JPH02294784A - Method for converting image scale factor - Google Patents

Method for converting image scale factor

Info

Publication number
JPH02294784A
JPH02294784A JP1115548A JP11554889A JPH02294784A JP H02294784 A JPH02294784 A JP H02294784A JP 1115548 A JP1115548 A JP 1115548A JP 11554889 A JP11554889 A JP 11554889A JP H02294784 A JPH02294784 A JP H02294784A
Authority
JP
Japan
Prior art keywords
data
image
gradation
magnification
scale factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1115548A
Other languages
Japanese (ja)
Other versions
JP2736803B2 (en
Inventor
Hajime Isono
磯野 一
Kyoji Tachikawa
立川 恭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Finetech Nisca Inc
Original Assignee
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisca Corp filed Critical Nisca Corp
Priority to JP1115548A priority Critical patent/JP2736803B2/en
Publication of JPH02294784A publication Critical patent/JPH02294784A/en
Application granted granted Critical
Publication of JP2736803B2 publication Critical patent/JP2736803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation

Abstract

PURPOSE:To calculate the gradation of reconstituted digitized image data considering the gradation of original image data by interpolating between plural quantized data by the prescribed number of interpolating data to obtain similar analog data, sampling the obtained data by a sampling interval corresponding to a conversion scale factor to obtain quantized data after scale factor conversion. CONSTITUTION:In the case of contracting or expanding multi-gradation digital image data read out by an image scanner or the like by converting its scale factor, many interpolating data are found out between respective data to approximate analog data assuming information cut out at the time of reading or digitizing data. The reproduced quantized data are sampled by the sampling interval corresponding to a contracting or expanding scale factor. Consequently, the thinning or interpolation of data can be uniformed over the whole areas and the feature of an original image can be sufficiently reflected to gradation.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、ディジタル化(量子化及び楳本化を含む)
されたii7J像の縮小もしくは拡大を行う画像倍率の
変換方法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] This invention relates to digitalization (including quantization and Umemotoization).
The present invention relates to an image magnification conversion method for reducing or enlarging a ii7J image.

[従米の技術1 ディジタル化された画像の縮小もしくは拡大を行うには
、まず第1に縦、横に配列された画素を画像の変換倍率
に対応した画素数に変換することであり、第2には各画
素に配置させる階調などのlW像情報をJV算すること
である. 上記のうち、第2の階調などの画像情報の計抹は一般に
7リゴリズムが複雑となり、大きなメモリ容量を必要と
する. このため従米では、」二記第1のように画素数を変換す
ることに重,αをおいた間引き、平均値補問等の方法が
種々提案されている。
[Jubei's technique 1 To reduce or enlarge a digitized image, the first step is to convert the pixels arranged vertically and horizontally into the number of pixels corresponding to the conversion magnification of the image. The first step is to calculate the IW image information such as the gradation to be placed in each pixel. Among the above, calculation of image information such as the second gradation generally requires a complex algorithm and requires a large memory capacity. For this reason, in Jubei, various methods have been proposed, such as thinning with a weight α added to the conversion of the number of pixels, average value interpolation, etc., as described in Section 2.1.

そこでまずPJG図〜第8図を参照して従来の皐純間引
きの例を説明する. j7s6図は倍率変換前の10画素分の元データを示し
ており、横紬には等17g隔にドット(画素)位置を、
縦紬には階調データがm擬されている。
Therefore, an example of the conventional thinning method will be explained with reference to PJG diagrams to Figures 8. The j7s6 diagram shows the original data for 10 pixels before magnification conversion, and the dot (pixel) positions are placed at equal intervals of 17g on the horizontal pongee.
The vertical pongee has m gradation data simulated.

第7図は前記元データを70%に縮小するために第2、
liS4、第6番目のドットを間引いた場合を示してい
る。
Figure 7 shows the second step to reduce the original data to 70%.
liS4 shows the case where the 6th dot is thinned out.

また、第8図は同様に70%に縮小するために第2、第
5、第8番目のドットを間引いている.次に第9図なら
びに第10図を参照して従来の単純な平均値補間による
拡大画像の例を示す.第9図は第6図の元データに対し
て130%の拡大を行ったもので、元データの10ドッ
トに対して13ドットとなっている。そして補間は元の
データの第2と第3、第4と第5、第6と第7番目の中
間に、それぞれ各データの単純な平均値として与えられ
ている。
In addition, in FIG. 8, the second, fifth, and eighth dots are similarly thinned out to reduce the size to 70%. Next, an example of an enlarged image obtained by conventional simple mean value interpolation will be shown with reference to FIGS. 9 and 10. FIG. 9 is a 130% enlargement of the original data in FIG. 6, with 13 dots compared to 10 dots in the original data. Interpolation is given between the second and third, fourth and fifth, and sixth and seventh original data as a simple average value of each data.

また、弟10図は同じく130%の拡大にあたって、元
データの第2と第3、弟5と第6、第8と第9@目の中
開に、それぞれ各データの単純な平均値として与えられ
ている。
In addition, for the 10th younger brother figure, when expanding by 130%, the 2nd and 3rd, the 5th and 6th, and the 8th and 9th middle openings of the original data are given as a simple average value of each data. It is being

[発明が解決しようとする課題1 しかしながら、このような従米の画像倍率の変換方法で
は、例えば同じ(70%に縮小しても、第7図と第8図
とではドットの間引き位置によって階調が全く変化して
しまっている。またf:PJG図の元データの階調、例
えば極大値を示す第4ドットまでは階調増加の傾向が次
第に急になっているのに対しても、その傾向は全く消滅
してしまっている。第9図、第10図の拡大の場合につ
いても同様であって、拡大データ相互間、あるいは拡大
データと元データとの開においてら階調の相違が生じて
いることが明らかに読み取れる。
[Problem to be Solved by the Invention 1] However, in this conventional image magnification conversion method, even if the image magnification is reduced to the same value (70%), the gradation difference between FIG. 7 and FIG. 8 is different depending on the dot thinning position. The gradation of the original data of the f:PJG diagram, for example, up to the 4th dot which shows the maximum value, the gradation tends to increase gradually. This trend has completely disappeared.The same is true for the enlargements shown in Figures 9 and 10, where differences in gradation occur between the enlarged data or between the enlarged data and the original data. It can be clearly seen that

このように、特定ドットの開引き、あるいは待定区間へ
のデータ補間という従米の画像倍率の変換方法では、処
理を加える場所によって結果が変化してしまうという問
題、直があった.そしてこのような従米の方法によって
画素の階調を計算する場合、原Wi像の階調変化が無視
され、滑らかさや細線の保存性の点において、あるいは
輪郭のにじみなどで画像品質が劣化するという問題7α
があった. [発明の目的1 この発明は、このような従米の技術おける問題点に鑑み
て成されたもので、データの間引きや補間が全領域にわ
たって均一になされ、階調を求める際には原画像の特徴
が充分反映されたものであると共に、補間処理時間がか
からず、メモ’)t−1も少なくてすむようなディジタ
ル化画像倍率の変換方法を提供することを目的としでい
る.1課題を解決するための手段1 上記目的を達成するためのこの発明の妄りとするところ
は、 ディジタル化された画像の縮小もしくは拡大を行う画像
倍率の変換方法において、ii′ii記ディジタル化の
際に失われた各量子化データ間の画像情報を、所定数の
補間データによって近似して再生すると共に、この再生
後の量子化データを、変換倍率に対応した標本化nlI
Vkで標本化することにより、倍率変換後のディジタル
化画像の量子化データとすることである. また、ディジタル化された画像の縮小もしくは拡大を行
う画像倍率の変換方法において、前記ディジタル化され
た画像の各量子化データ間をそれぞれ所定数の分割点で
分割すると共に、前記量子化データとこの分割,αとか
ら、fご率に対応した標本化間隔を決定し、この標本化
間隔毎に+’+ij記里子化データを参照して補間処理
を実行し、倍率変換後のディジタル化画像の量子化デー
タとすることもvf徴である。
As described above, the conventional image magnification conversion method of opening and closing specific dots or interpolating data to a predetermined interval has the problem that the results change depending on where the processing is applied. When calculating the gradation of a pixel using such a conventional method, the gradation changes of the original Wi image are ignored, and the image quality deteriorates in terms of smoothness, preservation of thin lines, or blurring of outlines. Problem 7α
was there. [Objective of the Invention 1] This invention was made in view of the problems in conventional technology, and the thinning and interpolation of data is uniformly performed over the entire area, and when determining the gradation, the original image is used. The purpose of the present invention is to provide a method for converting the digitized image magnification that fully reflects the characteristics, requires no interpolation processing time, and requires less memo ')t-1. 1 Means for Solving the Problem 1 The purpose of this invention to achieve the above object is that, in the image magnification conversion method for reducing or enlarging a digitized image, The image information between each quantized data that was lost during the process is approximated and reproduced using a predetermined number of interpolated data, and the reproduced quantized data is sampled according to the conversion magnification.
By sampling at Vk, the quantized data of the digitized image after magnification conversion is obtained. Further, in an image magnification conversion method for reducing or enlarging a digitized image, each quantized data of the digitized image is divided at a predetermined number of division points, and the quantized data and the From the division and α, a sampling interval corresponding to the f rate is determined, and for each sampling interval, interpolation processing is performed by referring to the fostered data recorded in +'+ij, and the digitized image after magnification conversion is Quantized data is also a vf characteristic.

[作用] 画像を読み取ってディジタル化データを得る際には、各
データ間には読み取り時やディジタル化時に切り捨てら
れた情報があった. そこで、倍率を変換して画像を縮小したり拡大したりす
るときには、各データ間に多数の補間データを求め、読
み取り時やディジタル化ときに切り捨てられた情報を仮
想した近鉄アナログデータを構成する.そして、この再
生後の量子化データを縮小または拡大倍率に村応した標
本化(例えばサンプリング)間隔で楳本化する.こうし
て得られたデータが縮小または拡大されたディジタル化
LI!i像の量子化データである. 」二記近似アナログデータを再度標本化して倍率変換後
の画像の量子化データを{jトる場合、補間された階調
等の画像情報データの多くは切り捨てられることになり
、処理時間、メモリの有効利用の観点からは好まし《は
ない. そこで、量子化データ間を所定数の分割魚で分割し、補
間処理以萌にまず変換倍率に対応して標本化位置を決定
し、この決定されr:.標本化位置においてのみ補間階
調データを計算する.[実施例1 犬に、第1図〜第5図に基づき本発明の一笑施例を説明
する。なお、第6図は倍率変換前の元デ一タとして以下
の説明にもそのまま参照する。
[Effect] When reading an image to obtain digitized data, there was information between each piece of data that was truncated during reading and digitization. Therefore, when converting the magnification to reduce or enlarge an image, a large number of interpolated data are obtained between each data, and Kintetsu analog data is created that virtualizes the information that was discarded during reading or digitization. Then, this reproduced quantized data is converted to Umemoto at a sampling interval corresponding to the reduction or enlargement magnification. Digitized LI! data obtained in this way is reduced or enlarged! This is the quantized data of the i image. If the approximate analog data is re-sampled and the quantized data of the image after magnification conversion is converted, much of the image information data such as interpolated gradations will be discarded, reducing processing time and memory. It is not preferable from the point of view of effective use. Therefore, the quantized data is divided into a predetermined number of divisions, and during interpolation processing, the sampling position is first determined in accordance with the conversion magnification, and this determined r:. Calculates interpolated tone data only at the sampling position. [Example 1] A simple example of the present invention will be explained for a dog based on FIGS. 1 to 5. Note that FIG. 6 will be referred to in the following explanation as it is as original data before magnification conversion.

本発明が対象とする画像は、イメーノスキャナ等で読み
込んだ場合の上うな多Wi調ディジタル画像データであ
る.従って、画像倍率の変換を実行するには主走査方向
あるいは副走査方向の画素数を変換するのみならず、階
調情報をも変換する必要がある.PpJl図に画像倍率
の変換方法の流れを示す. ステップ■では、補間精度すなわち原データの2点間を
何分割するのかを決定する。例えば分割数が10ならば
2点間は10の領域に分i!i1+されることになり、
各領域の始点と終点に当たる計11カ所に画素が存在す
るとしてステップ■の補間を行えばよい.また、分?!
4敗が100とすれば、2点問を100の領域に分割し
、計101カ所に画素が存在するとして補間(ステップ
■)すればよい.ただし、Oi!llI敗10の場合は
第1領域の始点(第1番目のデータ)と第10領域の終
点(第11番目のデータ)が、また分割敗100の場合
には第1領域の始点と!@10011′l域の終息とが
原デ−タの2点となり、実際に算出される補間データの
数としてはそれぞれ9個および9Laである.上記分割
数は、ディジタル化された画像データを補間口で近似ア
ナログデータを算出する場合のアナログ近似度と、処理
の′A質的な変換倍率の精度に密接に関係している. 補而のための分割数ならびに変換倍率が設定されると、
次にステップ■では、これら2つの値から次式によって
轢本化(サンプリング)間隔を決定する. 標本化間隔 二分割敗rl00/変換倍率%・・ (夏)例えば元デ
ータの2点間を10分割し、かつ変換倍率を100%と
すると、標本化間隔は10となり、m 1 @ Llの
データを標本化により採択した後、間隔10#l/′L
た弟11番目のデータを採択すればよいことになり、こ
こに標本化により採択された2魚のデータ1ま元データ
そのものである.以上の2ステップで第1に画像全体に
わたる均等な間引きあるいは補闇効果と、弟2には原画
像データの階調を考lどした再構成画像データのWI調
値の算出がなされることを第6図の元データを70%に
縮小した第3図によって説明する,第2図は、第6図の
元データを分剖敗は10とし、補間の方法は簡単のため
に2点間を直線で近似し、その直線上の点を補間値とし
ている.すなわち、第2図では元データ10ドットに対
し、各データ間を10分割して近飯アナログヂータを子
測している,この近似アナログデータは分割数を大きく
するればアナログ近似度はより増大し、再vt戎画像の
原画像に対する変換倍率の精度も増すことになる, そこでステップ■を実行し、分割数10と変換倍率70
%を 0()式に代入すると標本化間隔は14と計ヰさ
れる.従って先に求めた第2図の近似アナログデータを
14間隔で標本化した結果が第3図の70%に縮小され
たデータである,第3図は第6図の元データの階調を良
く再現しており、従来の第7図などと比較しても優れて
いることがわかる. 同様に、第6図の元データ間を10分割し、130%に
拡大した例を第5図に示す。前記(X)式により標本化
間隔は第4図のように7となり、結果がrjS5図に示
されている. この第5fAI::おいても極大値以外では元データの
階調がよく再現されている。
The image to which the present invention is applied is uppercase Wi-tone digital image data when read by an image scanner or the like. Therefore, in order to convert the image magnification, it is necessary to convert not only the number of pixels in the main scanning direction or the sub-scanning direction, but also the gradation information. The PpJl diagram shows the flow of the image magnification conversion method. In step (2), the interpolation accuracy, that is, how many divisions between two points of the original data is to be divided is determined. For example, if the number of divisions is 10, the area between two points is divided into 10 areas i! It will be i1+,
Interpolation in step 2 can be performed assuming that pixels exist at a total of 11 locations, which correspond to the start and end points of each region. Also, minutes? !
Assuming that 4 losses is 100, it is sufficient to divide the 2-point question into 100 regions and perform interpolation (step ■) assuming that there are pixels in a total of 101 locations. However, Oi! In the case of 10 losses, the start point of the first area (first data) and the end point of the 10th area (11th data), and in the case of a division loss of 100, the start point of the first area! The end of the @10011'l area is the two points of the original data, and the numbers of interpolated data actually calculated are 9 and 9La, respectively. The number of divisions described above is closely related to the degree of analog approximation when calculating approximate analog data from digitized image data at the interpolation port, and the accuracy of the conversion magnification in terms of processing quality. Once the number of divisions and conversion magnification for the correction are set,
Next, in step ■, the sampling interval is determined from these two values using the following formula. Sampling interval divided into two rl00/Conversion magnification %... (Summer) For example, if the original data is divided into 10 between two points and the conversion magnification is 100%, the sampling interval will be 10, and the data of m 1 @ Ll is adopted by sampling, the interval 10#l/'L
The data of the 11th fish selected for sampling is the same as the original data. In the above two steps, firstly, uniform thinning or darkening effect over the entire image is achieved, and secondly, the calculation of the WI tone value of the reconstructed image data taking into consideration the gradation of the original image data. This will be explained with reference to Figure 3, which is the original data in Figure 6 reduced to 70%. It is approximated by a straight line, and the points on the straight line are used as interpolated values. In other words, in Figure 2, the original data is 10 dots, and each data interval is divided into 10 to measure the approximate analog data.The degree of analog approximation of this approximate analog data increases as the number of divisions increases. However, the precision of the conversion magnification of the re-vt image with respect to the original image will also increase. Therefore, step
By substituting % into the formula 0(), the sampling interval is calculated as 14. Therefore, the result of sampling the approximate analog data in Fig. 2 obtained earlier at 14 intervals is the data reduced to 70% of the data in Fig. 3. Fig. 3 improves the gradation of the original data in Fig. 6. It can be seen that this has been reproduced better than the conventional model, such as Figure 7. Similarly, FIG. 5 shows an example in which the original data in FIG. 6 is divided into 10 parts and expanded to 130%. According to the above formula (X), the sampling interval becomes 7 as shown in Fig. 4, and the result is shown in Fig. rjS5. Even in this fifth fAI::, the gradation of the original data is well reproduced except for the maximum value.

しかしながら、元データの第6図の最大特徴の一つであ
る極大値近傍の特徴が再現されていない.これは、標本
化間隔の精度にあるのであって、厳密な標本化開隔の計
算値7.69を7として標本化を実イテした結果である
。このような不正確さを避けるには、分割数を1桁大き
くして100とすることにより、標本化間隔は76とな
り、1桁精度を上げることができる。
However, the feature near the maximum value, which is one of the biggest features of the original data in Figure 6, is not reproduced. This is due to the accuracy of the sampling interval, and is the result of actually performing sampling with the calculated value of the exact sampling interval, 7.69, as 7. In order to avoid such inaccuracies, the number of divisions is increased by one order of magnitude to 100, which results in a sampling interval of 76, which increases the accuracy by one order of magnitude.

しかしながら、上記のように補間撹作を先に実行し、そ
の後標本化を施したのでは実際には使用されないデータ
が数多く発生し、処理時間やメモリ容量の点で非効率で
ある. そこでステップ■および■を実行することによりこの不
兵介を解決した。
However, performing interpolation first and then sampling as described above generates a lot of data that is not actually used, which is inefficient in terms of processing time and memory capacity. Therefore, this problem was solved by executing steps ■ and ■.

すなわち、ステップ■で標本化で採択されるべきデータ
が元データのどの区間のどの位置にあるかを罰間処理を
行う前に打出し、ステップ■でその標本化時に採択され
るべきデータのみを算出する.この方法を第2図につい
て見ると、第1番目のテ゛一夕1土元テ′一タの第1ド
ット目のテ゛一夕となり、第2番目に採択されるべきデ
ータは元データの第2ドットと第3ドノト目の間にあり
、かつ元データの第2ドットから4離れた位置のデータ
である。従って、標本化により採択されるべきデータと
してこの位置の階調データを算出し、再枯成データの第
2番目のデータとすれば、それ以外の不用のデータは訂
算する必要がなく、処理時間の短縮ならびにメモリの有
効利用に寄与することが出米る。特に、Ji算精度を上
げようとしてステップ■の分割数を例えば1桁増加させ
ると、ステ・冫ブ■、■の方法だけでは処理時間、メモ
リ容量が約10倍に膨れ上がってしまうが、ステップ■
および■の追加によって処理時間ならびにメモリ容量は
殆ど変わらないことになる. [発明の効果] この発明は、1子化データ開を所定数の補間データによ
り補間することにより近似アナログデータを得、変換倍
率に対応した標本化間隔で標本化して倍率変換後の量子
化データとしたので、間弓きあるいは補間効果が画像全
体に均等になされ、原画像データの階Iv4を考慮した
再構成デイジタル化画像データの階調を算出することが
可能である.さらに、標本化により採択されるべきデー
タが元データのどの区間のどの位置にあるかを補間処理
より先に算出し、標本化により採択されるべきデータの
みの補間処理を実行するようにしたから、処理時間が短
縮され、メモリ容量も増大させることがない.
In other words, in step 2, we determine in which interval and at which position of the original data the data to be adopted for sampling are located before performing the interpolation process, and in step 2, we identify only the data to be adopted at the time of sampling. calculate. If we look at this method with reference to Figure 2, we can see that the first dot of the first dot is Ichiba, and the second data to be adopted is the second one of the original data. This data is located between the dot and the third dot, and is located 4 points away from the second dot of the original data. Therefore, if the gradation data at this position is calculated as the data to be adopted for sampling and is used as the second data of the re-death data, there is no need to correct the other unnecessary data and process it. This can contribute to time reduction and effective use of memory. In particular, if the number of divisions in step ■ is increased by one digit, for example, in order to improve the accuracy of Ji calculation, the processing time and memory capacity will increase approximately 10 times using only the steps ■ and ■. ■
The addition of and ■ will result in almost no change in processing time and memory capacity. [Effects of the Invention] This invention obtains approximate analog data by interpolating single child data with a predetermined number of interpolation data, samples it at a sampling interval corresponding to the conversion magnification, and obtains quantized data after the magnification conversion. Therefore, the spacing or interpolation effect is applied uniformly to the entire image, and it is possible to calculate the gradation of the reconstructed digitized image data taking into account the floor Iv4 of the original image data. Furthermore, the position of the data that should be adopted through sampling is calculated in which interval of the original data is calculated before the interpolation process, and the interpolation process is performed only on the data that should be adopted through sampling. , processing time is shortened and memory capacity does not increase.

【図面の簡単な説明】[Brief explanation of drawings]

@i図〜第5図はこの発明の方法の各種笑施例を示して
おり、第1図は本発明の7ローチャート、tjS2図は
元データを70%に縮小するための処理説明図、皓3図
は元データを70%に縮小した縮小データ図、第4図は
元データを130%に拡大するための処理説明図、Pt
S5図は元データを130%に拡大した拡大データ図で
ある6 第6図は元データの図、第7図は従来の力法による元デ
ータの70%縮小データ図、rjSS図は同じく間引き
位置を異ならせた70%縮小データ図、第9図は従米の
方法による元データの1 3 0 q.g拡大データ図
、第10図は同じく補間位置を異ならせた130%拡大
データ関である. 第l図 第仝図 第5図 第λ図 第3図 第6図 第7図 第8図 Dot 位 置 Dot 位 置
Figures 1 to 5 show various examples of the method of the present invention, Figure 1 is a 7-flow chart of the present invention, Figure tjS2 is a process explanatory diagram for reducing original data to 70%, Figure 3 is a reduced data diagram that reduces the original data to 70%, and Figure 4 is a processing explanatory diagram for expanding the original data to 130%.
Figure S5 is an enlarged data diagram that enlarges the original data to 130%.6 Figure 6 is a diagram of the original data, Figure 7 is a diagram of 70% reduced data of the original data using the conventional force method, and the rjSS diagram is also the thinned out position. Figure 9 is a 70% reduced data diagram with different 1 3 0 q. Figure 10 shows 130% enlarged data with different interpolation positions. Figure l Figure 5 Figure λ Figure 3 Figure 6 Figure 7 Figure 8 Dot position Dot position

Claims (2)

【特許請求の範囲】[Claims] (1)ディジタル化された画像の縮小もしくは拡大を行
う画像倍率の変換方法におい て、 前記ディジタル化の際に失われた各量子化データ間の画
像情報を、所定数の補間データによって近似して再生す
ると共に、この再生後の量子化データを、変換倍率に対
応した標本化間隔で標本化することにより、倍率変換後
のディジタル化画像の量子化データとする画像倍率の変
換方法。
(1) In an image magnification conversion method for reducing or enlarging a digitized image, image information between each quantized data lost during digitization is approximated and reproduced by a predetermined number of interpolated data. At the same time, the reproduced quantized data is sampled at a sampling interval corresponding to the conversion magnification, thereby obtaining the quantized data of the digitized image after the magnification conversion.
(2)ディジタル化された画像の縮小もしくは拡大を行
う画像倍率の変換方法において、 前記ディジタル化された画像の各量子化データ間をそれ
ぞれ所定数の分割点で分割すると共に、前記量子化デー
タとこの分割点とから、倍率に対応した標本化間隔を決
定し、この標本化間隔毎に前記量子化データを参照して
補間処理を実行し、倍率変換後のディジタル化画像の量
子化データとする画像倍率の変換方法。
(2) In an image magnification conversion method for reducing or enlarging a digitized image, each quantized data of the digitized image is divided at a predetermined number of division points, and the quantized data and From this dividing point, a sampling interval corresponding to the magnification is determined, and the interpolation process is performed by referring to the quantized data for each sampling interval, and the quantized data of the digitized image after magnification conversion is obtained. How to convert image magnification.
JP1115548A 1989-05-09 1989-05-09 How to convert image magnification Expired - Fee Related JP2736803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115548A JP2736803B2 (en) 1989-05-09 1989-05-09 How to convert image magnification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115548A JP2736803B2 (en) 1989-05-09 1989-05-09 How to convert image magnification

Publications (2)

Publication Number Publication Date
JPH02294784A true JPH02294784A (en) 1990-12-05
JP2736803B2 JP2736803B2 (en) 1998-04-02

Family

ID=14665266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115548A Expired - Fee Related JP2736803B2 (en) 1989-05-09 1989-05-09 How to convert image magnification

Country Status (1)

Country Link
JP (1) JP2736803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041510A2 (en) * 1999-03-29 2000-10-04 Riso Kagaku Corporation Method of and system for processing signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225572A (en) * 1985-07-26 1987-02-03 Photo Composing Mach Mfg Co Ltd Picture processing method and its device
JPS62252268A (en) * 1986-04-25 1987-11-04 Konika Corp Picture processor to expand reduce process original picture
JPS6395773A (en) * 1986-10-09 1988-04-26 Konica Corp Picture processing unit capable of magnifying and reducing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225572A (en) * 1985-07-26 1987-02-03 Photo Composing Mach Mfg Co Ltd Picture processing method and its device
JPS62252268A (en) * 1986-04-25 1987-11-04 Konika Corp Picture processor to expand reduce process original picture
JPS6395773A (en) * 1986-10-09 1988-04-26 Konica Corp Picture processing unit capable of magnifying and reducing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041510A2 (en) * 1999-03-29 2000-10-04 Riso Kagaku Corporation Method of and system for processing signal
EP1041510A3 (en) * 1999-03-29 2003-07-23 Riso Kagaku Corporation Method of and system for processing signal
US6763143B1 (en) 1999-03-29 2004-07-13 Riso Kagaku Corporation System and method for variably filtering to compensate for a linearly interpolated signal

Also Published As

Publication number Publication date
JP2736803B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US8290256B2 (en) Image processing apparatus and image processing method
JP2737877B2 (en) Dot character pattern smoothing method
JP3167120B2 (en) Image processing apparatus and method
JP3534009B2 (en) Outline extraction method and apparatus
US7953298B2 (en) Image magnification device, image magnification method and computer readable medium storing an image magnification program
US5832123A (en) Method and apparatus for producing an enhanced two-grayscale image
JPH02294784A (en) Method for converting image scale factor
US8564592B2 (en) Image processing apparatus and image processing method
JP5111226B2 (en) Image processing method, image processing apparatus, program thereof, and computer-readable storage medium
JPH0793531A (en) Picture processor
JP2001043381A (en) Moving object contour extracting method
JP3200351B2 (en) Image processing apparatus and method
JP2003153036A (en) Gradation correcting apparatus
JP3727768B2 (en) Computer image display method and display device
JP2988097B2 (en) How to segment a grayscale image
JP2877480B2 (en) High accuracy vector approximation apparatus and method
JP3249956B2 (en) Interpolation method
JPH06100906B2 (en) Character processing method
JPH0664089B2 (en) Sampling signal processor
JPH068988B2 (en) Spline interpolation method
JP3811228B2 (en) Waveform display processing method in memory recorder
JP2940240B2 (en) Waveform data compression method
JP3521049B2 (en) Curve generating device and curve generating method
JP2796900B2 (en) Image interpolation device
EP1194894B1 (en) Method for data processing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees