JPH02294473A - Method and apparatus for thin film formation - Google Patents
Method and apparatus for thin film formationInfo
- Publication number
- JPH02294473A JPH02294473A JP11493089A JP11493089A JPH02294473A JP H02294473 A JPH02294473 A JP H02294473A JP 11493089 A JP11493089 A JP 11493089A JP 11493089 A JP11493089 A JP 11493089A JP H02294473 A JPH02294473 A JP H02294473A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- electrode
- sputtering
- discharge
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000015572 biosynthetic process Effects 0.000 title claims description 16
- 238000004544 sputter deposition Methods 0.000 claims abstract description 19
- 238000012544 monitoring process Methods 0.000 claims 9
- 239000010408 film Substances 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 11
- 238000011109 contamination Methods 0.000 abstract description 6
- 239000012535 impurity Substances 0.000 abstract description 6
- 230000000977 initiatory effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は薄膜形成に係り、特に開口部を有する物体の内
面上に良好な薄膜形成が可能な薄膜形成方法およびその
装置に関する.
(従来の技術〕
現在、マイクロアナリシスを目的として、真空紫外〜軟
X線・X線領域の光に対する集光用反射鏡の開発が各所
で進められている.
これら反射鏡の反射面には、反射率増大を目的とし、通
常、金,白金等の薄膜(反射1!I!)がコートさわる
.このためのコート方法(WI膜形成方法)としては、
以下に述べる代表的方法がある.(1)蒸着法:真空中
で蒲膜材料を加熱,蒸発させ、蒸着源に対向して設置さ
れた反射鏡の反射面上に反射用薄膜を形成する.
(2》スバツタ法:薄膜材料でターゲットを作り,放電
によって生成した荷電粒子(たとえばAr◆イオン等)
でこのターゲットをスパッタすることにより、ターゲッ
トに対向して設置された反射鏡の反射面上に反射用薄膜
を形成する.(3)メッキ法:反射面をメッキ液中に設
置し,反射面に金属薄膜を無電解、あるいは電解メッキ
する.
〔発明が解決しようとする課題〕
−先に述べた従来法で薄膜形成可能な反射面は、平面も
しくは平面に近い形状を有する曲面である.一方、真空
紫外〜軟X線・X線領域の光に対する反射鏡として、ウ
ォルター型反射鏡やタンデム型反射鏡が近年注目されて
いる.これら反射鏡は,回転対称軸の回りに反射面を有
する,いわば(内径が連続的に変化する)パイプ状物体
の内面を反射面とする反射鏡である.多くの場合、これ
ら反射鏡の開口部口径は、最大でも10〜30m程度で
あり(青木貞雄,光学,第13巻,18頁,1984年
),反射鏡の長さ( 4 0 〜7 0 m ,青木貞
雄,(前出),および橘木洋等、精密工学会誌,第54
巻,299頁,1988年)に比べ小さい.
このような反射鏡の反射面上に従来法を用いて反射用薄
膜を形成することは,以下に述べる理由から困兼である
.蒸着法やスバッタ法では、蒸着源,スパッタ源から反
射面を見込む立体角が極めて小さい.このため、蒸発し
た,あるいはスパッタされた原子,粒子は反射面に到達
しに<<,反射用薄膜形成は困難である.また、仮に薄
膜形成が可能としても,蒸f!源,スバッタ源に近い部
分ほど薄膜形成速度が大きく、均一な反射膜は得られな
い.
メッキ法では,形成された薄膜に対し不純物汚染の可能
性がある。一般に、メッキ液中には数10種類の元素が
含まれている.これら元素は、薄膜中に混入して反射率
低下の原因となる.以上、反射鏡を例に述べた.しかし
,反射鏡だけでなく、その内面上に薄膜を形成したいと
いう要求は多い.たとえ電子顕微鏡の鏡筒等があげられ
る.
本発明の目的は、反射鏡等開口部を有する物体の内面上
に良好な薄膜の形成が可能な薄膜形成方法およびその装
置に関する.
〔課題を解決するための手段〕
上記目的を達成するために、内面を被薄膜形成面とする
物体を真空チャンバ内に設置し、この物体の被薄膜形成
面が囲む空間(すなわち内面によって囲まれた空間.以
下、内側空間と呼ぶ)に開口部より電極を挿入する(第
1図参照).次に、真空チャンバ内に希ガス等のガスを
導入してこの電極に電圧を印加することにより,電極間
もしく?e1極近傍で放電を発生させる.また、上記被
薄膜形成面を有する物体を上記電極のまbりで回転させ
るための手段,あるいはこの物体を上記電横に沿って上
下させるための手段を設ける.〔作用〕
従来のスパッタ法の欠点は、スパッタ源が内面を被薄膜
形成面とする物体の外部にあるため,スバッタ源から被
薄膜形成面を見込む立体角が極めて小さく、スパッタさ
れた原子,粒子は被薄膜形成面に到達しにくいことにあ
った.この欠点は、上記物体の被薄膜形成面が囲む空間
(内側空間)にスパッタ源を設置すれば解決される.し
かも、スパッタ法で形成される薄膜の粒子径は蒸着法等
他方法の粒子径に比べ小さいため、本発明を反射am作
に使用すれば、反射鏡に必要な而粗さの小さい反射用薄
膜の形成が期待できる.実際,R■8で0.01μm程
度の面粗さを有する薄膜の形成が可能であることが実験
により確認された.前節で述べた内側空間に開口部より
挿入された電極は、上記スバツタ源の役割を果たす.こ
の電極に印加された電圧により、真空チャンバ内に導入
されたガスの放電が上記物体の内側空間で起こり、放電
中で生成された荷電粒子により電極表面がスパッタされ
る.スパッタされた原子,粒子は被薄膜形成面に到達,
付着し、薄膜が形成される.ここで、電極は、その全体
もしくはその表面が形成しようとする薄膜と同一(また
は類似組成の)材料でできていることが望ましい.ある
いは、形成される薄膜に対し不純物汚染が問題とならな
いような材料でできていることが必要である.
また、前節で述べた物体の同転、および上下動手段は、
形成される薄膜の均一性を向上させるための手段である
.
以上述べたように、本発明を用いることにより、反射鏡
等開口部を有する物体の内面上に、効”率的かつ均一に
不純物汚染のない薄膜の形成が可能である.
【実施例〕
以下、本発明の一実施例を具体的に説明する.〈実施例
1〉
本発明の基本的実施例を第1回に示した.第1図におい
て内面を被薄膜形成面とする物体1(物体1の内径は、
第1図のように連続的に変化していてもよいし、全体に
均一でもよい.)は保持台6に固定されている.保持台
6は、アーム7を介して駆動機構8に取り付けられてい
る.これにより,物体1は電極2,3に対し上下運動,
および電極2,3の回りの回転運動が可能である.これ
ら運動、従って、駆動機構8の制御はコントローラ9で
行なう.
物体1の内側空間には開口部より電極2,3が挿入され
ている.電極2.3には電源5により電圧(数100v
〜数KV)が印加される.電源5は直流電源でも交流電
源でも良い.また,パルス電源の使用も可能である.実
験によれば、直流電源に比べ、交流電源を使用した方が
物体1の内側空間での放電は起こりやすい.
物体1や電極2,3等はチャンバ4に格納されており、
チャンバ4は真空排気されている.チャンパ4には、バ
ルブ10を介して希ガス等放電用ガスが導入される.導
入圧力は10Tarr以下で良レ1.
上記ガスを導入した後.m源5を用いて電極2.3間に
電圧を印加すると、電極2,3問およびその近傍で放電
が発生する.この放電中で生成された荷電粒子により電
極2もしくは3表面がスパッタされ、物体1の内面上に
薄膜が形成される.駆動機[8を用いて、放電時に物体
1の上下運動,回転運動を行なうことにより、均一な膜
形成が可能である.なお、第1図では電極は2本である
が,放電可能であるならば挿入される電極は1本でも良
い.
本実施例によれば、物体lの内面上に,効率的かつ均一
に不純物汚染のない薄膜形成が可能である.
く実施例2〉
第2図に示された実施例では、第1図の実施例に比べ、
電極の形状が異なる.実施例1において、電極2,3の
いずれか一方は接地電極である.実験によれば、fI1
極2,3が物体1の内側空間にある場合,(一般的に)
接地電極の表面積が大きい方が放電は起こりやすい.こ
のため,本実施例では、接地側の電極l2の表面積を大
きくした.このように、接地側電極の表面積や、接地側
電極と対向するもう一方の電極の表面積、あるいは両電
極の表面積の比、さらには両電極の電極間隔によって、
放電の起こりやすさは異なってくる.本実施例および実
施例lも含め、以下に述べるすべての実施例において、
電極表面積および表面積比.fl極間隔は最適な放電が
得られるよう可変とする.
電極11はその一部が絶縁物でできたスリーブl3でお
おわれている.これは、先に述べた電極l1の表面積調
節のためである.また、このおおいにより、電極11の
露出部(電極12に近い部分)に効率的に電圧を印加で
き、物体1の内側空間での放電をより容易に行なうこと
ができる.さらに、放電がより局所的になるため、薄膜
形成の均一V向上する.その他については実施例1と同
じである.
本実施例によれば、電極表面積や表面積比,あるいは電
極間隔の調節が可能であるので、薄膜形成に最適な放電
が得られる.また、電極をスリーブでおおうことにより
、電極先端部に効率的に電圧印加が可能である.以上の
結果、薄膜形成に最適な放電を容易に行なうことができ
,より良好かつ均一な薄膜を薄膜被形成面上に形成でき
る.〈実施例3〉
薄膜形成の目的によっては、形成される薄膜の膜厚を正
確にモニタ、制御することが必要になる.たとえば、反
射用薄膜として多層膜を使用する場合,膜厚を10−4
μm単位で制御しなければならない.この様な場合の実
施例の一例を第3図に示した.
第3図では,モニタ14〜19を物体1の回りに配置し
た.この場合、モニタ14と17、モニタ15と18、
モニタ16と19は、それぞれ対になって働く.たとえ
ば,モニタ14は特定の波長(たとえば,形成される薄
膜に特異的に吸収される光の波長)を有する光源(たと
えば、半導体レーザ等)であり、モニタ17はその波長
を有する光の検出器(たとえば、フォトダイオード等)
であれば良い.この場合、酵膜を透過する光の光鴬から
膜厚およびその変化を知ることができる.モニタ14〜
19はコントローラ2oで制御されている.特に、モニ
タ17〜19の検出信号をもとにコントローラ20で膜
厚が計算され、この計算結果が電源5およびコントロー
ラ9にフィードバックされる.この結果、電極12ある
いは13に印加される電圧が制御され,放電状態あるい
は原子・粒子の電極12もしくは13がらのスパッタリ
ング速度がlll節される.また、物体1の上下運動,
回転運動の速さも調節される.本実施例では,コントロ
ーラ20からのフィードバック先は電源5、コントロー
ラ9の両方としたが,どちらか一方へのフィードバック
だけでも良い.また、膜厚モニタの種類個数,位置も任
意である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to thin film formation, and more particularly to a thin film formation method and apparatus capable of forming a good thin film on the inner surface of an object having an opening. (Conventional technology) Currently, for the purpose of microanalysis, the development of condensing reflectors for light in the vacuum ultraviolet to soft X-ray/X-ray range is underway in various places. For the purpose of increasing reflectance, a thin film of gold, platinum, etc. (reflection 1!I!) is usually coated.The coating method for this purpose (WI film formation method) is as follows.
There are representative methods described below. (1) Vapor deposition method: The film material is heated and evaporated in a vacuum to form a reflective thin film on the reflective surface of a reflecting mirror placed opposite the vapor deposition source. (2) Subatsuta method: A target is made of a thin film material, and charged particles (e.g. Ar◆ ions, etc.) are generated by discharge.
By sputtering this target, a reflective thin film is formed on the reflective surface of a reflective mirror placed opposite the target. (3) Plating method: The reflective surface is placed in a plating solution, and a thin metal film is plated electrolessly or electrolytically on the reflective surface. [Problems to be solved by the invention] - The reflective surface on which a thin film can be formed by the conventional method described above is a flat surface or a curved surface having a shape close to a flat surface. On the other hand, Walter-type reflectors and tandem-type reflectors have recently attracted attention as reflectors for light in the vacuum ultraviolet to soft X-ray/X-ray region. These reflecting mirrors have a reflecting surface around an axis of rotational symmetry, so to speak, and the reflecting surface is the inner surface of a pipe-shaped object (with a continuously changing inner diameter). In many cases, the aperture diameter of these reflecting mirrors is approximately 10 to 30 m at most (Sadao Aoki, Optics, Vol. 13, p. 18, 1984), and the length of the reflecting mirror (40 to 70 m). , Sadao Aoki (cited above), and Hiroshi Tachibanagi et al., Journal of the Japan Society for Precision Engineering, No. 54
volume, p. 299, 1988). It is difficult to form a reflective thin film on the reflective surface of such a reflective mirror using conventional methods for the following reasons. In evaporation and sputtering methods, the solid angle of the reflection surface from the evaporation source or sputtering source is extremely small. For this reason, the evaporated or sputtered atoms and particles do not reach the reflective surface, making it difficult to form a reflective thin film. Furthermore, even if it were possible to form a thin film, vapor f! The thin film formation rate is faster in areas closer to the spatter source, making it impossible to obtain a uniform reflective film. In the plating method, there is a possibility of impurity contamination of the formed thin film. Generally, a plating solution contains several dozen types of elements. These elements mix into the thin film and cause a decrease in reflectance. The above explanation uses a reflector as an example. However, there are many requests to form a thin film not only on the reflective mirror but also on its inner surface. An example is the lens barrel of an electron microscope. An object of the present invention is to relate to a thin film forming method and apparatus capable of forming a good thin film on the inner surface of an object having an opening, such as a reflecting mirror. [Means for solving the problem] In order to achieve the above object, an object whose inner surface is a thin film forming surface is installed in a vacuum chamber, and the space surrounded by the thin film forming surface of this object (i.e., the space surrounded by the inner surface) is The electrode is inserted into the opening (hereinafter referred to as the inner space) through the opening (see Figure 1). Next, by introducing a gas such as a rare gas into the vacuum chamber and applying a voltage to this electrode, it is possible to Generate a discharge near the e1 pole. Furthermore, means for rotating the object having the surface on which the thin film is to be formed around the electrodes, or means for moving the object up and down along the horizontal direction of the electrodes is provided. [Operation] The disadvantage of the conventional sputtering method is that the sputtering source is located outside the object whose inner surface is the surface on which the thin film is to be formed. The problem was that it was difficult to reach the surface on which the thin film was formed. This drawback can be solved by installing a sputtering source in the space (inner space) surrounded by the surface of the object on which the thin film is to be formed. Moreover, since the particle size of the thin film formed by sputtering is smaller than that of other methods such as vapor deposition, if the present invention is used for reflective AM production, it will be possible to form a reflective thin film with small roughness, which is necessary for the reflective mirror. We can expect the formation of In fact, experiments have confirmed that it is possible to form a thin film with a surface roughness of approximately 0.01 μm at R■8. The electrode inserted into the inner space through the opening described in the previous section plays the role of the splatter source. Due to the voltage applied to this electrode, a discharge of the gas introduced into the vacuum chamber occurs in the inner space of the object, and the electrode surface is sputtered by charged particles generated during the discharge. Sputtered atoms and particles reach the thin film formation surface,
It adheres and a thin film is formed. Here, it is desirable that the entire electrode or its surface be made of the same (or similar composition) material as the thin film to be formed. Alternatively, the thin film formed must be made of a material that does not cause problems with impurity contamination. In addition, the means for rotating the object and moving it up and down as described in the previous section are as follows:
This is a means to improve the uniformity of the thin film formed. As described above, by using the present invention, it is possible to efficiently and uniformly form a thin film free from impurity contamination on the inner surface of an object having an opening, such as a reflecting mirror. , one embodiment of the present invention will be specifically explained. <Example 1> A basic embodiment of the present invention was shown in Part 1. In Fig. 1, an object 1 (object The inner diameter of 1 is
It may change continuously as shown in Figure 1, or it may be uniform throughout. ) is fixed to the holding stand 6. The holding stand 6 is attached to a drive mechanism 8 via an arm 7. As a result, object 1 moves up and down with respect to electrodes 2 and 3.
and rotational movement around the electrodes 2, 3 is possible. These movements, and therefore the drive mechanism 8, are controlled by a controller 9. Electrodes 2 and 3 are inserted into the inner space of object 1 through the opening. A voltage (several 100 volts) is applied to the electrode 2.3 by the power source 5.
~ several KV) is applied. The power supply 5 may be a DC power supply or an AC power supply. It is also possible to use a pulse power source. According to experiments, discharge in the inner space of object 1 is more likely to occur when an AC power source is used than when a DC power source is used. The object 1, electrodes 2, 3, etc. are stored in a chamber 4,
Chamber 4 is evacuated. A discharge gas such as a rare gas is introduced into the chamber 4 through a valve 10. Introducing pressure is 10 Tarr or less. After introducing the above gas. When a voltage is applied between the electrodes 2 and 3 using the m source 5, a discharge occurs at the electrodes 2 and 3 and in their vicinity. The surface of the electrode 2 or 3 is sputtered by the charged particles generated during this discharge, and a thin film is formed on the inner surface of the object 1. Uniform film formation is possible by vertically and rotationally moving the object 1 during discharge using the drive device [8]. Although there are two electrodes in Figure 1, only one electrode may be inserted as long as discharge is possible. According to this embodiment, it is possible to efficiently and uniformly form a thin film free from impurity contamination on the inner surface of the object l. Example 2 In the example shown in FIG. 2, compared to the example shown in FIG.
The shape of the electrode is different. In Example 1, one of electrodes 2 and 3 is a ground electrode. According to experiments, fI1
If poles 2 and 3 are in the inner space of object 1, (in general)
Discharge occurs more easily when the surface area of the ground electrode is larger. For this reason, in this embodiment, the surface area of the electrode l2 on the ground side is increased. In this way, depending on the surface area of the ground side electrode, the surface area of the other electrode facing the ground side electrode, the ratio of the surface areas of both electrodes, and furthermore the electrode spacing between the two electrodes,
The ease with which discharge occurs varies. In all Examples described below, including this Example and Example 1,
Electrode surface area and surface area ratio. The fl pole spacing is variable to obtain the optimum discharge. A portion of the electrode 11 is covered with a sleeve l3 made of an insulator. This is to adjust the surface area of the electrode l1 mentioned earlier. Moreover, this cover allows voltage to be efficiently applied to the exposed portion of the electrode 11 (portion close to the electrode 12), and discharge in the inner space of the object 1 can be more easily performed. Furthermore, since the discharge becomes more localized, the uniform V of thin film formation is improved. Other details are the same as in Example 1. According to this embodiment, it is possible to adjust the electrode surface area, surface area ratio, or electrode spacing, so that an optimal discharge for forming a thin film can be obtained. Furthermore, by covering the electrode with a sleeve, it is possible to efficiently apply voltage to the tip of the electrode. As a result of the above, the optimal discharge for thin film formation can be easily performed, and a better and more uniform thin film can be formed on the surface on which the thin film is to be formed. <Example 3> Depending on the purpose of thin film formation, it is necessary to accurately monitor and control the thickness of the thin film formed. For example, when using a multilayer film as a reflective thin film, the film thickness is 10-4.
It must be controlled in μm units. An example of implementation in such a case is shown in Figure 3. In Figure 3, monitors 14 to 19 are placed around object 1. In this case, monitors 14 and 17, monitors 15 and 18,
Monitors 16 and 19 each work in pairs. For example, the monitor 14 is a light source (e.g., a semiconductor laser) having a specific wavelength (e.g., the wavelength of light that is specifically absorbed by the thin film being formed), and the monitor 17 is a light detector having that wavelength. (For example, photodiode, etc.)
That's fine. In this case, the film thickness and its changes can be determined from the light that passes through the yeast membrane. Monitor 14~
19 is controlled by a controller 2o. In particular, the film thickness is calculated by the controller 20 based on the detection signals from the monitors 17 to 19, and the calculation results are fed back to the power source 5 and the controller 9. As a result, the voltage applied to the electrode 12 or 13 is controlled, and the discharge state or sputtering rate of atoms/particles from the electrode 12 or 13 is controlled. Also, the vertical movement of object 1,
The speed of rotational movement is also adjusted. In this embodiment, the feedback destinations from the controller 20 are both the power source 5 and the controller 9, but the feedback may be sent to only one of them. Further, the type and number of film thickness monitors and their positions are also arbitrary.
本実施例の本質は、物体1の内面上に薄膜を形成する際
,膜厚をモニタして形成手段にフィードバツクをかけ膜
厚を制御することにある.その他の部分に関しては,先
に述べた実施例と同じである.本実施例によれば、膜厚
を正確に制御して薄膜形成が可能であるので、多層膜等
高精度な膜厚制御を必要とする薄膜の形成も容易に行な
うことができる.
〈実施例4〉
物体1が小さな開口部を有する場合,その開口部では放
電状態が急激に変化することが実験により確認された.
この放電状態の急激な変化は、物体1の開口部付近の内
面上に形成さわる薄膜の均一性や面粗さ等に影響を及ぼ
す可能性がある.本実施例は、その様な影響を低減させ
るための実施例である.
第4図にその一例を示した.実施例の本質を明確にする
ため、先に述べた影響低減に直接関係のある部分のみ図
示した.放電発生用電源,物体lの上下,回転運動機構
,ガス導入機構等は第4図に描かれていないが、これら
が本実施例に含まれているのはもちろんである.
第4図では、物体lの内面上への薄膜形成において、ダ
ミーパイプ21.22が物体1に付加されている.これ
により,物体1の開口部付近(物体1とダミーパイプ2
1.22の継ぎ目付近)での放電状態の急激な変化が防
止され、均一性や面粗さ等により優れた薄膜の形成が可
能である.く実施例5〉
第5図は別の実施例である.第4図に示されたダミーパ
イプのかわりに,本実施例ではカバー23を設けた.カ
バー23を用いることによっても、実施例4と同等の効
果が得られる.第4図および第5図に示されたダミーパ
イプ21.22やカバー23の形状は任意である.物体
lの開口部付近で起こる放電状態の急激な変化は、電圧
が印加された電極(たとえば、電極11)が、物体l外
部のより大きな接地而を見ることによって起こる.従っ
て,この放電状態の変化を防止するためには,上記外部
接地面を見えにくくすれば良い.物体lの開口部付近に
おいて外部接地面が見えにくくなる構成であれば、第4
図,第5図に示されたダミーパイプ21,22、カバー
23以外の手段でも本発明に含まれるものとする.〈実
施例6〉
電極が物体1の内側空間にある場合は,外部にある場合
に比べ放電は起こりにくい.この様な場合、放電領域に
磁場を形成すると、電子サイクロトロン運動のため放電
しやすくなる.また,磁場を形成することによりより低
ガス圧力で放電が呵能となり、形成する薄膜の膜質向上
も期待できる.第6図に磁場形成方式の一例を示した.
コイル24.25により放電領域(電極11.12間)
に磁場が形成される。コイルのかわりに永久磁石を用い
てもよい.また、第6図ではコイル24,25は真空外
にあるが、これらコイルや永久磁石を真空内(チャンパ
1内部)に設置しても良い.その他の部分は他実施例と
同じである.〈実施例7〉
実施例1〜6では、物体1は2つの開口部を有していた
,しかし,他形状を有する物体に関しても,本発明を用
いるとその内面上に薄膜形成01能である.その一実施
例を第7図に示した.第7図では、物体26は一端が閉
じられたパイプ状物体である.物体26の他端より電極
3,11を挿入し、電極3,11間に高電圧を印加する
ことにより物体26の内側空間で放電が発生する.この
放電中で電極3もしくは11がスパッタされ、物体26
の内面上に薄膜が形成される.物体26が電極3,1l
に対し上下運動,およびこれら電極の回りに回転運動可
能であることは言うまでもない.その他の部分に関して
は、先の実施例と同じである.
これまでに述べた実施例で明らかなように、薄膜被形成
面を有する物体の内側部分に電極が挿入11能ならば、
その物体の形状に関係なく、本発明を用いてその物体の
内面上に蒲膜形成が可能であることは言うまでもない.
〈実施例8〉
内径が連続的に変化する物体の内面上に薄膜を形成する
場合,場所場所によって放電電圧を変化させるあるいは
放電ガス圧カを変化させる方法が良い場合がある.第8
図にその一例を示した.第8図において、センサ27は
放電状態(たとえば放電の明るさ)を監視するセンサで
ある.このセンサからの検出信号をコントローラ28で
解析し、電源5を制御する.たとえば,各場所で放電す
るために必要な最小電圧を電極11もしくは12に与え
るようにする.あるいは、センサ27が位置センサであ
る場合、各位置に対応する放電電圧をコントローラ28
中にセットしておき、センサ27からの検出信号をもと
にコントローラ28で電源5を制御する.
同様のことが放電ガス圧力制御に関しても言える。一般
に、内径が細くなるとより高い放電ガス圧力が必要とな
る.従って、センサ27で放電状態や物体の位置を監視
して、その検出信号をもとに、コントローラ28でバル
ブ10を制御して,最適な放電ガス圧力となるように制
御を行なう.第8図では電源5とバルブ10を同時制御
するよう描かれているが、いずれか一方のみの制御でも
良い.
本実施例によれば、膜厚制御はもとより、電圧制御ある
いは放電ガス圧カ制御によりスパッタ速度を調節できる
ので、良好な膜質を有する薄股形成が町能である.
ない(たとえば,第3図に示したモニタ14〜19はす
べての実施例で使用可能である等)。The essence of this embodiment is that when forming a thin film on the inner surface of the object 1, the film thickness is monitored and feedback is applied to the forming means to control the film thickness. The other parts are the same as the previous embodiment. According to this embodiment, since it is possible to form a thin film by accurately controlling the film thickness, it is possible to easily form a thin film such as a multilayer film that requires highly accurate film thickness control. <Example 4> It was confirmed through experiments that when object 1 has a small opening, the state of discharge changes rapidly at the opening.
This rapid change in the discharge state may affect the uniformity and surface roughness of the thin film formed on the inner surface of the object 1 near the opening. This example is an example for reducing such an influence. Figure 4 shows an example. In order to clarify the essence of the example, only the parts directly related to the aforementioned impact reduction are illustrated. Although the power supply for generating electric discharge, the upper and lower parts of the object l, the rotational movement mechanism, the gas introduction mechanism, etc. are not shown in FIG. 4, they are of course included in this embodiment. In FIG. 4, dummy pipes 21, 22 are added to object 1 in forming a thin film on the inner surface of object 1. As a result, the area near the opening of object 1 (object 1 and dummy pipe 2)
This prevents sudden changes in the discharge state near the seams (see 1.22), making it possible to form thin films with excellent uniformity and surface roughness. Example 5 Figure 5 shows another example. In place of the dummy pipe shown in Fig. 4, a cover 23 is provided in this embodiment. By using the cover 23, the same effect as in the fourth embodiment can be obtained. The shapes of the dummy pipes 21, 22 and the cover 23 shown in FIGS. 4 and 5 are arbitrary. The rapid change in discharge state that occurs near the opening of object l is caused by the energized electrode (eg, electrode 11) seeing a larger ground plane outside object l. Therefore, in order to prevent this change in the discharge state, it is best to make the external ground plane difficult to see. If the configuration makes it difficult to see the external ground plane near the opening of object l, the fourth
Means other than the dummy pipes 21, 22 and cover 23 shown in FIG. 5 are also included in the present invention. <Example 6> When the electrode is located inside the object 1, discharge is less likely to occur than when it is outside. In such cases, creating a magnetic field in the discharge region facilitates discharge due to electron cyclotron motion. In addition, by creating a magnetic field, the discharge can be performed at a lower gas pressure, and the quality of the thin film formed can be expected to improve. Figure 6 shows an example of the magnetic field formation method.
Discharge area (between electrodes 11.12) by coils 24.25
A magnetic field is formed. A permanent magnet may be used instead of a coil. Further, although the coils 24 and 25 are shown outside the vacuum in FIG. 6, these coils and permanent magnets may be installed inside the vacuum (inside the chamber 1). The other parts are the same as the other embodiments. <Example 7> In Examples 1 to 6, object 1 had two openings, but it is also possible to form a thin film on the inner surface of objects having other shapes using the present invention. .. An example of this is shown in Figure 7. In FIG. 7, object 26 is a pipe-like object with one end closed. By inserting the electrodes 3 and 11 from the other end of the object 26 and applying a high voltage between the electrodes 3 and 11, a discharge is generated in the inner space of the object 26. During this discharge, the electrode 3 or 11 is sputtered, and the object 26
A thin film is formed on the inner surface of the The object 26 is the electrode 3,1l
Needless to say, it is possible to move up and down against the electrodes and rotate around these electrodes. The other parts are the same as the previous embodiment. As is clear from the examples described so far, if an electrode can be inserted into the inner part of an object having a surface on which a thin film is formed,
It goes without saying that the present invention can be used to form capsules on the inner surface of an object, regardless of its shape. Example 8 When forming a thin film on the inner surface of an object whose inner diameter changes continuously, it may be better to vary the discharge voltage or discharge gas pressure depending on the location. 8th
An example is shown in the figure. In FIG. 8, a sensor 27 is a sensor that monitors the discharge state (for example, the brightness of the discharge). The detection signal from this sensor is analyzed by the controller 28 and the power supply 5 is controlled. For example, the minimum voltage required to generate a discharge at each location is applied to the electrodes 11 or 12. Alternatively, if the sensor 27 is a position sensor, the discharge voltage corresponding to each position is transmitted to the controller 28.
The controller 28 controls the power supply 5 based on the detection signal from the sensor 27. The same thing can be said about discharge gas pressure control. Generally, the smaller the inner diameter, the higher the discharge gas pressure required. Therefore, the discharge state and the position of the object are monitored by the sensor 27, and based on the detected signal, the controller 28 controls the valve 10 to achieve the optimum discharge gas pressure. Although FIG. 8 shows that the power source 5 and the valve 10 are controlled simultaneously, it is also possible to control only one of them. According to this embodiment, since the sputtering speed can be adjusted not only by film thickness control but also by voltage control or discharge gas pressure control, it is possible to form a thin film with good film quality. (For example, monitors 14-19 shown in FIG. 3 can be used in all embodiments.)
本発明によれば,反射鏡等開口部を有する物体の内面上
に,均一かつ不純物汚染なく薄膜形成が可能である。こ
れにより、たとえば、反射鏡の反射率を大幅に向上でき
る。According to the present invention, it is possible to form a thin film uniformly and without impurity contamination on the inner surface of an object having an opening, such as a reflecting mirror. Thereby, for example, the reflectance of the reflecting mirror can be significantly improved.
第1図〜第8図はいずれも本発明の一実施例の概略説明
図である.
1・・・物体、2・・・電極,3・・・電極、4・・・
チャンバ、5・・・電源,6・・・保持台、7・・・ア
ーム、8・・・駆動機構、9・・・コントローラ、1o
・・・バルブ、11・・・電極、12・・・電極213
・・・おおい、14,15,16, 1
ローラ、
一24
ンサ、2
7,18.19・・・モニタ、20・・・コント21.
22・・・ダミーパイプ、23・・・カバ,25・・・
コイル,26・・・物体,27・・・セ8・・・コント
ローラ.
集
圀
¥3 2 の
−4′.
憾
口
系
圀
溪
■
黍
b
図
S気
δ
コイ1レ1 to 8 are all schematic illustrations of an embodiment of the present invention. 1...object, 2...electrode, 3...electrode, 4...
Chamber, 5... Power supply, 6... Holding stand, 7... Arm, 8... Drive mechanism, 9... Controller, 1o
...Bulb, 11...Electrode, 12...Electrode 213
...cover, 14,15,16, 1 roller, 124 sensor, 2 7,18.19...monitor, 20...control 21.
22...Dummy pipe, 23...Hippo, 25...
Coil, 26...Object, 27...Se8...Controller. Collection ¥3 2 -4′. Kokukei ■ Millet b Figure S Ki δ Carp 1re
Claims (1)
、被薄膜形成面で囲まれた空間に電極を設け、放電に伴
なう該電極表面のスパッタリングにより薄膜を形成する
薄膜形成方法。 2、開口部を有する物体の内面上への薄膜形成において
、物体内部の空間に電極を挿入し、この電極への電圧印
加で発生した放電に伴なう電極表面のスパッタリングに
より薄膜を形成する薄膜形成方法。 3、上記物体を上記電極に沿つて動かしながら、もしく
は上記電極の回りに回転させながら、あるいはこの両運
動を行ないながら薄膜形成を行なう第1項または第2項
記載の薄膜形成方法。 4、形成される薄膜の膜厚をモニタし、このモニタ結果
をもとに、上記電極への印加電圧、上記運動、放電ガス
圧力のうちいずれか1つ以上を制御する第3項記載の薄
膜形成方法。 5、上記放電状態をモニタし、このモニタ結果をもとに
、上記電極への印加電圧、上記運動、放電ガス圧力のう
ちいずれか1つ以上を制御する第3項記載の薄膜形成方
法。 6、上記物体の位置をモニタし、このモニタ結果をもと
に、上記電極への印加電圧、上記運動、放電ガス圧力の
うちいずれか1つ以上を制御する第3項記載の薄膜形成
方法。 7、上記電極近傍に磁場を形成して薄膜形成を行なう第
3項〜第6項のいずれかに記載の薄膜形成方法。 8、上記物体の開口部付近での放電状態の急激な変化を
防止しながら薄膜形成を行なう第3項〜第6項のいずれ
かに記載の薄膜形成方法。 9、スパッタリングにより薄膜を形成する薄膜形成装置
において、被薄膜形成面で囲まれた空間内にスパッタ源
を設けてなることを特徴とする薄膜形成装置。 10、スパッタリングにより薄膜を形成する薄膜形成装
置において、被薄膜形成面で囲まれた空間内に開口部よ
り挿入された電極を設け、かつこの電極への電圧印加手
段を設けてなることを特徴とする薄膜形成装置。 11、上記被薄膜形成面を有する物体を上記電極に沿つ
て移動させる手段、もしくは上記電極の回りでの回転手
段、あるいはこの両手段を設けてなることを特徴とする
第10項記載の薄膜形成装置。 12、形成される薄膜の膜厚モニタ手段、このモニタ手
段からの出力信号をもとに上記電極への印加電圧、上記
移動、回転運動、スパッタリングの放電ガス圧力のうち
いずれか1つ以上を制御する手段を設けた第11項記載
の薄膜形成装置。 13、放電状態のモニタ手段、このモニタ手段からの出
力信号をもとに上記電極への印加電圧、上記移動、回転
運動、スパッタリングの放電ガス圧力のうちいずれか1
つ以上を制御する手段を設けた第11項記載の薄膜形成
装置。 14、上記物体の位置のモニタ手段、このモニタ手段か
らの出力信号をもとに上記電極への印加電圧、上記移動
、回転運動、スパッタリングの放電ガス圧力のうちいず
れか1つ以上を制御する手段を設けた第11項記載の薄
膜形成装置。 15、上記電極近傍への磁場の形成手段を設けた第11
項〜第14項のいずれかに記載の薄膜形成装置。 16、上記物体の開口部付近での放電状態の変化の低減
手段を設けた第11項〜第14項のいずれかに記載の薄
膜形成装置。 17、第1項〜第8項記載の薄膜形成方法で作られた反
射鏡。[Claims] 1. In forming a thin film on the inner surface of an object having an opening, an electrode is provided in a space surrounded by a surface on which the thin film is to be formed, and a thin film is formed by sputtering the surface of the electrode as a result of electric discharge. A method for forming thin films. 2. In forming a thin film on the inner surface of an object having an opening, an electrode is inserted into the space inside the object, and a thin film is formed by sputtering the electrode surface due to the discharge generated by applying a voltage to the electrode. Formation method. 3. The method for forming a thin film according to item 1 or 2, wherein the thin film is formed while moving the object along the electrode, or rotating it around the electrode, or while performing both movements. 4. The thin film according to item 3, wherein the thickness of the formed thin film is monitored and, based on the monitoring results, any one or more of the voltage applied to the electrode, the movement, and the discharge gas pressure is controlled. Formation method. 5. The thin film forming method according to item 3, wherein the discharge state is monitored and, based on the monitoring result, any one or more of the voltage applied to the electrode, the movement, and the discharge gas pressure is controlled. 6. The method for forming a thin film according to item 3, wherein the position of the object is monitored, and one or more of the voltage applied to the electrode, the movement, and the discharge gas pressure are controlled based on the monitoring result. 7. The thin film forming method according to any one of items 3 to 6, wherein the thin film is formed by forming a magnetic field near the electrode. 8. The thin film forming method according to any one of items 3 to 6, wherein the thin film is formed while preventing a sudden change in the discharge state near the opening of the object. 9. A thin film forming apparatus for forming a thin film by sputtering, characterized in that a sputtering source is provided in a space surrounded by a surface on which a thin film is to be formed. 10. A thin film forming apparatus for forming a thin film by sputtering, characterized in that an electrode is provided through an opening in a space surrounded by a surface on which a thin film is to be formed, and means for applying a voltage to this electrode is provided. Thin film forming equipment. 11. Thin film formation according to item 10, further comprising means for moving the object having the thin film formation surface along the electrode, or means for rotating the object around the electrode, or both means. Device. 12. A means for monitoring the thickness of the thin film to be formed, and controlling any one or more of the voltage applied to the electrode, the movement, rotational movement, and discharge gas pressure for sputtering based on the output signal from this monitoring means. 12. The thin film forming apparatus according to item 11, further comprising means for. 13. Monitoring means for the discharge state; based on the output signal from the monitoring means, any one of the voltage applied to the electrode, the movement, rotational movement, and sputtering discharge gas pressure;
12. The thin film forming apparatus according to claim 11, further comprising means for controlling one or more of the following. 14. Monitoring means for the position of the object; means for controlling any one or more of the voltage applied to the electrode, the movement, rotational movement, and sputtering discharge gas pressure based on the output signal from the monitoring means; 12. The thin film forming apparatus according to item 11, further comprising: 15. Eleventh device provided with means for forming a magnetic field near the electrode
The thin film forming apparatus according to any one of Items 1 to 14. 16. The thin film forming apparatus according to any one of items 11 to 14, further comprising means for reducing changes in discharge state near the opening of the object. 17. A reflecting mirror made by the thin film forming method described in items 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11493089A JPH02294473A (en) | 1989-05-10 | 1989-05-10 | Method and apparatus for thin film formation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11493089A JPH02294473A (en) | 1989-05-10 | 1989-05-10 | Method and apparatus for thin film formation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02294473A true JPH02294473A (en) | 1990-12-05 |
Family
ID=14650186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11493089A Pending JPH02294473A (en) | 1989-05-10 | 1989-05-10 | Method and apparatus for thin film formation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02294473A (en) |
-
1989
- 1989-05-10 JP JP11493089A patent/JPH02294473A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101110546B1 (en) | Compensation of spacing between magnetron and sputter target | |
US4673477A (en) | Controlled vacuum arc material deposition, method and apparatus | |
US5334302A (en) | Magnetron sputtering apparatus and sputtering gun for use in the same | |
US3756193A (en) | Coating apparatus | |
JP6707559B2 (en) | Method of manufacturing coated substrate | |
US20020074225A1 (en) | Sputtering device | |
JPH031378B2 (en) | ||
KR20040043046A (en) | Magnetron sputtering apparatus and method thereof | |
JPH07166346A (en) | Magnetron sputtering device | |
KR101001658B1 (en) | Method for the production of a substrate with a magnetron sputter coating and unit for the same | |
JPH02294473A (en) | Method and apparatus for thin film formation | |
JPH1171667A (en) | Target structure of sputtering device | |
JP2005281851A (en) | Device for reaction sputtering | |
Galyautdinov et al. | Formation of protective coatings for aluminium mirrors by magnetron sputtering | |
JPS63140078A (en) | Film formation by sputtering | |
JPH02239558A (en) | Position adjusting method for electron beam and position adjuster for electron beam | |
JP4774322B2 (en) | Surface treatment equipment | |
JP2625789B2 (en) | Magnetron sputter cathode | |
US20240337009A1 (en) | Sputtering machines, substrate holders, and sputtering processes with magnetic biasing | |
JPH1088342A (en) | Sputtering system and method | |
JPH0499173A (en) | Sputtering system | |
GB2410255A (en) | Arc deposition method and apparatus | |
JP2001115259A (en) | Magnetron sputtering system | |
KR200207629Y1 (en) | Plating device which forms different plated membrances respectively | |
RU2747487C2 (en) | Magnetron sputtering device |