JPH02294501A - Variable stator blade type turbo machine - Google Patents

Variable stator blade type turbo machine

Info

Publication number
JPH02294501A
JPH02294501A JP11495589A JP11495589A JPH02294501A JP H02294501 A JPH02294501 A JP H02294501A JP 11495589 A JP11495589 A JP 11495589A JP 11495589 A JP11495589 A JP 11495589A JP H02294501 A JPH02294501 A JP H02294501A
Authority
JP
Japan
Prior art keywords
stator blade
stator
blade
stator vane
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11495589A
Other languages
Japanese (ja)
Inventor
Toshio Hattori
敏雄 服部
Sadao Umezawa
梅沢 貞夫
Hajime Toritani
初 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11495589A priority Critical patent/JPH02294501A/en
Publication of JPH02294501A publication Critical patent/JPH02294501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To adjust a gap between ends of stator blades and the outer periphery of a rotor disk according to the running condition by moving the stator blades in the radial direction of a casing in synchronization with the adjustment of an attack angle of the stator angle to a main flow. CONSTITUTION:A stator blade varying mechanism for adjusting an attack angle of a stator blade 1 to a main flow is composed of a stator blade rotary shaft 2, a stator blade rotating gear 4 and a rotatably driving gear 3. A stator blade moving mechanism for moving the stator blade 1 in the radial direction of a casing 5 in synchronization with the adjustment of an attach angle of the stator blade 1 to the main flow is composed of a fixed piece 11, a rotary piece 12, an inclined cam surface 13 and a compression spring 14. When the stator blade 1 is adjusted from its attitude in the partial load running to that in rated running through the stator blade varying mechanism, the stator blade 1 is moved to a position for providing the minimum gap 8 between the end of the stator blade 1 and the outer peripheral surface 7' of a rotor disk 7 by the actions of the fixed piece 11, rotary piece 12 and inclined cam surface 13 in synchronization with said adjustment to be held in said position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,静翼の主流に対する迎する角を調節可能な0
I変静翼型ターボ機械に係り、特に内『記迎え角を調節
した時の、静翼の先端部とロータディスクの外周部のテ
ーパ面間を,最小ギャップに調整するために好適な可変
静翼型ターボ機械に関す杭 〔従来の技術〕 従来の静翼isJ変型ターボ機械は,ジャーナル・オブ
・ターボマシーナリ108 (1986年)第233頁
から第239頁(J.of ’rurbomachin
ery108 (1986)pp233〜239)にお
いて例示されているが、この可変静翼型ターボ機械とし
ての多段軸流圧縮機のIJf変静翼の部分の詳細断面図
を第10図に示す. この文献に示される多段軸流圧縮機は,ロータとステー
タとから構成されている.ロータは、ロータディスク7
の外周に多数の動翼6を植え込み,このロータディスク
を軸方向に何段も重ね合わせ5スタツキングボルト8に
よって締め付けたものが一体となって高速回転する.ス
テータは5この動翼6の各段の段と段との中間に来るよ
うに配置された静翼1を組み立てたもので,外側のケー
シング5に固定されている. 一般に,この多段軸流圧縮機では、特にその起動あるい
は停止過程中の非定常流体特性を安定化させるため,静
翼1の向きを変えられるように静翼回転軸2、当該静翼
回転軸2と一体となった静翼回転用歯車4を介して、回
転駆動用歯車3によって回転し得る楕造となっている。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a vane with an adjustable angle of incidence with respect to the main stream.
This variable static vane type turbomachine is suitable for adjusting the minimum gap between the tip of the stator vane and the tapered surface of the outer periphery of the rotor disk when adjusting the internal angle of attack. Pile related to airfoil turbomachinery [Prior art] A conventional stator vane ISJ variant turbomachinery is described in the Journal of Turbomachinery 108 (1986), pp. 233 to 239 (J. of 'rubomachinery).
ery108 (1986) pp. 233-239), a detailed sectional view of the IJf variable stator vane portion of this multistage axial flow compressor as a variable stator vane type turbomachine is shown in FIG. The multistage axial flow compressor shown in this document consists of a rotor and a stator. The rotor has rotor disk 7
A large number of rotor blades 6 are implanted around the outer periphery of the rotor disk, and these rotor disks are stacked in multiple stages in the axial direction and tightened with five stacking bolts 8, which rotates as a unit at high speed. The stator is an assembly of five stator blades 1 placed midway between each stage of rotor blades 6, and is fixed to the outer casing 5. In general, in this multi-stage axial flow compressor, in order to stabilize unsteady fluid characteristics especially during the startup or shutdown process, the stator blade rotation axis 2 is designed so that the direction of the stator blade 1 can be changed. It has an elliptical shape that can be rotated by the rotary drive gear 3 via the stationary blade rotation gear 4 integrated with the stator vane rotation gear 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

次に,第11図(A).(B)に従来技術における定格
運転状態での静翼の先端部とロータディスクの外周部の
テーバ面間のギャップと,静翼の主流に対する姿勢を示
し、第12図(A), (H)に起動時の静翼の先端部
とロータディスクの外周部のテーバ面との干渉と、静翼
の主流に対する姿勢を示す. 前記従来技術では、特にロータディスク7の外周部にお
いて、ロータ一方向にテーパ面7′を有している場合、
第11図(A)に示すごとく,定格運転時に静翼1の先
端部と,ロータディスク7の外周部のテーバ而゛7′間
のギャップが充分小さな最小ギャップδになるように製
作していると,起拗時などの部分負荷運転時に第12図
(}l)に示す迎え角θ′になるように,静翼1を主流
に対して閉じる方向に回転させるため、第12図(A)
に示すごとく,静翼1の先端部とロータディスク7の外
周部のテーバ而′7′ とが接触あるいはくい込み9を
生ずる. 部分負待運転時の前記接触あるいはくい込み9を避ける
ために,静翼1の先端部を第11図(Δ)に二点鎖線で
示す位置までカットする必要かあるが、静翼1の先端部
をカットすると,定格運転時に静翼1の先端部とロータ
ディスク゛lの外周部との最大ギャップがδ′となる。
Next, Fig. 11(A). (B) shows the gap between the tip of the stator vane and the taper surface of the outer circumference of the rotor disk and the attitude of the stator blade with respect to the mainstream under rated operating conditions in the conventional technology, and Figures 12 (A) and (H) Figure 2 shows the interference between the tips of the stator blades and the Taper surface on the outer periphery of the rotor disk during startup, and the attitude of the stator blades with respect to the main flow. In the prior art, when the rotor has a tapered surface 7' in one direction, especially at the outer circumference of the rotor disk 7,
As shown in Fig. 11 (A), the gap between the tip of the stationary blade 1 and the taper 7' on the outer periphery of the rotor disk 7 is made to be a sufficiently small minimum gap δ during rated operation. In order to rotate the stator blade 1 in a direction that closes it to the main flow so that the angle of attack θ' shown in FIG. 12 (}l) is obtained during partial load operation such as when the stator blade is stuck, the angle shown in FIG. 12 (A) is
As shown in the figure, the tip of the stationary blade 1 and the taper 7' on the outer periphery of the rotor disk 7 come into contact or bite 9. In order to avoid the contact or digging-in 9 during partial load operation, it is necessary to cut the tip of the stator blade 1 to the position shown by the two-dot chain line in Fig. 11 (Δ). If , the maximum gap between the tip of the stator blade 1 and the outer periphery of the rotor disk 1 becomes δ' during rated operation.

定格運転時のこのギャップの増大は、ターボ機械である
多段軸流圧縮機の効率を大幅に低下させる結果となる.
本発明の第1の目的は,定格運転時には静翼の先端部と
ロータディスクの外周部のテーバ面間のギャップを小さ
くし、かつ起動時などの部分負荷運転時には静翼の先端
部がロータディスクの外周部のテーパ面に接触あるいは
くい込むことのない口f変静翼型ターボ機械を提供する
ことにある.本発明の第2の目的は,定格運転時と,起
IjJ運転時などの部分負荷運転時とを問わず,常に静
翼の先端部とロータディスクの外周部のテーバ血111
1のギャップを最小ギャップに設定し得る11f変静寛
型ターボ機械を提供することにある. 本発明の第3の目的は,静翼をケーシングの半径方向に
移動する静翼移動機構を、必要により静翼可蛮機構から
独立して駆動可能なuf変静翼型ターボ機械を提供する
ことにある. 本発明の第4の目的は、任意の運転条件下で,静翼の先
端部とロータディスクの外周部のテーパ面間のギャップ
を常に適正な目標ギャップに保持し得る+Jf変静翼型
ターボ機械を提供することにある. 本発明の第5の目的は、定格運転状態での流体性能の向
−ヒを図り得る呵変静寛型ターボ機械を提供することに
ある。
An increase in this gap during rated operation results in a significant decrease in the efficiency of the multistage axial flow compressor, which is a turbomachine.
The first object of the present invention is to reduce the gap between the tip of the stator blade and the tapered surface of the outer circumference of the rotor disk during rated operation, and to reduce the gap between the tip of the stator blade and the rotor disk during partial load operation such as during startup. An object of the present invention is to provide a variable-mouth stator vane type turbomachine that does not touch or bite into the tapered surface of the outer periphery of the turbomachine. The second object of the present invention is to always prevent the Taber blood 111 on the tips of stator blades and the outer periphery of the rotor disk, regardless of whether during rated operation or partial load operation such as IJJ operation.
An object of the present invention is to provide a 11f variable static relaxation type turbomachine that can set a gap of 1 to a minimum gap. A third object of the present invention is to provide a UF variable stator vane type turbomachine that can drive a stator vane moving mechanism that moves the stator vanes in the radial direction of the casing independently of the stator vane moving mechanism if necessary. It is in. A fourth object of the present invention is to provide a +Jf variable stator vane type turbo machine that can always maintain the gap between the tip of the stator vane and the tapered surface of the outer periphery of the rotor disk at an appropriate target gap under any operating conditions. The goal is to provide the following. A fifth object of the present invention is to provide a variable quiet and relaxed turbomachine that can improve fluid performance under rated operating conditions.

〔課題を解決するための手段〕[Means to solve the problem]

前記第1の目的は、静翼の主流に対する迎え角を調節す
る静翼u(変機構に,静翼の主流に対する迎え角の調節
に同期して前記静翼をケーシングの半径方向に移動させ
る静寛移動機構をdリけたことにより、達成される. 前記第2の目的は、前記静寛if変機構を、静翼の外側
の端部に連結された静翼回転軸と、この静翼回転軸の同
転駆動部とにより稙成し、前記静翼回転軸を、前記ロー
タディスクの外周部のテーバr/Ijに対して1八角を
なす方向に取り付けたことにより、達成される。
The first purpose is to have a stator blade u that adjusts the angle of attack of the stator blade relative to the main stream (a variable mechanism includes a stator blade U that moves the stator blade in the radial direction of the casing in synchronization with the adjustment of the angle of attack of the stator blade relative to the main stream). The second objective is achieved by separating the static and relaxed movement mechanism from a stator blade rotating shaft connected to the outer end of the stator blade, and a stator blade rotating shaft connected to the outer end of the stator blade. This is achieved by attaching the stationary blade rotating shaft in a direction forming an octagon with respect to the taber r/Ij on the outer periphery of the rotor disk.

前記第3の目的は、前記静翼移劾機構を、静翼口■変機
構に対して独立に駆動し、静翼をケーシングの半径方向
に移動gf能に構成したことにより,達成される. 前記第4の目的は、運転中のロータおよびケ−ソングの
温度,熱変形と,運転中のロー夕とケーシングIfll
のキャップとを計81!l L .その計測情報に応じ
て前記静翼移動機構を制御する制御システムを設けたこ
とにより,達成される。
The third object is achieved by driving the stationary vane shifting mechanism independently of the stationary vane opening changing mechanism and arranging the stationary vane to move in the radial direction of the casing. The fourth purpose is to control the temperature and thermal deformation of the rotor and casing during operation, and to control the temperature and thermal deformation of the rotor and casing during operation.
A total of 81 caps! L L. This is achieved by providing a control system that controls the stator blade moving mechanism according to the measurement information.

そして、前1d第5の目的は、定格運転時における静寛
の位置において,静翼の先端部の全面を、相対するロー
タディスクの外周部のテーパ而間のギャップが等しくな
るように、曲面状に形成したことにより、達成される。
The fifth purpose of the front 1d is to shape the entire surface of the tips of the stator blades into a curved surface so that the gap between the tapers on the outer periphery of the opposing rotor disks is equal in the quiet position during rated operation. This is achieved by forming the

〔作用〕[Effect]

本発明では,静翼aJ変機構に静翼移!Fll機横を同
JIJI Lて作動するようにしている。これにより,
静xI1■変機構により静翼を定格運転時の姿勢から起
動運転時などの部分負荷運転時の姿勢に回転させると,
静翼はその先端部とロータディスクの外周部のテーバ面
聞のギャップが最小ギャップに設定されている定格運転
時の状jMから、静翼移動機構によりケーシングの半径
方向に移動操作され、静翼の先端部がロータディスクの
外周部のテーバ血に接触あるいはくい込みが生じない位
置に保持される. なお,静翼pJ変機構により静翼が部分負荷運転時の姿
勢から定格運転時の姿勢に調節されると、静翼移!l!
lI機構により静翼の先端部とロータディスクの外周部
のテー而間のギャップが最小ギャップとなる位b′tに
移動操作され、その位置に保持される。
In the present invention, the stator blade is moved to the stator blade aJ change mechanism! The same JIJI L is operated next to the FLL aircraft. As a result,
When the stationary blade is rotated from the rated operation position to the partial load operation position such as during start-up operation using the static xI1■ change mechanism,
The stator blade is moved in the radial direction of the casing by the stator blade moving mechanism from the state during rated operation, where the gap between the tip of the stator blade and the taper surface of the outer periphery of the rotor disk is set to the minimum gap. The tip of the rotor disk is held in a position where it does not come into contact with or become wedged in the taper blood on the outer periphery of the rotor disk. In addition, when the stator blade is adjusted from the position during partial load operation to the position during rated operation by the stator blade pJ change mechanism, the stator blade moves! l!
The lI mechanism moves the vane to b't, where the gap between the tip of the stator vane and the outer periphery of the rotor disk becomes the minimum gap, and holds it at that position.

また、本発明では静翼ロf変機構を,静翼回転軸と、こ
れの回転駆動部とにより構成するとともに,前記静翼回
転軸をロータディスクの外周部のテーバ面に対して直角
をなす方向に取り付けているので、製作時に静翼の先端
部とロータディスクの外周部のテーパ面間のギャップを
最小ギャップに設定しておけば,定格運転時と、部分負
荷運転時とを問わず、常に静翼の先端部とロータディス
クの外周部のテーパ面間のギャップを最体ギャップに保
持することができる. さらに、本発明では静X移勅機構を、静翼nf変機構に
対して独立に駆動し得るように構成しているので,静翼
移動機構を必要により静翼=r*機構とは別個に移杓し
、静翼をケーシングの半径方向に移動させることができ
る。
Further, in the present invention, the stator blade rotational f-changing mechanism is constituted by a stator blade rotation axis and its rotation drive part, and the stator blade rotation axis is perpendicular to the Taper surface of the outer peripheral part of the rotor disk. Since it is installed in the direction, if the gap between the tip of the stator vane and the tapered surface of the outer periphery of the rotor disk is set to the minimum gap during manufacturing, it will work regardless of whether it is in rated operation or partial load operation. The gap between the tip of the stator vane and the tapered surface of the outer circumference of the rotor disk can always be maintained at the maximum gap. Furthermore, in the present invention, the static The stationary vanes can be moved in the radial direction of the casing.

そして、本発明では制御システムにより、運転中のロー
タおよびケーシングの温度,熱変形と,運転中のロー夕
とケーシング間のギャップとを計測し,その計測情報に
応じて静翼移動機構を制御するようにしている.したが
って,任意の運転条件下で,静翼の先端部とロータディ
スクの外周部のテーパ面間のギャップを常に適正なi:
l標ギャップに保持することが可能となる, また,本発明では定格運転時における静翼の位置におい
て、静翼の先端部の全面を、相対する口−タデイスクの
外周部のテーパ血間のギャップが等しくなるように、曲
面状に形成しているので,定格運転状態での流体性能を
向上させることができる. 〔実施例〕 以ド,本発明の実施例を図u+iにより説明する.第1
図,第21ll!lIは本発明の第1の実施例を示すも
ので,第1図(A)は定格運転時におけるH[静翼部分
のロータ軸方向の断Ij図,第1図(B)は同定格運転
時における静翼の主流に対する姿勢を示す図、第2図(
A)は起動運転時におけるIIJ変静翼部分のロータ軸
方向の断面図,第2図(B)は同起動運転時における静
翼の主流に対する姿勢を示す図である. これらの図にボす第1の実施例では、静翼1におけるケ
ーシング5の半径方向の外側の端部に、静翼台座15が
一体に取り付けられている.前記静翼台座15には,静
翼回転@2が連結され,この静翼回転軸2には回転片1
2が一体に取り付けられている.前記回転片12には.
静翼回転用歯車4が取り付けられており,この静翼回転
用歯車4には回転駆動用歯車3が噛み合されている.一
方、ケーシング5には内周側に静翼台挫用収納部が形成
され,これの外側にばばね収納部が形成されている,ま
た、ケーシング5には静翼回転軸用挿通穴が形成されて
いる. 前記静翼台座用収納部には、静翼台座15が収納されて
いる.前記静翼台座用収納部と静翼台座15間には、ケ
ーシング5の半径方向にすき間16が設けられており、
このすきnlllf3を設けたことにより静X1をケー
シンク5の半径方向に移動させ得るようになっている. 前記ばね収納部には,圧縮ばね14が収納されている.
この圧縮ばね14は,静寞台座15を介して静翼1をケ
ーシング5の中心方向に押している. 前記回転軸用挿通穴には、静翼回転軸2が挿通されてい
る. 前記ケーシング5内において,静翼回転軸2の周りには
0リングなどの封止装置17が設けられている.この封
止装置17は、作動流体が前記すきlift l 6か
ら回転軸用挿通穴を通ってケーシング5の外部へ漏れて
行くのを防止している。
In the present invention, the control system measures the temperature and thermal deformation of the rotor and casing during operation, as well as the gap between the rotor and casing during operation, and controls the stator blade movement mechanism according to the measurement information. That's what I do. Therefore, under any operating conditions, the gap between the tip of the stator vane and the tapered surface of the outer circumference of the rotor disk is always set to the appropriate i:
In addition, in the present invention, in the position of the stator blade during rated operation, the entire surface of the tip of the stator blade can be maintained at the gap between the taper blades on the outer periphery of the opposing blade. Since it is formed into a curved surface so that the values are equal, it is possible to improve fluid performance under rated operating conditions. [Example] Hereinafter, an example of the present invention will be explained with reference to Figures u+i. 1st
Figure, No. 21ll! 1I shows the first embodiment of the present invention, and FIG. 1(A) is a section Ij of the stator blade portion in the rotor axial direction at the time of rated operation, and FIG. 1(B) is at the same rated operation. Figure 2 (
A) is a cross-sectional view of the IIJ variable stator vane portion in the rotor axial direction during start-up operation, and Figure 2 (B) is a diagram showing the attitude of the stator blade with respect to the mainstream during the same start-up operation. In the first embodiment shown in these figures, a stator blade pedestal 15 is integrally attached to the radially outer end of the casing 5 of the stator blade 1. A rotating stationary blade @2 is connected to the stationary blade pedestal 15, and a rotating piece 1 is connected to the stationary blade rotating shaft 2.
2 are attached together. The rotating piece 12 has a.
A stator blade rotation gear 4 is attached, and a rotation drive gear 3 is meshed with this stator blade rotation gear 4. On the other hand, the casing 5 has a stator vane platform stator storage section formed on the inner circumferential side, and a spring storage section formed on the outside thereof.The casing 5 also has a stator blade rotation shaft insertion hole formed therein. It has been done. The stator vane pedestal 15 is housed in the stator vane pedestal storage section. A gap 16 is provided in the radial direction of the casing 5 between the stator blade pedestal storage portion and the stator blade pedestal 15,
By providing this gap nllllf3, the stationary X1 can be moved in the radial direction of the casing 5. A compression spring 14 is stored in the spring storage portion.
This compression spring 14 pushes the stator blade 1 toward the center of the casing 5 via the static pedestal 15. The stator vane rotating shaft 2 is inserted into the rotating shaft insertion hole. Inside the casing 5, a sealing device 17 such as an O-ring is provided around the stator blade rotating shaft 2. This sealing device 17 prevents the working fluid from leaking from the plow lift l 6 to the outside of the casing 5 through the rotary shaft insertion hole.

前記ケーシング5の外周側には、固定片11が取り付け
られている.この固定片11は、前記静翼回転軸2に取
り付けられた回転片12と傾斜カム而13で接触してい
る. 前記静翼1の先端部と、ロータディスク7の外周部のテ
ーバ面7′間には,ギャップが設けられている. この実施例では、静翼回転4llll2と、静翼回転用
歯車4と、回転駆動用爾車3とにより、D翼1の主流に
対する迎え角をillffjする静翼+lIr像機構を
構成している.また、固定片11と、回転片12と,こ
れら固定片11と回転片12の接触1nIである傾斜カ
ム血13と,圧縮ばね14とにより,静″R1の主流に
対する迎え角の調節に同期して、前記静翼1をケーシン
グ5の半径方向に梯動させる静翼移動機構を構成してい
る. 前述のととく栖成した第1の実施例では、固定片11と
回転片12とは傾斜カム而13で接触しており、この傾
斜カム而13には圧縮ばね14により適正な血圧が与え
られている. また,固定片11と回転片12の傾斜カム而13での初
期設定位置は、第1図(B)に示すように,定格運転時
に最小ギャップδが確保できるようになっている. 一方、第2図(13)に示すように、起動運転時などの
部分負荷運転時には、静翼1を主流に対して閉じる方向
に回転を与え,主流に対する迎え角をθからθ′ (θ
′〉θ)に調節する.この場合に、この実施例では@2
図(A)から分かるように,回転片12が傾斜カム+h
i J 3に沿って移動し,静翼回転軸2を通じて静翼
1をケーシング5の半径方向の外側に向かって移動させ
る。
A fixing piece 11 is attached to the outer peripheral side of the casing 5. This fixed piece 11 is in contact with a rotating piece 12 attached to the stationary blade rotation shaft 2 through an inclined cam 13. A gap is provided between the tip of the stationary blade 1 and the tapered surface 7' of the outer circumference of the rotor disk 7. In this embodiment, the stator blade rotation 4llll2, the stator blade rotation gear 4, and the rotary drive wheel 3 constitute a stator blade+lIr image mechanism that adjusts the angle of attack of the D blade 1 with respect to the mainstream. In addition, the fixed piece 11, the rotating piece 12, the inclined cam blood 13 which is the contact 1nI between the fixed piece 11 and the rotating piece 12, and the compression spring 14 synchronize with the adjustment of the angle of attack with respect to the main flow of the static R1. This constitutes a stator blade moving mechanism that slides the stator blade 1 in the radial direction of the casing 5. In the above-described first embodiment, the fixed piece 11 and the rotating piece 12 are arranged at an angle. They are in contact with each other through a cam 13, and this inclined cam 13 is given an appropriate pressure by a compression spring 14. In addition, the initial setting positions of the fixed piece 11 and rotating piece 12 at the inclined cam 13 are as follows. As shown in Figure 1 (B), the minimum gap δ can be ensured during rated operation. On the other hand, as shown in Figure 2 (13), during partial load operation such as startup operation, the Rotate the blade 1 in the direction of closing it to the mainstream, and change the angle of attack with respect to the mainstream from θ to θ′ (θ
′〉θ). In this case, in this example @2
As can be seen from Figure (A), the rotating piece 12 is tilted by the inclined cam +h
i J 3, and moves the stator blade 1 toward the outside of the casing 5 in the radial direction through the stator blade rotation axis 2.

したがって,前記イ噴斜カム而13の傾斜角度を適正に
設定しておくことにより,静X1の回転に同期させて、
静X1の先端部とロータディスク′lの外周部のテーバ
而7′間のギャップを常に必要な最小ギャップδに制御
することができる.また,回転駆動歯車3と、静翼回転
歯車4と、静翼回転軸2とを介して、静翼1を部分負荷
運転時の姿勢から定格運転時の姿勢に調整すると,これ
に同期して固定片11と回転片12の傾゜斜カム而13
の作用により、静翼1はその先端部とロータディスク7
の外周部のテーバ而7′間のギャップが第1図(A)に
ボす最小ギャップδとなる位随に移動し、その位置に保
持される。
Therefore, by appropriately setting the inclination angle of the jet cam 13, it can be synchronized with the rotation of the static X1.
The gap between the tip of the static X1 and the taper 7' on the outer periphery of the rotor disk 'l can always be controlled to the required minimum gap δ. In addition, when the stator blade 1 is adjusted from the posture during partial load operation to the posture during rated operation via the rotary drive gear 3, the stator blade rotation gear 4, and the stator blade rotation shaft 2, the stator blade 1 is synchronously adjusted. Inclined cam 13 between fixed piece 11 and rotating piece 12
Due to the action of
It moves to a position where the gap between the tapers 7' on the outer periphery becomes the minimum gap δ shown in FIG. 1(A), and is held at that position.

なお、第2図(A)中、δ′は起動運転時などの部分負
荷運転時における静翼1の先端部とロータディスク7の
外周部のテーパ而7′間の最大ギャップを示す. 次に,第3図,第4図は本発明の第2の実施例を示すも
ので、第3図(A)は定格運転時における0■変静翼部
分のロータ一方向の断面図、第3図(H)は同定格運転
時における静翼の主流に対する姿勢を示す図、第4図(
A)は起動運転時における可炭静翼部分のロータ軸方向
の断面図,第4図(B)は同起動運転時における静翼の
主流に対する姿勢を示す図である. これらの図に示す第2の実施例では、静翼回転@2の端
部におねじ18が形成され、ケーシング5の外周側には
前記おねじ18と螺合するめねじを有するナット19が
固定されている.そして,前記おねじ18とナット19
とにより、静翼1の主流に対する迎え角の調節に同期し
て前記静翼1をケーシング5の半径方向に移動させる静
翼移動機構を構成している. この第2の実施例では、静翼回転軸2を回転させ,静X
1の主流に対する迎え角を調節すると、これに同期して
おねじ18とナット19のねじ作用で静翼回転軸2がそ
の軸方向に移動する.したがって,前記静翼回転I1l
lll2を介して静翼1をケーシング5の半径方向に移
動させることができる.この第2の実施例の他の構成,
作用は、前記第1の実施例と同様である. ついで、第5図,第6図は本発明の第3の実施例を示す
もので,第5図(A)は定格運転時におけるcII変静
翼部分のロータ軸方向の断面図、第5図(B)は同定格
運転時における静翼の主流に対する姿勢を示す図、第6
図(A)は起動運転時における可変静翼部分のロータ軸
方向の断面図、第6図(B)は同起動運転時における静
翼の主流に対する姿勢を示す図である. これらの図に示す第3の実施例では、ケーシング5の内
周側に,ロータ軸方向と直交する方向からみてほぼ三角
形の静翼台座収納部が形成されている. 一方、静翼1の半径方向の外側の端部には、前記静翼台
座収納部に挿合するほぼ三角形の静翼台座20が一体に
取り付けられている.この静翼台座20には、静翼回転
軸251がロータディスク7の外周部のテーバ面7′に
対して直角となる方向に取り付けられている. 前記静翼回転軸21には、静翼回転用歯車4が連結され
、この静翼回転用歯車4は回転駆動用歯車3に噛み合わ
されている6そして、これら回転駆動用歯車3と静翼回
転用歯車4とにより、静翼同転軸21を介して静翼1の
主流に対する迎え角を調節し得るようになっている. この第3の実施例では、静翼回転軸21をロータディス
ク7の外間部のテーバ面7′に対して直角となる方向に
取り付けているので,第5図(A),第6図(A)から
分かるように、定格運転時と、起動運転時などの部分負
荷運転時とを問わず,静翼1の先端部とロータディスク
7の外周部のテーバ而7′間のギャップを常に最小ギャ
ップδに設定することができる. 続いて,第7図は本発明の第4の実施例を示すもので5
可変静翼部分のロータ軸方向の断面図である. この第4の実施例では,ケーシング5の外側の而に,係
合溝25が形成されている。
In FIG. 2(A), δ' indicates the maximum gap between the tip of the stationary blade 1 and the taper 7' on the outer circumference of the rotor disk 7 during partial load operation such as startup operation. Next, FIGS. 3 and 4 show a second embodiment of the present invention, and FIG. Figure 3 (H) is a diagram showing the attitude of the stationary blade with respect to the main flow during the same rated operation, and Figure 4 (
A) is a cross-sectional view in the rotor axial direction of the carbonized stator blade portion during startup operation, and FIG. 4(B) is a diagram showing the attitude of the stator blade with respect to the mainstream during the same startup operation. In the second embodiment shown in these figures, a thread 18 is formed at the end of the rotary stator blade @2, and a nut 19 having a female thread that engages with the male thread 18 is fixed to the outer peripheral side of the casing 5. It has been done. Then, the male screw 18 and the nut 19
This constitutes a stator blade moving mechanism that moves the stator blade 1 in the radial direction of the casing 5 in synchronization with the adjustment of the angle of attack of the stator blade 1 relative to the mainstream. In this second embodiment, the stationary blade rotating shaft 2 is rotated, and the stationary
When the angle of attack with respect to the main stream 1 is adjusted, the stator blade rotating shaft 2 is moved in the axial direction by the screw action of the male screw 18 and nut 19 in synchronization with this. Therefore, the stator blade rotation I1l
The stationary blade 1 can be moved in the radial direction of the casing 5 via the 1ll2. Other configurations of this second embodiment,
The operation is similar to that of the first embodiment. Next, FIGS. 5 and 6 show a third embodiment of the present invention, and FIG. 5(A) is a sectional view in the rotor axial direction of the cII variable vane portion during rated operation, and FIG. (B) is a diagram showing the attitude of the stationary blade with respect to the main flow during the same rated operation, No. 6
Figure (A) is a sectional view of the variable stator vane portion in the rotor axial direction during start-up operation, and Figure 6 (B) is a diagram showing the attitude of the stator blade with respect to the mainstream during the same start-up operation. In the third embodiment shown in these figures, a stator vane pedestal housing portion is formed on the inner circumferential side of the casing 5 and has a substantially triangular shape when viewed from a direction perpendicular to the rotor axis direction. On the other hand, a substantially triangular stator vane pedestal 20 is integrally attached to the radially outer end of the stator vane 1 to be inserted into the stator vane pedestal storage portion. A stator blade rotating shaft 251 is attached to the stator blade pedestal 20 in a direction perpendicular to the tapered surface 7' of the outer peripheral portion of the rotor disk 7. A stator blade rotation gear 4 is connected to the stator blade rotation shaft 21, and the stator blade rotation gear 4 is meshed with the rotation drive gear 36. The angle of attack of the stator blade 1 relative to the main flow can be adjusted via the stator blade co-rotating shaft 21 by the rotary gear 4. In this third embodiment, the stationary blade rotating shaft 21 is attached in a direction perpendicular to the tapered surface 7' of the outer part of the rotor disk 7, so that ), the gap between the tip of the stationary blade 1 and the taper 7' on the outer periphery of the rotor disk 7 is always kept at the minimum gap, regardless of whether during rated operation or during partial load operation such as startup operation. It can be set to δ. Next, FIG. 7 shows a fourth embodiment of the present invention.
FIG. 3 is a cross-sectional view of the variable stator blade portion in the rotor axial direction. In this fourth embodiment, an engagement groove 25 is formed on the outside of the casing 5.

一方、静翼回転軸2の外側の端部には、おねじ22が形
成されている.また,静翼回転軸2のおねじ22の端部
には,静翼回転用歯車4が静翼同転軸2と一体に取り付
けられている,この静翼回転用歯車4は,回転駆動歯車
3に噛み合わされている. 他方、前記静翼回転軸2のおねじ22には、めねじ24
aを有する静翼移動用歯車24が螺合されている.この
静翼移動用歯車24には,環状突起24bが設けられて
おり,この環状突起24bは前記ケーシング5に形成さ
れた係合溝25に係合されている.その結果、前記静翼
移動用歯車24は,静翼回転軸2の軸方向の決められた
位置で回転し得るようになっている.また,前記静翼移
動用歯車24は,静翼移動専用の駆動歯車23に噛み合
わされている。
On the other hand, a male thread 22 is formed at the outer end of the stator blade rotating shaft 2. Furthermore, a stator blade rotation gear 4 is integrally attached to the end of the male thread 22 of the stator blade rotation shaft 2. This stator blade rotation gear 4 is a rotary drive gear. It is meshed with 3. On the other hand, the male thread 22 of the stator blade rotating shaft 2 has a female thread 24.
A stationary blade moving gear 24 having a diameter of 1.a is screwed together. This stationary blade moving gear 24 is provided with an annular projection 24b, and this annular projection 24b is engaged with an engagement groove 25 formed in the casing 5. As a result, the stationary blade moving gear 24 can rotate at a predetermined position in the axial direction of the stationary blade rotating shaft 2. Further, the stationary blade moving gear 24 is meshed with a drive gear 23 dedicated to moving the stationary blade.

この第4の実施例では、静翼回転411112と,静翼
回転用向車4と、回転駆動歯車3とにより、tO翼1の
主流に対する迎え角を調節する静翼可変機構を構成して
いる. また、静翼回転4+lil2に形成されたおねじ22と
、めねじ24aを介して前記おねじ22に魅合されかつ
ケーシンク5に形成された係合溝25に環状突起24b
を介して係合された静寛移動用歯車24と、静翼移動専
用の馳a歯車23と、ケーシング5の内周側に形成され
た静翼台座収納部と,これにすき間16を有して収納さ
れた静翼台座15とにより,前記静翼Ilf変機構とは
独立に機能する#iI翼移tjJ機構を構成している.
そして、前記静翼移動機構は駆動歯車23により静翼移
動用歯車24を回転させると,係合溝25と環状契起2
4bとの作用により静R移動用歯車24が静翼回転軸2
の軸方向に決められた位置で回転する.前記静翼移動用
歯車24が軸方向の決められた位置で同転すると、おね
じ22とめねじ24aのねじ作用で静翼回転軸2が軸方
向に移動する. したがって.この実施例では静翼nf変機構による静′
R1の姿勢の調節とは別個に,必要により静翼移fli
t機構により静′Rl−をケーシング5の半径方向に移
動させることができる。
In this fourth embodiment, the stator blade rotation 411112, the stator blade rotation direction wheel 4, and the rotary drive gear 3 constitute a stator blade variable mechanism that adjusts the attack angle of the tO blade 1 with respect to the main stream. .. Further, an annular protrusion 24b is attached to the male thread 22 formed on the stator vane rotation 4+lil2 and the male thread 22 through the female thread 24a, and is attached to the engagement groove 25 formed on the casing 5.
A gear 24 for static and relaxing movement engaged through the gear 24, a gear 23 exclusively for moving the stator blade, a stator blade pedestal storage portion formed on the inner circumferential side of the casing 5, and a gap 16 formed therein. The stator blade pedestal 15 housed in the stator blade pedestal 15 constitutes a #iI blade shifting mechanism that functions independently of the stator blade Ilf shifting mechanism.
When the stator blade moving gear 24 is rotated by the driving gear 23, the stator blade moving mechanism engages the engagement groove 25 and the annular engagement groove 2.
4b, the static R moving gear 24 moves to the stator blade rotation shaft 2.
rotates at a fixed position in the axial direction. When the stator blade moving gear 24 rotates at a predetermined position in the axial direction, the stator blade rotating shaft 2 is moved in the axial direction by the screw action of the male thread 22 and the female thread 24a. therefore. In this embodiment, the static '
Separately from adjusting the attitude of R1, if necessary, move the stationary blade fli
The stationary 'Rl- can be moved in the radial direction of the casing 5 by the t mechanism.

この第4の実施例の他の構成については%n1f記第1
の実施例と同様である. さらに、第8図は本発明の第5の実施例を示す一部破断
系統図である。
For other configurations of this fourth embodiment, see %n1f, Section 1.
This is similar to the example in . Furthermore, FIG. 8 is a partially cutaway system diagram showing a fifth embodiment of the present invention.

この第5の実施例では、前記第4の実施例と同様、静翼
Of変4!&構と静翼移動機構とがそれぞわ独立に機能
するように構成されている外,静翼移劾機構を制御する
制御システムが設けられている。
In this fifth embodiment, similarly to the fourth embodiment, the stationary blades of variable 4! In addition to the structure and the stator blade moving mechanism being configured to function independently, a control system is provided to control the stator blade moving mechanism.

前記制御システムでは,@翼の先端部とケーシングlf
tlのギャップをギヤップセンサ107で計71113
し、ロータとケーシング間の軸方向のギャップをギヤツ
プセンサ108で計側する.また、ケーシングの温度,
ロー夕の温度,作動流体の温度を、それぞれ温度センサ
109.,110,111で計測する. これらの測定値101と、そのときの静翼の回転角10
2のデータから.そのときの静翼の先端部とロータディ
スクの外周部のテーバ血間のギャップを算定する(第8
図中には静翼先端ギャップ量の算定と表示).この算定
値103と目標ギャップ104(第8図中には静翼先端
目標ギャップと表ボ)とを比較し,両者の差を演算する
.そいて、前ddn定値103と目標ギャップ104の
差に基づき,両者を一致させるべくサーボアンプ105
を通じてアクナユエータ106に618信号を送り、静
翼移動機構の藺ljJ歯車23を駆動し,e翼移動用歯
車24を回転させ,おねじ22とめねじ24aのねじ作
用により、静翼回転軸2を軸方向に移動させ,静翼1の
先喘部とロータディスク7の外潤部のテーバ而7′間の
ギャップを調節する6 これにより、任意の運転条件ドで、静翼1の先端部とロ
ータディスク7の外周部のテーバ血7’間のギャップを
常に適正な目標ギャップ104に保持することができる
. 進んで,第9図は本発明の第6の実施例を示すもので、
第9図(A)は定格運転時における静翼の主流に対する
位置を示す図、第9図(B),((.:)はそれぞれ第
9図(A)のB−}3&IAおよびC−C線断面図であ
る. この第6の実施例では、定格運転時における静翼1の位
置において.#’#gLの先端部26の全面を、相対す
るロータディスク′7の外周部のテーバ1m7′とのギ
ャップが等しくなるように,曲面状に形成されている. これにより、定格運転状態での流体性能を高くすること
が可能となる. 〔発明の効果〕 以上説明した本発明の請求項1記載の発明によれば、動
翼の主流に対する迎え角を調節する静翼iiJ変機構に
、静翼の主流に対する迎え角を調節に同期して前Kd静
翼をケーシングの半径方向に移動させる静翼移動機構を
設けているので,定格運転時には静翼の先端部とロータ
ディスクの外周部のテーバ血間のギャップを最小ギャッ
プとし,かつ起動時などの部分負萄運転時には静翼の先
端部がロータディスクの外周部のテーバ血に接触あるい
はくい込む不具合を解消し得る効果がある。
In the above control system, @the tip of the wing and the casing lf
The gap of tl is 71113 in total using the gap sensor 107.
Then, the gap in the axial direction between the rotor and the casing is measured using a gap sensor 108. Also, the temperature of the casing,
The temperature of the rotor and the temperature of the working fluid are measured by temperature sensor 109. , 110, 111. These measured values 101 and the rotation angle 10 of the stationary blade at that time
From the data of 2. At that time, calculate the gap between the tip of the stationary blade and the outer circumference of the rotor disk (No. 8
The figure shows the calculation and display of the stator blade tip gap amount). This calculated value 103 is compared with the target gap 104 (in Fig. 8, the stator blade tip target gap and table box) are compared, and the difference between the two is calculated. Then, based on the difference between the previous ddn constant value 103 and the target gap 104, the servo amplifier 105 is adjusted to match the two.
A 618 signal is sent to the actuator 106 through the 618 signal, which drives the gear 23 of the stator blade moving mechanism, rotates the blade moving gear 24, and rotates the stator blade rotating shaft 2 by the screw action of the male screw 22 and female screw 24a. direction, and adjust the gap between the tip part of the stator blade 1 and the taper 7' of the external wetted part of the rotor disk 7.6 As a result, under any operating conditions, the tip part of the stator blade 1 and the rotor The gap between the Taber's blood 7' on the outer periphery of the disk 7 can always be maintained at an appropriate target gap 104. Proceeding, FIG. 9 shows a sixth embodiment of the present invention,
Figure 9 (A) is a diagram showing the position of the stationary blade with respect to the main flow during rated operation, Figure 9 (B), ((.:) are B-}3 & IA and C-C in Figure 9 (A), respectively) This is a line cross-sectional view. In this sixth embodiment, at the position of the stationary blade 1 during rated operation, the entire surface of the tip 26 of . It is formed in a curved shape so that the gap between the two and According to the described invention, the stator blade iiJ variable mechanism that adjusts the angle of attack with respect to the main stream of the rotor blade is provided with a stator blade that moves the front Kd stator blade in the radial direction of the casing in synchronization with the adjustment of the angle of attack with respect to the main stream of the rotor blade. Since a blade moving mechanism is provided, the gap between the tips of the stator blades and the outer periphery of the rotor disk is the minimum gap during rated operation, and the tips of the stator blades are kept at the minimum gap during partial load operation such as during startup. This has the effect of eliminating the problem of contact with or getting stuck in the Tauber's blood on the outer periphery of the rotor disk.

また、本発明の請求項2記載の発明によれば、0翼if
変機構を,静翼回転軸と、これの回転駆動部とにより構
成するとともに、前記静翼回転軸をロータディスクの外
周部のテーパ面に対して直角をなす方向に取り付けてい
るので、製作時に静翼の先端部とロータディスクの外局
部のテーパ面間のギャップを最小ギャップに設定してお
けば、定格運転時と、部分負荷ii!!転時を問わず、
常に静翼の先端部とロータディスクの外周部のテーバ面
1fJJのギャップを最小ギャップに保持し得る効果が
ある. さらに、本発明の請求項3記載の発明によれば、靜翼移
動機構を、D翼可変機構に対して独立に駆動し得るよう
に構成しているので、静翼移afi構を必要により静翼
口■蛮機構とは別個に駆動し,静翼をケーシングの半径
方向に移動し得る効果がある. そして、本発明の請求項4記載の発明によれば、制御シ
ステムにより、運転中のロータおよびケーシングの温度
,熱変形と、運転中のロータとケーシング間にギャップ
とを計測し、その計811情報に応じて静:X移動機前
を制御するようにしており、したがって任、ぱの運転条
件ドで、静翼の先端部とロータディスクの外周部のテー
パ向l川のキャップを常に適正な目標ギャップに保持し
得る効果があ机 また、本発明の請求項5記載の発明によれば,定格運転
時における静翼の位置において、静寛の先端部の全面を
,相対するロータディスクの外周部のテーパ而間のギャ
ップが等しくなるように,曲白状に形成しているので、
定格運転状態での流体性能の向上を図り得る効果がある
Further, according to the invention recited in claim 2 of the present invention, 0 wing if
The variable mechanism is composed of a stator vane rotation shaft and its rotation drive part, and the stator vane rotation shaft is attached in a direction perpendicular to the tapered surface of the outer circumference of the rotor disk. By setting the gap between the tip of the stator vane and the tapered surface of the outer part of the rotor disk to the minimum gap, both during rated operation and partial load II! ! Regardless of the time of change,
This has the effect of always keeping the gap between the tip of the stationary blade and the tapered surface 1fJJ of the outer periphery of the rotor disk at the minimum gap. Furthermore, according to the third aspect of the present invention, since the static blade moving mechanism is configured to be able to be driven independently of the D blade variable mechanism, the static blade moving AFI mechanism can be moved statically if necessary. It is driven separately from the vane mechanism and has the effect of moving the stationary blades in the radial direction of the casing. According to the fourth aspect of the present invention, the temperature and thermal deformation of the rotor and casing during operation and the gap between the rotor and casing during operation are measured by the control system, and a total of 811 pieces of information are obtained. Therefore, under various operating conditions, the tip of the stator blade and the cap in the direction of the taper on the outer periphery of the rotor disk are always set at an appropriate target. In addition, according to the invention set forth in claim 5 of the present invention, in the position of the stator vane during rated operation, the entire surface of the tip of the stator vane is connected to the outer circumference of the opposing rotor disk. Since it is formed in a curved shape so that the gap between the tapers is equal,
This has the effect of improving fluid performance under rated operating conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図は本発明の第1の実施例を示すもので,
第1図(A)は定格運転時における可変Ir#翼部分の
ロータ帽方向の断1m図、第11司(13)は同定格運
転時における静翼の主流に対する姿勢を示す図,第2図
(A)は起動運転時における可変静翼部分のロータ相方
向の断面図、第2図(B)は同起動運転時における静翼
の主流に対する姿勢をホす図、第3図,第4図は本発明
の第2の実施例を示すもので、第3図(A)は定格′M
転時における口■変静翼部分のロータ軸方向の断面図,
第3図(H)は同定格運転時における静寛の上流に対す
る姿勢をポす図、第4図(A)は起動運転時におけるL
If変静翼部分のロータ軸方向の断面図、第4図(B)
は同起1jJ運転時における静翼の主流に対する姿勢を
示す図、第5図,第6図は本発明の第コ3の実施例を示
すもので、第5図(A)は定格運転時におけるIjf変
静翼部分のロータ軸方向の断面図、第5図(B)は同定
格運転時における静翼の主流に対する姿勢を示す図、第
6図(A)は起動運転時における可変静翼部分のロータ
軸方向の断面図、第6図(B)は同起動運転時における
静翼の主流に対する姿勢を示す図、第゛l図は本発明の
第4の実施例を小すもので,l.If変静寛部分のロ−
タ軸方向の断而図、第8図は本発明の第5の実施例を示
す一部破断系統図、第9図は本発明の第6の実施例をボ
すもので、第9図(A)は定格運転時における静翼の主
流に対する位litを示す図、第9図(B),(C)は
それぞれ第9図(A)のB一B線およびc−cH断而図
である.第10図はiJ変静翼型ターボ機械である多段
軸流圧縮機の断面図、第11図,第12図は従来技術を
示すもので、第11図(A)は定格運転時における川変
静翼部分のロータ軸方向の断面図、第11図(H)は同
定格運転時における静翼の主流に対する姿勢を示す図、
第12図(A)は起動運転時における可変静翼部分のロ
ータ軸方向の断面図、第12図(H)は同起動運転時に
おけるD翼の主流に対する姿勢を示す図である. 1・・・静翼、2・・・静翼回転軸、3・・・回転駆!
l!lI1歯11L,4・・・静翼回転用歯車、5・・
・ケーシング、7・・・ロータディスク,7′・・・テ
ーパ而、11・・・固定片、12・・・同転片、13・
・・傾斜力l1面、14・・・圧縮ばね,δ・・・最小
ギャップ、17・・・封止装置、18・・・おねじ、1
9・・・ナット、21・・・静翼回転÷lll.22・
・・おねじ、23・・・静翼移動専用の駆動歯車,24
・・・静翼移動用歯車、24a・・・めねじ,24b・
・・環状突起、25・・・係合溝、26・・・静翼の先
端部、101・・・温度,熱変形,動翼先端ギャップの
測定値、102・・・静翼の回転角、103・・・静翼
の先端部とロータディスクのテーパ而間のギャップの算
定値、104・・・目標ギャップ,105・・・サーボ
アンプ、106・・・アクチュエータ、10’7,10
8・ギャップセンサ,109,110,ill・・・温
度センサ. CB) υ格1軒呼 (B) 起動1転埼 V 5−−一γ一〉ン7゛゜ 22−−− 9 ,?’L L− Z5 −−−イ弄レ会ゝi番 Q Z6 一%.!,1乏之即 ■ コ m 冨 /ρ 図 l ?−一一ス2ゾヤシフ゛芥.■しト 寥 コ (A) (E3) 定応i転吟 舅 ・z 1 (A) (F3)
Figures 1 and 2 show a first embodiment of the present invention.
Figure 1 (A) is a 1-meter cross section of the variable Ir# blade section in the direction of the rotor cap during rated operation, Figure 11 (13) is a diagram showing the attitude of the stationary blade with respect to the mainstream during rated operation, and Figure 2 (A) is a sectional view of the variable stator vane portion in the rotor phase direction during start-up operation, Fig. 2 (B) is a view showing the attitude of the stator blade with respect to the mainstream during start-up operation, Figs. 3 and 4 shows the second embodiment of the present invention, and FIG. 3(A) shows the rated 'M
Cross-sectional view of the variable stator vane portion in the rotor axial direction during rotation,
Fig. 3 (H) is a diagram showing the upstream attitude of Seikan during the same rated operation, and Fig. 4 (A) is a diagram showing the L position during start-up operation.
Cross-sectional view of the If variable vane portion in the rotor axial direction, Fig. 4 (B)
is a diagram showing the attitude of the stationary blade with respect to the main stream during 1jJ operation, Figures 5 and 6 show the third embodiment of the present invention, and Figure 5 (A) is the attitude during rated operation. A cross-sectional view of the Ijf variable stator vane portion in the rotor axial direction, Fig. 5 (B) is a diagram showing the attitude of the stator blade with respect to the mainstream during the same rated operation, and Fig. 6 (A) is the variable stator vane portion during startup operation. FIG. 6(B) is a cross-sectional view of the rotor in the axial direction, FIG. .. If the low part of the change/relaxation part
Fig. 8 is a partially cutaway system diagram showing the fifth embodiment of the present invention, and Fig. 9 shows the sixth embodiment of the present invention. A) is a diagram showing the position of the stationary blade relative to the main stream during rated operation, and Figures 9 (B) and (C) are the B-B line and c-cH diagram of Figure 9 (A), respectively. .. Figure 10 is a cross-sectional view of a multi-stage axial flow compressor, which is an iJ variable stator vane type turbomachinery, Figures 11 and 12 show conventional technology, and Figure 11 (A) shows the flow rate during rated operation. A cross-sectional view of the stator blade portion in the rotor axial direction, FIG. 11 (H) is a diagram showing the attitude of the stator blade with respect to the mainstream during the same rated operation,
FIG. 12(A) is a sectional view of the variable stator vane portion in the rotor axial direction during startup operation, and FIG. 12(H) is a diagram showing the attitude of the D blade with respect to the mainstream during the same startup operation. 1... Stator blade, 2... Stator blade rotation axis, 3... Rotary drive!
l! lI1 tooth 11L, 4...Stator blade rotation gear, 5...
・Casing, 7... Rotor disk, 7'... Tapered, 11... Fixed piece, 12... Rotating piece, 13...
...Tilting force l1 plane, 14...Compression spring, δ...Minimum gap, 17...Sealing device, 18...Male thread, 1
9...Nut, 21...Stator blade rotation ÷llll. 22・
・・Male thread, 23 ・・Drive gear exclusively for moving stator blades, 24
...Stator blade moving gear, 24a...Female thread, 24b.
... Annular projection, 25 ... Engagement groove, 26 ... Tip of stator blade, 101 ... Temperature, thermal deformation, measured value of rotor blade tip gap, 102 ... Rotation angle of stator blade, 103... Calculated value of the gap between the tip of the stationary blade and the taper of the rotor disk, 104... Target gap, 105... Servo amplifier, 106... Actuator, 10'7, 10
8. Gap sensor, 109, 110, ill...Temperature sensor. CB) υ case 1 house call (B) Start 1 transfer point V 5--1γ1〉n7゛゜22-- 9 ,? 'L L- Z5 ---I play meeting i number Q Z6 1%. ! ,1 Scarce ■ Com Tomi/ρ Figure l ? - 11th 2 zoyashi ph. ■ Shitoko (A) (E3) Teioi Tenginka ・z 1 (A) (F3)

Claims (1)

【特許請求の範囲】 1、ケーシングの内周側に静翼を取り付け、この静翼の
先端部に位置するロータディスクの外周部に、ロータ回
転軸方向に傾斜するテーパ面を形成するとともに、前記
静翼の主流に対する迎え角を調節する静翼可変機構を設
けた可変静翼型ターボ機械において、前記静翼可変機構
に、静翼の主流に対する迎え角の調節に同期して前記静
翼をケーシングの半径方向に移動させる静翼移動機構を
設けたことを特徴とする可変静翼型ターボ機械。 2、ケーシングの内周側に静翼を取り付け、この静翼の
先端部に位置するロータディスクの外周部に、ロータ回
転軸方向に傾斜するテーパ面を形成するとともに、前記
静翼の主流に対する迎え角を調節する静翼可変機構を設
けた可変静翼型ターボ機械において、前記静翼可変機構
を、静翼の外側の端部に連結された静翼回転軸と、この
静翼回転軸の回転駆動部とにより構成し、前記静翼回転
軸を、前記ロータディスクの外周部のテーパ面に対して
直角をなす方向に取り付けたことを特徴とする可変静翼
型ターボ機械。 3、前記静翼移動機構を、静翼可変機構に対して独立に
駆動し、静翼をケーシングの半径方向に移動可能に構成
したことを特徴とする請求項1記載の可変静翼型ターボ
機械。 4、運転中のロータおよびケーシングの温度、熱変形と
、運転中のロータとケーシング間のギャップとを計測し
、その計測情報に応じて前記静翼移動機構を制御する制
御システムを設けたことを特徴とする請求項3記載の可
変静翼型ターボ機械。 5、定格運転時における静翼の位置において、静翼の先
端部の全面を、相対するロータディスクの外周部のテー
パ面間のギャップが等しくなるように、曲面状に形成し
たことを特徴とする請求項1、2、3または4記載の可
変静翼型ターボ機械。
[Claims] 1. A stator vane is attached to the inner peripheral side of the casing, and a tapered surface inclined in the rotor rotation axis direction is formed on the outer peripheral part of the rotor disk located at the tip of the stator vane. In a variable stator vane type turbomachine provided with a variable stator blade mechanism that adjusts an angle of attack of the stator blade relative to the main stream, the variable stator blade mechanism is provided with a casing for the stator blade in synchronization with adjustment of the angle of attack of the stator blade relative to the main stream. A variable stator vane type turbomachine characterized by being provided with a stator blade moving mechanism that moves the stator blade in the radial direction. 2. A stator vane is attached to the inner peripheral side of the casing, and a tapered surface inclined in the direction of the rotor rotation axis is formed on the outer peripheral part of the rotor disk located at the tip of the stator vane, and a taper surface is formed on the outer periphery of the rotor disk located at the tip of the stator vane. In a variable stator vane type turbomachine equipped with a variable stator vane mechanism that adjusts the angle, the variable stator blade mechanism is connected to a stator blade rotating shaft connected to an outer end of the stator blade, and a rotation of this stator blade rotating shaft. 1. A variable stator vane turbomachine comprising: a drive unit, wherein the stator vane rotating shaft is attached in a direction perpendicular to a tapered surface of an outer peripheral portion of the rotor disk. 3. The variable stator vane type turbomachine according to claim 1, wherein the stator vane moving mechanism is configured to be driven independently of the variable stator vane mechanism so that the stator vanes can be moved in the radial direction of the casing. . 4. A control system is provided that measures the temperature and thermal deformation of the rotor and casing during operation, and the gap between the rotor and casing during operation, and controls the stator blade moving mechanism according to the measurement information. The variable stator vane type turbomachine according to claim 3. 5. The entire surface of the tip of the stator vane is formed into a curved surface so that the gap between the tapered surfaces of the outer periphery of the opposing rotor disks is equal in the position of the stator vane during rated operation. The variable stator vane type turbomachine according to claim 1, 2, 3, or 4.
JP11495589A 1989-05-10 1989-05-10 Variable stator blade type turbo machine Pending JPH02294501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11495589A JPH02294501A (en) 1989-05-10 1989-05-10 Variable stator blade type turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11495589A JPH02294501A (en) 1989-05-10 1989-05-10 Variable stator blade type turbo machine

Publications (1)

Publication Number Publication Date
JPH02294501A true JPH02294501A (en) 1990-12-05

Family

ID=14650783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11495589A Pending JPH02294501A (en) 1989-05-10 1989-05-10 Variable stator blade type turbo machine

Country Status (1)

Country Link
JP (1) JPH02294501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936507A1 (en) * 1999-08-05 2001-02-15 3K Warner Turbosystems Gmbh Turbine guide vane for an exhaust gas turbocharger
EP2829735A1 (en) 2013-07-23 2015-01-28 Mitsubishi Hitachi Power Systems, Ltd. Axial compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936507A1 (en) * 1999-08-05 2001-02-15 3K Warner Turbosystems Gmbh Turbine guide vane for an exhaust gas turbocharger
EP2829735A1 (en) 2013-07-23 2015-01-28 Mitsubishi Hitachi Power Systems, Ltd. Axial compressor
EP2829735B1 (en) * 2013-07-23 2018-11-14 Mitsubishi Hitachi Power Systems, Ltd. Axial compressor

Similar Documents

Publication Publication Date Title
US8235655B1 (en) Variable inlet guide vane assembly
US4773817A (en) Labyrinth seal adjustment device for incorporation in a turbomachine
EP1676978B1 (en) Gas turbine engine blade tip clearance apparatus and method
US7407369B2 (en) Gas turbine engine blade tip clearance apparatus and method
EP2227620B1 (en) Variable nozzle for a turbocharger, having nozzle ring located by radial members
US20120308364A1 (en) Drive device for pivoting adjustable blades of a turbomachine
JPH0776536B2 (en) Gas turbine engine clearance control device
JPS6198903A (en) Turbine, compressor or pump or the like
US20110138805A1 (en) Conjugate curve profiles for vane arms, main-arms, and unison rings
JP6354904B2 (en) Variable capacity turbocharger
US20180223868A1 (en) Turbine Engine Compressor with Variable-Pitch Vanes
CN107237654A (en) Variable nozzle mechanism arm, variable nozzle mechanism and turbocharger
EP3708780A1 (en) Turbocharger having variable-vane turbine nozzle including spacers that also serve as hard stops for the vanes
JP4044392B2 (en) Variable turbocharger
CN107165867A (en) A kind of diffuser structure
JPH02294501A (en) Variable stator blade type turbo machine
EP2730750A2 (en) Turbocharger and variable-nozzle cartridge therefor
WO2015191306A1 (en) Compressor housing with variable diameter diffuser
JPS5859400A (en) Apparatus for varying setting angle of stator blades of multi-stage axial-flow compressor
RU2744116C1 (en) Compressor control
EP3569827B1 (en) Variable diffuser having a respective penny for each vane
JPH0435542Y2 (en)
JPS60116830A (en) Driving device of variable nozzle of radial-flow turbine
JPH04140431A (en) Turbo compressor
US20190345838A1 (en) Variable diffuser having a respective penny for each vane