sheet is expanded to strengthen the bending strength of the bonding area itself. (Example) A more detailed explanation will be given with reference to FIGS. 1 to 5 showing an example of implementation of the present invention. In the drawings, 1 is a first prepreg sheet formed by aligning a large number of carbon fibers 1a and impregnating them with an uncured thermosetting resin 1b made of epoxy resin as shown in the first figure, and 2 is a large number of glass fibers. This is a second prepreg sheet formed by impregnating a thermosetting resin 2b made of epoxy resin into a woven fabric woven with 2a. In the second prepreg sheet 2, aramid fibers or alumina fibers can be used instead of glass fibers, and these fibers can be used alone or in combination. The side edges 3 of the first prepreg sheet 1 that intersect with the direction in which the carbon fibers are aligned are set at an angle Θ of 25 degrees to 70 degrees with respect to the direction in which the fibers are aligned through the center of the sheet 1, as shown in the first figure. Formed. Then, the side edges 4 of the second prepreg sheet 2 are butted against the side edges 3 of the first prepreg sheet 1, and the side edges 3 and 4 are heated to melt the impregnated epoxy resins 1b and 2b. , a tape 5 made of a glass scrim sheet is attached to the joint 6.
was formed. Instead of the glass scrim sheet, a carbon fiber nonwoven fabric can be used, and a paper sheet can also be used. Both sheets 1 and 2 joined in this way are
It was wound around a mandrel 7 shown by phantom lines in the figure to form a tubular body 8 shown in the second figure. When forming this tubular body 8, both sheets 1,
2 was wound around the mandrel 7 two or more times so that the joint 6 was formed in a spiral shape around the tubular body 8 two or more times. Next, a tape was wound around the mandrel 7 and heat treatment was performed to harden the impregnated thermosetting resin, and after cooling, the mandrel 7 was pulled out and completed. Since the tubular body 8 manufactured in this way has the joint portion 6 arranged in a spiral shape as shown in the third figure, the ratio of the first prepreg sheet 1 to the second prepreg sheet 2 in this region is The closer to the first prepreg sheet 1 side, the higher the ratio of carbon fiber becomes, and the closer to the second prepreg sheet 2 side, the lower the ratio becomes, and conversely, the ratio of glass fiber increases. Therefore, in this joint region, the bending strength gradually decreases from the first prepreg sheet 1 side, which has high rigidity, to the second prepreg sheet 2 side, which has low rigidity, and gradually decreases over the entire length of the tubular body 8. Gives the property that the ease of bending changes. In the embodiment, the side edges 3, 4 of both sheets 1, 2
Tape 5 made of glass scrim sheet
However, when the tape 5 is a heat-melting synthetic resin film that easily adheres to both sheets 1 and 2, such as a hot melt type epoxy resin film or polyester resin film, when joining Second, by heat-pressing the tape 5, it is possible to melt the tape 5 and eliminate the thickness of the tape 5. Further, as a structure for joining both sheets 1 and 2, the configurations shown in FIGS. 4 to 10 can be adopted. FIG. 4 shows that the side edges 3 and 4 of both sheets 1 and 2 are butted together, and the abutted portions of both side edges 3 and 4 are heated.
Uncured thermosetting resin 1 impregnated in the part
b, 2b are melted and both side edges 3, 4 are adhered. At this time, the side edges 3 and 4 of both sheets 1 and 2 may be overlapped with each other, but this is not preferable since a step will be formed in the joint portion 6 when the thickness of each sheet 1 and 2 is large. The embodiments shown in FIGS. 5 to 8 are for both sheets 1 and 2.
1 and 2 respectively show the bonding structure when two or more layers are used. In the embodiment shown in FIGS. 5 and 6, the first prepreg sheet 1 is composed of an upper layer 10 and a lower layer 11, and the upper layer 10 and the lower layer 11
They were made to protrude further outward and were bonded together. In addition, the second prepreg sheet 2 is formed into an upper layer 10 and a lower layer 2.
1 and a lower layer 21 at the side edge forming the joint.
were formed by protruding outward from the upper layer and adhering to each other. Then, as shown in Figure 5, the sheets 1 and 2 were abutted and welded together under heat and pressure, and bonded using the thermosetting resins 1b and 2b impregnated into both sheets 1 and 2. In the embodiments shown in FIGS. 7 and 8, both sheets 1 and 2 are
It is constructed by laminating three layers, respectively. In FIG. 7, the upper layer 110, middle layer 111, and lower layer 112 of the first prepreg sheet 1 are stacked in a stepwise manner while being shifted from each other at the side edges forming the joint portion, and are then laminated and bonded to each other. The upper layer 210, the middle layer 211, and the lower layer 212 of the plague sheet 2 are stacked in a stepwise manner with the side edges forming the joint section shifted in the same manner, and both sheets 1 and 2 are butted together and heat pressure welded in the same manner as in the previous embodiment. Then, they were bonded and bonded using thermosetting resins 1b and 2b. FIG. 8 shows a modification of the embodiment shown in FIG. 7, in which an intermediate layer 211 is formed to protrude from the upper layer 210 and the lower layer 212 at the side edge forming the joint part of the second prepreg sheet 2, while the first The prepreg sheet 1 conversely has an upper layer 110 and a lower layer 112 as an intermediate layer 11.
1, and both sheets 1 and 2 were abutted against each other and bonded by heat and pressure in the same manner as in the previous embodiment and bonded with thermosetting resins 1b and 2b. 9 and 10 show a modification of the embodiment shown in FIGS. 5 and 6, in which an upper layer 10 and a lower layer 11 are connected at the side edge forming the joint of the first prepreg sheet 1.
Similarly, the upper layer 20 and the lower layer 21 of the second prepreg sheet 2 are stacked with their inclination directions reversed, and both sheets 1 and 2 are butted against each other as shown in FIG. They were bonded by heat-pressure welding and bonded using thermosetting resins 1b and 2b in the same manner as in the example. In the above embodiments, the second prepreg sheet 2 is made of woven fabric, but the object of the present invention can also be achieved using a prepreg sheet made of aligned glass fibers. Next, more specific examples will be described. The basic configuration adopted is the configuration shown in FIGS. 1 to 3. A carbon prepreg sheet 1 with a thickness of 0.16 mm, a basis weight of 150 g/m 2 , a sheet size of 50 mm in width, and a length of 300 mm is formed by aligning carbon fibers and impregnating them with epoxy resin, and glass fiber with product number #182 is woven into the sheet. Formed by impregnating woven fabric with epoxy resin, thickness 0.18 mm, basis weight 220 g/m 2 , sheet dimensions width 50
A glass prepreg sheet 2 with a length of 300 mm and a length of 300 mm was used. The inclination angle Θ of the side edge 3 forming the joint part 6 of the carbon prepreg sheet 1 (width W of the joint part that changes correspondingly) was manufactured in various ways as shown in Table 1, The side edge 4 of the glass prepreg sheet 2 was butted against the side edge 3 of the sheet 1, and a tape 5 made of a glass scrim sheet was bonded across both sheets 1 and 2 to join them. Next, both sheets 1 and 2 are wound around a mandrel to form a tubular body, and the joined portion is formed into a spiral structure with four turns around the tubular body, and heat-cured (temperature: 130°C,
The material was manufactured by heat curing using a heating time of 1.5 hours. Table 1 shows the bending strength of the joint region of each tubular body manufactured in this manner and the presence or absence of bending due to heating deformation of the joint after molding.

【表】【table】

【表】 尚、曲げ強度の測定方法は接合部領域の中間点
Sからカーボンプリプレーグシートで形成された
領域側へ10mm入つた位置を固定点Pとし、該固定
点よりガラスプリプレーグシートで形成される領
域側へ300mm離れた位置を荷重点Xとし、毎秒25
mmの速度で負荷を加えて測定した。(第2図参照) また、曲り変形の有無は、曲げ強度試験の最大
荷重を加えた後の荷重点Xにおける軸線に対する
曲り状態を目視観察した。 この結果、傾斜角Θが78度の比較例1では、ガ
ラスプリプレーグシート2のみで形成した管状体
の曲げ強度60Kg/mm2とほぼ同程度の曲げ強度しか
得られず、また接合部領域でガラスプリプレーグ
シートで形成された部分に破損が生じた。 また、傾斜角Θが11度である比較例2では、カ
ーボンプリプレーグシート1のみから形成した管
状体の曲げ曲度115Kg/mm2とガラスプリプレーグ
シートのみの管状体の曲げ強度の中間的な強度と
なつたが、復元性に劣り曲げ変形が残留した。 次に、前記と同一に作成したカーボンプリプレ
ーグシート1とガラスプリプレーグシート2とを
接合した両シートを用いて、管状体に形成したと
きに、接合部が管状体の周を旋回する回数による
変化を試験した。その結果は、第2表の通りであ
る。
[Table] The method for measuring bending strength is to set a fixed point P at a position 10 mm from the midpoint S of the joint area toward the area formed by the carbon prepreg sheet, and from this fixed point to the area formed by the glass prepreg sheet. Load point X is a position 300 mm away from the area where the
Measurements were made by applying a load at a speed of mm. (See FIG. 2) The presence or absence of bending deformation was determined by visually observing the bending state with respect to the axis at load point X after applying the maximum load of the bending strength test. As a result, in Comparative Example 1 where the inclination angle Θ was 78 degrees, the bending strength was only approximately the same as the bending strength of the tubular body formed only from the glass prepreg sheet 2 (60 kg/mm2 ) , and the bending strength in the joint region Damage occurred in the part formed from the glass prepreg sheet. In addition, in Comparative Example 2 where the inclination angle Θ is 11 degrees, the bending curvature of the tubular body formed only from the carbon prepreg sheet 1 is 115 kg/mm 2 and the bending strength of the tubular body formed only from the glass prepreg sheet. Although the strength was improved, the restorability was poor and bending deformation remained. Next, when the carbon prepreg sheet 1 and the glass prepreg sheet 2, which were created in the same manner as above, are bonded together and formed into a tubular body, the number of times the bonded portion turns around the tubular body is determined. Tested for changes. The results are shown in Table 2.

【表】【table】

【表】 尚、測定方法は、前記第1表の試験と同一であ
る。 以上の結果から明らかなように、管状体を形成
したとき、接合部は管状体の周を2回以上旋回す
る構造とすることが必要であり、好ましくは3回
以上とする。 (発明の効果) 本発明は、前記のことから明らかなように、管
状体の接合部領域における両プリプレーグシート
中のカーボンプリプレーグシートの比率がカーボ
ンプリプレーグシート側からガラスプリプレーグ
シート側に亘つて徐々に低減し、それに伴つて曲
げ強度もその剛性が高いカーボンプリプレーグシ
ート側からその剛性が低いガラスプリプレーグシ
ート側に亘つて徐々に低減することとなり、曲げ
強度及び剛性の顕著な差異が解消されるため接合
部領域が破損することなく全体に亘つて自然竹の
ような自然な撓みを備える複合管状体を提供する
の効果がある。
[Table] The measurement method was the same as the test in Table 1 above. As is clear from the above results, when the tubular body is formed, it is necessary that the joint portion turns around the tubular body two or more times, preferably three or more times. (Effects of the Invention) As is clear from the above, the present invention has an advantage that the ratio of carbon prepreg sheets in both prepreg sheets in the joint region of the tubular body is changed from the carbon prepreg sheet side to the glass prepreg sheet side. Along with this, the bending strength also gradually decreases from the carbon prepreg sheet side, which has higher rigidity, to the glass prepreg sheet side, which has lower rigidity, resulting in a noticeable difference in bending strength and rigidity. Since this is eliminated, it is possible to provide a composite tubular body that has natural flexure like natural bamboo throughout without damaging the joint area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の実施の一例を示
し、第1図は管状体を成形する前の一部破断展開
図、第2図は、成形された管状体の側面図、第3
図は、第2図の−線断面図、第4図乃至第1
0図は、カーボンプリプレーグシートとガラスプ
リプレーグシートとの接合構造を示し、第4図は
本発明の他の実施例の接合部を示す一部破断展開
図、第5図及び第6図は本発明の他の接合構造を
示すもので第5図は接合前の状態を示す説明図、
第6図は第5図の接合状態の断面図、第7図及び
第8図は、本発明の他の実施例の接合部の断面
図、第9図及び第10図は本発明の他の実施例の
接合部を示すもので第9図は接合前の状態を示す
説明図、第10図は第9図の接合状態の断面図、
第11図は、従来例の一部破断側面図である。 1……第1プリプレーグシート、1a……カー
ボン繊維、1b……熱硬化性樹脂、2……第2プ
リプレーグシート、2a……ガラス繊維、2b…
…熱硬化性樹脂、3,4……側縁、6……接合
部。
1 to 3 show an example of the implementation of the present invention, FIG. 1 is a partially cutaway developed view before forming a tubular body, FIG. 2 is a side view of the formed tubular body, and FIG. 3 is a side view of the formed tubular body.
The figures are a cross-sectional view taken along the line -- in Figure 2, and Figures 4 to 1.
0 shows a bonding structure between a carbon prepreg sheet and a glass prepreg sheet, FIG. 4 is a partially broken developed view showing a bonded part of another embodiment of the present invention, and FIGS. 5 and 6 are FIG. 5 is an explanatory diagram showing a state before joining, showing another joining structure of the present invention;
6 is a sectional view of the bonded state in FIG. 5, FIGS. 7 and 8 are sectional views of the bonded portion of another embodiment of the present invention, and FIG. 9 and 10 are 9 is an explanatory diagram showing the state before joining, and FIG. 10 is a cross-sectional view of the joined state in FIG. 9.
FIG. 11 is a partially cutaway side view of the conventional example. DESCRIPTION OF SYMBOLS 1... First prepreg sheet, 1a... Carbon fiber, 1b... Thermosetting resin, 2... Second prepreg sheet, 2a... Glass fiber, 2b...
...Thermosetting resin, 3, 4...Side edge, 6...Joint part.

Claims (1)

【特許請求の範囲】 1 カーボン繊維を引き揃えて熱硬化性樹脂を含
浸させた第1プリプレーグシートとガラス繊維、
アラミド繊維又はアルミナ繊維から選択された1
種以上の繊維の引き揃え又は織布に熱硬化性樹脂
を含浸させた第2プリプレーグシートとからなる
複合管状体において、未硬化の熱硬化性樹脂を含
浸させた第1プリプレーグシートのカーボンの引
き揃え方向に交叉する側縁を該シートの中央を通
る繊維の引き揃え方向に対して25乃至70度の角度
を与えて形成し、該側縁に未硬化の熱硬化性樹脂
を含浸させた第2プリプレーグシートの側縁を接
続して接合部を形成し、第1プリプレーグシート
の繊維の引き揃え方向に沿つたマンドレルに両シ
ートを巻回して管状体に形成し、前記接合部を該
管状体の周を少なくとも2周する螺旋状に形成
し、前記熱硬化性樹脂を加熱して硬化させたこと
を特徴とする複合管状体。 2 前記接合部が前記第1プリプレーグシートの
側縁と前記第2プリプレーグシートの側縁と突き
合せ、該突き合せた両シートの未硬化の熱硬化性
樹脂を加熱して両側縁を接着したことを特徴とす
る特許請求の範囲第1項記載の複合管状体。 3 前記接合部が前記第1プリプレーグシートの
側縁と第2プリプレーグシートの側縁とを突き合
わせ、両側縁の少なくとも一表面にテープを貼着
して接続したことを特徴とする特許請求の範囲第
1項記載の複合管状体。 4 前記テープが熱溶融性のフイルムからなるこ
とを特徴とする特許請求の範囲第3項記載の複合
管状体。 5 前記接合部が前記第1プリプレーグシートの
側縁と第2プリプレーグシートの側縁とを突き合
わせると共に両シートのいずれか一方に一体に接
着したガラススクリムシートを両側縁に重合し、
該ガラススクリムシートが重合した両シートの未
硬化の熱硬化性樹脂を加熱して両側縁を接着した
ことを特徴とする特許請求の範囲第1項記載の複
合管状体。 6 前記接合部が前記第1プリプレーグシートの
側縁と前記第2プリプレーグシートの側縁とを突
き合わせると共に両シートのいずれか一方に一体
に接着したカーボン不織布を両側縁に重合し、該
カーボン不織布が重合した両シートの未硬化の熱
硬化性樹脂を加熱して両側縁を接着したことを特
徴とする特許請求の範囲第1項記載の複合管状
体。 7 前記第1プリプレーグシート及び前記第2プ
リプレーグシートが少なくとも2層以上の積層体
からなり、前記接合部が各シートの側縁で積層位
置をずらして突き合わせて各層を互いに重合し、
該重合した両シートの未硬化の熱硬化性樹脂を加
熱して接着したことを特徴とする特許請求の範囲
第1項記載の複合管状体。
[Claims] 1. A first prepreg sheet made of aligned carbon fibers and impregnated with a thermosetting resin, and glass fibers;
1 selected from aramid fiber or alumina fiber
In a composite tubular body consisting of a second prepreg sheet made of aligned or woven fibers impregnated with a thermosetting resin, carbon of the first prepreg sheet impregnated with an uncured thermosetting resin; The side edges that intersect with the alignment direction of the sheet are formed at an angle of 25 to 70 degrees with respect to the alignment direction of the fibers passing through the center of the sheet, and the side edges are impregnated with an uncured thermosetting resin. The side edges of the second prepreg sheet are connected to form a joint, and both sheets are wound around a mandrel along the direction in which the fibers of the first prepreg sheet are aligned to form a tubular body. A composite tubular body, characterized in that the thermosetting resin is formed into a spiral shape that goes around the circumference of the tubular body at least twice, and the thermosetting resin is heated and cured. 2 The joint portion abuts the side edge of the first prepreg sheet and the side edge of the second prepreg sheet, and the uncured thermosetting resin of the butted sheets is heated to bond both side edges. A composite tubular body according to claim 1, characterized in that: 3. The joint portion is characterized in that the side edge of the first prepreg sheet and the side edge of the second prepreg sheet are butted against each other, and the connection is made by pasting tape on at least one surface of both side edges. Composite tubular body according to scope 1. 4. The composite tubular body according to claim 3, wherein the tape is made of a heat-fusible film. 5. The joining portion abuts the side edge of the first prepreg sheet and the side edge of the second prepreg sheet, and a glass scrim sheet integrally adhered to either one of both sheets is superimposed on both side edges,
2. The composite tubular body according to claim 1, wherein the glass scrim sheet is polymerized and the uncured thermosetting resin of both sheets is heated to bond both side edges. 6. The joining portion abuts the side edge of the first prepreg sheet and the side edge of the second prepreg sheet, and polymerizes the carbon nonwoven fabric integrally adhered to either one of both sheets on both side edges, and 2. The composite tubular body according to claim 1, wherein the uncured thermosetting resin of both sheets in which the carbon nonwoven fabric is polymerized is heated to bond both side edges together. 7. The first prepreg sheet and the second prepreg sheet are composed of a laminate of at least two or more layers, and the bonding portion is abutted against each other with the stacked positions shifted at the side edges of each sheet, so that the layers overlap each other,
2. The composite tubular body according to claim 1, wherein the uncured thermosetting resins of both of the polymerized sheets are bonded together by heating.
JP62083736A 1986-05-07 1987-04-07 Composite tubular body Granted JPS63249629A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62083736A JPS63249629A (en) 1987-04-07 1987-04-07 Composite tubular body
KR1019870004475A KR920008924B1 (en) 1986-05-07 1987-05-07 The structure of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083736A JPS63249629A (en) 1987-04-07 1987-04-07 Composite tubular body

Publications (2)

Publication Number Publication Date
JPS63249629A JPS63249629A (en) 1988-10-17
JPH0229500B2 true JPH0229500B2 (en) 1990-06-29

Family

ID=13810813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083736A Granted JPS63249629A (en) 1986-05-07 1987-04-07 Composite tubular body

Country Status (1)

Country Link
JP (1) JPS63249629A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60212578T2 (en) * 2002-05-22 2006-11-09 Salver S.P.A. Multi-layer air distribution hoses for vehicle air conditioning systems
JP5029023B2 (en) * 2007-01-18 2012-09-19 トヨタ自動車株式会社 Fiber reinforced composite material, molding method of fiber reinforced composite material, pair of prepregs, and pair of prepreg manufacturing methods
JP5532536B2 (en) * 2007-09-07 2014-06-25 トヨタ自動車株式会社 Laminated structure of prepreg
JP6438832B2 (en) * 2015-04-22 2018-12-19 Jxtgエネルギー株式会社 Pipe molding

Also Published As

Publication number Publication date
JPS63249629A (en) 1988-10-17

Similar Documents

Publication Publication Date Title
US5626529A (en) Golf club shaft and method of manufacture
US3969557A (en) Fiberglass vaulting pole
JPH01299023A (en) Structure honeycomb core and manufacture thereof
JPH0229500B2 (en)
US5569099A (en) Golf club shaft and laminar structural element and method for its manufacture
WO2006071465A2 (en) Spliceable fabric
KR920008924B1 (en) The structure of pipe
JPH02102682A (en) Shaft for golf club and its manufacture
JP3320244B2 (en) Tubular body
JPS60212334A (en) Manufacture of tubular body such as fishing rod
KR20010101875A (en) Method for producing angular components consisting of flat-strip laminated sections
JPH10258471A (en) Laminated type composite material structural body and its manufacture
KR100211305B1 (en) Method of manufacturing a fishing rod
JPH0377340B2 (en)
JP7335544B2 (en) Fiber reinforced resin structure
JPS61215767A (en) Splicing of glass cloth
JPH043467B2 (en)
JPH0818370B2 (en) Method for manufacturing pipe lining material
JPH019414Y2 (en)
JP3053567B2 (en) Golf club shaft manufacturing method
JPH03222734A (en) Unidirectionally arranged reinforcing fiber sheet and manufacture thereof
JPS5973916A (en) Sleeve for heat-shrinkable tubular coating
JPS6134980B2 (en)
JP2779807B2 (en) Composite board and method of manufacturing the same
JP3370341B2 (en) Synthetic golf club shaft and method of manufacturing the same