JPH02294458A - Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy - Google Patents

Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy

Info

Publication number
JPH02294458A
JPH02294458A JP11307189A JP11307189A JPH02294458A JP H02294458 A JPH02294458 A JP H02294458A JP 11307189 A JP11307189 A JP 11307189A JP 11307189 A JP11307189 A JP 11307189A JP H02294458 A JPH02294458 A JP H02294458A
Authority
JP
Japan
Prior art keywords
oxidation
intermetallic compound
tial
alloy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11307189A
Other languages
Japanese (ja)
Other versions
JPH0463148B2 (en
Inventor
Ryohei Tanaka
良平 田中
Michiko Yoshihara
吉原 美知子
Ikuo Kobayashi
郁夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA KOKURITSU UNIV
Original Assignee
YOKOHAMA KOKURITSU UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA KOKURITSU UNIV filed Critical YOKOHAMA KOKURITSU UNIV
Priority to JP11307189A priority Critical patent/JPH02294458A/en
Publication of JPH02294458A publication Critical patent/JPH02294458A/en
Publication of JPH0463148B2 publication Critical patent/JPH0463148B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form an oxidation-resistant Al2O3 film on the Ti-Al intermetallic compound or alloy and to improve the oxidation resistance on the surface by holding a Ti-Al intermetallic compound or alloy in the oxygen atmosphere under specified conditions and selectively oxidizing Al only. CONSTITUTION:A Ti-Al intermetallic compound or a Ti-Al base alloy is held in the oxygen atmosphere of 1X10<-2> to 1X10<-5> Pa oxygen partial pressure at 900 to 1050 deg.C for 30min to 100hr. By this treatment, Al only is selectively oxidized without oxidizing Ti to form an oxidation-resistant Al2O3 film on the surface of the intermetallic compound or alloy. In this way, the oxidation resistance of the above intermetallic compound or alloy used at a high temp. can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はTiALの金属間化合物または合金の表面にT
1を酸化させず、Alだけを選択的に酸化させてAl2
0,の耐酸化皮膜を形成し、安価、軽量で、Ni基超合
金インコネル713Cと同等またはそれ以上の高温耐熱
耐酸化性材料を提供するにあり、本発明の目的とする所
は、航空機、船舶などに使用される内燃機関、宇宙船材
料、あるいは発電用の蒸気タービンまたはガスタービン
などの構造用材料、ジェットエンジン材料、あるいは自
動車用ターボチャージャー用材料等のうち、主として9
00℃以上の温度になる装置部材として金属間化合物T
iALあるいはTiAL基合金が使用される際に、それ
らの耐酸化性を改善するための表面処理により耐酸化皮
膜を形成するにある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides T on the surface of an intermetallic compound or alloy of TiAL.
By selectively oxidizing only Al without oxidizing 1, Al2
It is an object of the present invention to provide a material that forms an oxidation-resistant film of 0.0, is inexpensive, lightweight, and has high temperature and oxidation resistance equivalent to or higher than that of the Ni-based superalloy Inconel 713C. Mainly 9 of internal combustion engines used in ships, spacecraft materials, structural materials such as steam turbines or gas turbines for power generation, jet engine materials, and materials for automobile turbochargers, etc.
Intermetallic compound T as a device member that reaches a temperature of 00°C or higher
When iAL or TiAL-based alloys are used, an oxidation-resistant film is formed by surface treatment to improve their oxidation resistance.

(従来の技術) 従来このような高温耐熱耐酸化装置部材としてはインコ
ネル713Cに代表されるようなN1 基超合金が多く
使用されていたが、熱効率や出力を高めるため上記諸機
関の運転温度が上昇してきたのに伴って、より高温に耐
えうる材料が求められている。また、ジェットエンジン
あるいはガスタービンなどのように高速で回転する機関
においては、クリープ現象をもたらす外力として働く力
、すなわち回転による遠心力を小さいものにするために
、より比重の小さい材料が望まれている。このような状
況の下で、金属聞化合物TiALまたはその合金につい
て考察するとその融点が$よそ1460℃で通常のNi
基超合金より100℃以上高温であること、比重がおよ
そ3.8で通常の超合金のそれに比べ172以下である
ことなどの性質を有することにより、従来のNi基超合
金の代替材料として、また従来より厳しい環境で使用さ
れる次世代材料の最も有力な候補の一つとして現在多く
の期待と注目を集めているものである。
(Prior Art) Conventionally, N1-based superalloys such as Inconel 713C have been widely used as such high-temperature, heat-resistant, oxidation-resistant device components, but in order to increase thermal efficiency and output, the operating temperatures of the various engines mentioned above have increased. As the temperature rises, materials that can withstand even higher temperatures are needed. In addition, in engines that rotate at high speeds such as jet engines or gas turbines, materials with lower specific gravity are desired in order to reduce the centrifugal force caused by rotation, which acts as an external force that causes the creep phenomenon. There is. Under these circumstances, considering the metal compound TiAL or its alloy, its melting point is approximately 1460°C, which is higher than that of ordinary Ni.
Due to its properties such as being 100°C higher than the base superalloy and having a specific gravity of approximately 3.8, which is less than 172 compared to normal superalloys, it can be used as an alternative material to conventional Ni-based superalloys. Furthermore, it is currently attracting a lot of attention and expectations as one of the most promising candidates for next-generation materials to be used in harsher environments than before.

しかしながら、この金属間化合物TiALにも問題点が
いくつか指摘されており、中でも室温における延性の欠
如と、800℃以上の高温に右ける耐酸化性の不足とい
う2点がその実用化を阻む最も大きな障害となっている
。すでに内外での多くの研究発表などにみられるように
、室温での延性の欠如という問題は解消されつつあるが
、高温における耐酸化性の改善についてはこれまでのと
ころ特に有力な改善手段の報告はなされていない。
However, several problems have been pointed out with this intermetallic compound TiAL, and the two most important obstacles to its practical application are its lack of ductility at room temperature and its lack of oxidation resistance at high temperatures of 800°C or higher. This has become a major obstacle. As seen in many research publications both domestically and internationally, the problem of lack of ductility at room temperature is being resolved, but so far there have been no reports of particularly effective means of improving oxidation resistance at high temperatures. Not talked about.

(発明が解決しようとする課題) 一般に金属の耐酸化性を改善する方法としては、Crな
ど耐酸化性改善に有効な金属元素を合金化する方法や、
めっき処理あるいは拡散浸透処理などの表面処理により
酸化特性の良好な表面層の形成を図る方法などが知られ
ているが、金属間化合物TiALに第3元素を合金化す
ることはその最大の長所である低密度を損なうものであ
るから、ここでは密度増加の比較的少ない表面処理によ
る方法が有望であると考えられる。
(Problems to be Solved by the Invention) Generally, methods for improving the oxidation resistance of metals include alloying metal elements such as Cr that are effective in improving oxidation resistance,
Methods of forming a surface layer with good oxidation properties through surface treatments such as plating or diffusion treatment are known, but their greatest advantage lies in alloying the intermetallic compound TiAL with a third element. Since a certain low density is lost, it is considered that a surface treatment method with a relatively small increase in density is promising here.

しかし、金属間化合物TiALに対する表面処理につい
ては、Cr, SiまたはAlの拡散浸透処理または真
空蒸着処理が考えられているがCr, Siまたは^l
の真空蒸着処理は格別効果がなく、また拡散浸透処理も
^lを除いては格別高温耐酸化性の向上がみられていな
い。また、A1の拡散浸透処理についても、拡散皮膜の
性状等に若干の問題点の指摘があり、より効果の高い表
面処理方法の開発が望まれている。
However, for the surface treatment of the intermetallic compound TiAL, diffusion infiltration treatment or vacuum evaporation treatment of Cr, Si or Al has been considered;
Vacuum deposition treatment has no particular effect, and diffusion infiltration treatment has not shown any particular improvement in high-temperature oxidation resistance, except for ^l. Furthermore, regarding the diffusion treatment of A1, some problems have been pointed out in the properties of the diffusion film, and there is a desire to develop a more effective surface treatment method.

?課題を解決するための手段) 本発明はTiALの金属間化合物または合金を酸素分圧
1×10−2〜1×10−’ Paの酸素雰囲気下で温
度900℃〜1050℃において、30分ないし100
時間保持してTiを酸化させず、A1だけを選択的に酸
化させ、前記金属間化合物または合金の表面に予め耐酸
化性の^120,皮膜を生成せしめることを特徴とする
TiAlの金属間化合物または合金表面に耐酸化皮膜を
形成する方法である。
? Means for Solving the Problems) The present invention provides an intermetallic compound or alloy of TiAL in an oxygen atmosphere with an oxygen partial pressure of 1 x 10-2 to 1 x 10-'Pa at a temperature of 900°C to 1050°C for 30 minutes to 1000°C. 100
A TiAl intermetallic compound characterized by selectively oxidizing only A1 without oxidizing Ti by holding for a time to form an oxidation-resistant film on the surface of the intermetallic compound or alloy in advance. Another method is to form an oxidation-resistant film on the alloy surface.

(作 用) 未処理の金属間化合物TiALあるいはT1^L基合金
を大気中において900℃以上の温度で酸化すると、3
層構造の酸化皮膜、すなわち最外層よりTi02層、^
1,0,層及び両者の混在する層から成る構造の酸化皮
膜が形成されることが知られている。
(Function) When untreated intermetallic compound TiAL or T1^L-based alloy is oxidized in the atmosphere at a temperature of 900°C or higher, 3
Oxide film with layered structure, i.e. Ti02 layer from the outermost layer, ^
It is known that an oxide film having a structure consisting of a 1, 0 layer and a mixture of both layers is formed.

これらの中で特にTiO■層が酸化時間の経過に従って
優先的に成長することがTiALの耐酸化性の劣化する
原因であると考えられており、900℃静止大気中、1
50時間程度での酸化により、この酸化皮膜は厚さ約2
00μmに及ぶまで成長する。
Among these, it is thought that the preferential growth of the TiO layer as the oxidation time progresses is the cause of the deterioration of the oxidation resistance of TiAL.
After oxidation for about 50 hours, this oxide film becomes about 2cm thick.
It grows until it reaches 00 μm.

?かし、低酸素分圧下熱処理を施した金属間化合物Ti
ALあるいはTiAL基合金には、それらの表面にごく
薄いAl.0.の皮膜だけが生成していることがX線回
折およびX線マイクロアナライザにより確認されTiロ
2層の形成は認められなかった。
? Intermetallic compound Ti subjected to heat treatment under low oxygen partial pressure
AL or TiAL-based alloys have a very thin Al. 0. It was confirmed by X-ray diffraction and an X-ray microanalyzer that only a film was formed, and no Ti layer was observed.

また、この処理を行った試験片を900℃静止大気中に
おいて繰り返し酸化試験に供したところ、Al203皮
膜が、未処理の試験片に観察されるようなT!0■層の
成長を伴う酸化の進行を抑制する働きを有することが見
いだされた。この熱処理においてAl20,皮膜だけが
Tin.に優先して生成することについては、A1の酸
化生成熱の値がTiのそれより負に大きいことや、Al
に固溶できる酸素量がTiの場合より小さいことなどの
理由により、低酸素分圧の雰囲気で欠乏している酸素原
子に対してAlが優先的に結合し、A1■0,だけが生
成したものであると説明することができる。
Furthermore, when the treated test piece was subjected to repeated oxidation tests at 900°C in a static atmosphere, an Al203 film was observed at T! It has been found that it has the function of suppressing the progress of oxidation that accompanies the growth of the 0■ layer. In this heat treatment, only the Al20 film became Tin. Regarding the fact that Al is formed preferentially to Ti, the value of the heat of oxidation formation of Al is negatively larger than that of Ti, and
Due to reasons such as the fact that the amount of oxygen that can be solidly dissolved in Ti is smaller than that of Ti, Al preferentially bonds to the deficient oxygen atoms in an atmosphere of low oxygen partial pressure, and only A1■0 is produced. It can be explained that it is a thing.

^l20,は金属酸化物のなかでも、化学的にきわめて
安定で、かつ金属元素の自己拡散の最も遅いものの一つ
として知られており、金属間化合物TiALあるいはT
iAL基合金の表面に緻密で欠陥の少ない皮膜として生
成することによってそれらの耐酸化性を著しく改善する
ことができるものと考えられる。
Among metal oxides, ^l20 is known to be chemically extremely stable and one of the slowest self-diffusing metal elements, and is similar to the intermetallic compound TiAL or T.
It is believed that by forming a dense film with few defects on the surface of iAL-based alloys, their oxidation resistance can be significantly improved.

また、Al,O,皮膜を成長させる各元素の拡散は主と
して^l20,結晶粒界を経由して行われることはすで
によく知られている。従ってAl.0,皮膜の成長速度
は拡散経路となる結晶粒界の面積、言い換えれば結晶粒
径に依存すると言うことができる。
Furthermore, it is already well known that the diffusion of Al, O, and other elements that grow the film mainly takes place via the grain boundaries. Therefore, Al. 0. It can be said that the growth rate of the film depends on the area of grain boundaries serving as diffusion paths, or in other words, the grain size.

ところで低酸素分圧下での酸化によりAl.03皮膜が
生成、成長するときには大気圧中での酸化の場合に比べ
て酸化物結晶粒が粗大なものになることは、pt−^l
合金上のAl,O,皮膜の成長を研究したFelten
氏らによって明らかにされている。これについては低酸
素分圧の下で酸化が始まる際、酸化物の核生成の位置が
大気圧中の場合より少ないため、その結果として比較的
粗大な結晶粒の酸化皮膜が形成されたものであると考え
られている。
By the way, Al. 03 When the film is formed and grows, the oxide crystal grains become coarser than in the case of oxidation at atmospheric pressure.
Felten studied the growth of Al, O, and films on alloys.
It has been revealed by Mr. The reason for this is that when oxidation begins under low oxygen partial pressure, there are fewer nucleation positions for oxides than at atmospheric pressure, resulting in the formation of an oxide film with relatively coarse grains. It is thought that there is.

本発明の低酸素分圧下熱処理によって基材表面に生成し
たAl,O,皮膜も粗大結晶粒化しているものと考えら
れ、この処理が耐酸化性改善に及ぼす効果については、
その影響も作用しているものと考えられるが、加熱温度
が低ければ、加熱時間は長く選定し、加熱温度が高けれ
ば加熱時間は短く選定しなければならない。また、酸素
分圧が小さければ加熱時間を長くしなければならない。
It is thought that the Al, O, film formed on the surface of the substrate by the heat treatment under low oxygen partial pressure of the present invention also becomes coarse grained, and the effect of this treatment on improving oxidation resistance is as follows.
It is thought that this effect also plays a role, but if the heating temperature is low, the heating time should be selected to be long, and if the heating temperature is high, the heating time should be selected to be short. Moreover, if the oxygen partial pressure is small, the heating time must be increased.

また酸素分圧が大きければ加熱時間は短くてよい。以上
の観点より加熱時間を30分ないし100時間とした。
Moreover, if the oxygen partial pressure is large, the heating time may be short. From the above viewpoint, the heating time was set to 30 minutes to 100 hours.

(実施例) 以下本発明の低酸素分圧下熱処理の実施例について説明
する。
(Example) Examples of heat treatment under low oxygen partial pressure of the present invention will be described below.

実施例1 本実施例に用いた試料は純度が99. 99%のA1と
99.6%のスポンジTiを金属間化合物TiALの化
学量論組成に配合し、アルゴンアーク溶解により約28
0gの棒状インゴットに溶製されたものである。これら
に1000℃、168時間均質化焼なまし処理を施した
後、放電ワイヤカットおよびファイン力ツタで10X5
X2mmの寸法の試験片を切り出し、試験片表面を# 
1000までのエメリー紙で研磨した。
Example 1 The sample used in this example had a purity of 99. 99% A1 and 99.6% sponge Ti are blended into the stoichiometric composition of the intermetallic compound TiAL, and approximately 28% is mixed by argon arc melting.
It was melted into a 0g rod-shaped ingot. After applying homogenization annealing treatment at 1000℃ for 168 hours, 10X5
Cut out a test piece with dimensions of x2mm, and mark the surface of the test piece with #
Polished with emery paper up to 1000.

第1表は低酸素分圧下熱処理を実施した金属間化合物T
iALおよびTiAL基合金の組成を示したものである
Table 1 shows intermetallic compounds T subjected to heat treatment under low oxygen partial pressure.
The compositions of iAL and TiAL-based alloys are shown.

この試験片に第2表に示すような種々の条件で低酸素分
圧下熱処理を施した後、酸化試験を行って最もよい耐酸
化性を示す熱処理条件を検討した。
This test piece was subjected to heat treatment under low oxygen partial pressure under various conditions as shown in Table 2, and then an oxidation test was conducted to examine the heat treatment conditions that showed the best oxidation resistance.

表中の圧力は空気圧を示すものである。The pressures in the table indicate air pressure.

第2表 低酸素分圧雰囲気下の熱処理条件酸化試験は、
各試験片をあらかじめ900℃に保持した横型管状電気
炉中に挿入して静止大気中で酸化し、所定時間経過後こ
れを炉から取り出し質量変化の測定と表面の観察を行い
、再び炉内に戻して酸化を続けるという断続的方法で行
った。また必要に応じて走査型顕微鏡(SEIわ,X線
マイクロアナライザー(XMA)ならびにX線ディフラ
クトメー夕も使用して酸化層の解析を行った。比較材と
してNi基超合金インコネル713Cを同時に酸化試験
に供した。この比較材の組成は第3表の通りである。
Table 2 Oxidation test under heat treatment conditions in a low oxygen partial pressure atmosphere:
Each specimen was inserted into a horizontal tubular electric furnace previously maintained at 900°C and oxidized in a still atmosphere. After a predetermined period of time, it was taken out of the furnace to measure changes in mass and observe the surface, and then returned to the furnace. It was carried out in an intermittent manner by returning it and continuing oxidation. In addition, the oxidation layer was analyzed using a scanning microscope (SEI), X-ray microanalyzer (XMA), and X-ray diffractomer as necessary.As a comparison material, Ni-based superalloy Inconel 713C was oxidized at the same time. The composition of this comparative material is shown in Table 3.

第3表 第1図は、未処理の金属間化合物T1^しおよび比較材
として使用したN1基超合金インコネル713C並びに
純Ti板の酸化試験による質量変化を示したものである
。この図から未処理の金属間化合物TiALは純T1よ
りも優れた耐酸化性を有しているが、インコネル713
Cに比較すると数段劣るものであることがわかる。
Table 3 and FIG. 1 show the mass changes of the untreated intermetallic compound T1^, the N1-based superalloy Inconel 713C used as a comparison material, and the pure Ti plate due to the oxidation test. This figure shows that untreated intermetallic compound TiAL has better oxidation resistance than pure T1, but Inconel 713
It can be seen that it is several steps inferior to C.

次に金属間化合物TiALに対して第2表に示した低酸
素分圧下熱処理を施した試料の酸化試験の結果を第2図
に示した。Nα1あよびNα3の両試験片は熱処理を施
さないTiAL試験片(TA)に比べてかなり耐酸化性
は改善されているが、Nα2AJよびNα2Bはそれら
に比べてもはるかに酸化による質量増加が少なく、未処
理TiAL試験片(TA)に比べれば2桁も小さい。こ
れらの耐酸化性はインコネル713Cを凌いでいる。
Next, FIG. 2 shows the results of an oxidation test on samples in which the intermetallic compound TiAL was subjected to the heat treatment under the low oxygen partial pressure shown in Table 2. Both the Nα1 and Nα3 specimens have considerably improved oxidation resistance compared to the TiAL specimen (TA) without heat treatment, but the Nα2AJ and Nα2B have much less mass increase due to oxidation compared to them. , which is two orders of magnitude smaller than that of the untreated TiAL specimen (TA). Their oxidation resistance exceeds Inconel 713C.

未処理TiAL試験片(TA)の150時間酸化後の皮
膜は外見上白色で、その厚さは約100μm程度であっ
た。XM^およびX線ディフラクトメータ分析から、こ
の酸化皮膜は外側よりTi02層、Al ,03層およ
び両者が混在する第3層から成り、酸化皮膜と母材のT
iALの間に厚さ数μmのT13AL層の?成している
のが認められた。一般にTEALが耐酸化性に劣るのは
Ti02層の成長によるもので、これは第2層のAl.
O.層が不均一かつ不連続であるため、T1の外方拡散
を阻止することができず、酸化の進行とともに外側のT
in2が成長していったものと考える。本発明の熱処理
を施した試験片のうち酸化増量の比較的大きいNα1と
No. 3は、未処理TiAL試験片(TA)と同様の
白色の酸化皮膜(TI02>を部分的に生成したが、N
12Bは250時間まで続けて試験を行っても、灰黒色
の緻密な酸化皮膜(Al203)のままで全く変化が認
められなかった。
The film on the untreated TiAL test piece (TA) after oxidation for 150 hours was white in appearance and had a thickness of about 100 μm. From XM^ and X-ray diffractometer analysis, this oxide film consists of a Ti02 layer, an Al,03 layer, and a third layer containing both from the outside.
Is there a T13AL layer several μm thick between the iAL? It was recognized that this was achieved. In general, TEAL has poor oxidation resistance due to the growth of the TiO2 layer, which is caused by the growth of the second Al layer.
O. Since the layer is non-uniform and discontinuous, the outward diffusion of T1 cannot be prevented, and as the oxidation progresses, the outer T1
I think that in2 has grown. Among the test pieces subjected to the heat treatment of the present invention, No. 1 and No. 1 had relatively large oxidation weight increases. 3 partially formed a white oxide film (TI02> similar to the untreated TiAL specimen (TA), but N
Even when 12B was tested for up to 250 hours, it remained a dense gray-black oxide film (Al203) and no change was observed.

低酸素分圧下熱処理を施したままのNα2Aの断面の光
学顕微鏡写真およびXMA分析の結果を第3図に示した
。母材の表面に数μm程度のごく薄いものではあるが、
均一な皮膜が生成されている。
FIG. 3 shows an optical micrograph and the results of XMA analysis of the cross section of Nα2A as it was heat-treated under low oxygen partial pressure. Although it is very thin, about a few μm, on the surface of the base material,
A uniform film is produced.

それはX線解析により^1■03と同定された。It was identified as ^1■03 by X-ray analysis.

低酸素分圧下熱処理による劇的な耐酸化性の改善はこの
^1■0,皮膜によるものと考えられる。すなわちこの
A1203皮膜がTiALの通常の酸化で生成される酸
化皮膜より緻密であったため、酸化試験時のTiの外方
拡散を防ぎ、酸化皮膜の成長を抑制したものと推測され
る。No. 1などの処理条件ではこのAl203皮膜
の連続性がなお不十分であったため、皮膜の不完全な部
分からTi02層の成長が進んだものと思われる。特に
酸化増量が中程度に大きいNα3では表面全体に直径1
mm程度の半球状の白色酸化物がまばらに分散している
ものが見い出された。これはAl203皮膜の不完全な
部分から酸化皮膜が成長し始めたところであると考える
ことができる。
The dramatic improvement in oxidation resistance caused by heat treatment under low oxygen partial pressure is thought to be due to this ^1■0, film. That is, this A1203 film was denser than the oxide film produced by normal oxidation of TiAL, so it is presumed that it prevented outward diffusion of Ti during the oxidation test and suppressed the growth of the oxide film. No. It is thought that under treatment conditions such as No. 1, the continuity of this Al203 film was still insufficient, so the growth of the Ti02 layer progressed from the incomplete parts of the film. Especially for Nα3, which has a moderately large oxidation weight gain, the entire surface has a diameter of 1
It was found that hemispherical white oxides of about mm size were sparsely dispersed. This can be thought of as the oxide film starting to grow from the incomplete portion of the Al203 film.

以上のように、TiALに1000℃で低酸素分圧下の
熱処理を施すと外見上灰黒色に見える薄いAl203皮
膜を生成し、通常の酸化での酸化皮膜(T+0=)の生
成、成長を劇的に抑制する働きのあることが見い出され
た。この現象は900℃、250時間までの断続的酸化
に対してもその効果が維持された。
As described above, when TiAL is heat-treated at 1000°C under low oxygen partial pressure, a thin Al203 film that looks gray-black in appearance is produced, and the formation and growth of an oxide film (T+0=) in normal oxidation is dramatically inhibited. It was found that there is a suppressive effect on This phenomenon was maintained even after intermittent oxidation at 900° C. for up to 250 hours.

(比較例) 前の第1表に示した2種類の試料を10−3Paの真空
中で1000℃、168時間均質化焼なました後、寸法
10X5X2mmの板材を切り出して試験片とし、表面
を#1000のエメリー紙で研磨した後、各種の表面処
理を施した。
(Comparative example) After homogenizing and annealing the two types of samples shown in Table 1 above at 1000°C in a vacuum of 10-3 Pa for 168 hours, a plate with dimensions of 10 x 5 x 2 mm was cut out to make a test piece, and the surface was After polishing with #1000 emery paper, various surface treatments were performed.

本実験で試験した表面処理は従来法の拡散浸透処理およ
び真空蒸着処理を行って、本発明の低酸素分圧下熱処理
と比較した。それらの中から試験片表面状態の比較的良
好なものあるいは耐酸化性の改善が期待されそうなもの
について、900℃静止大気中で25〜150時間の酸
化試験を行った。また比較材としてNi基超合金インコ
ネル713CとSOS 430ステンレンス鋼も同時に
酸化試験に供した。使用したインコネル713Cの組成
は第3表に示したものと同じである。またSOS 43
0ステンレンス鋼の組成は第4表の通りである。
The surface treatments tested in this experiment were conventional diffusion infiltration treatment and vacuum evaporation treatment, and were compared with the low oxygen partial pressure heat treatment of the present invention. Among them, test specimens with relatively good surface conditions or with improved oxidation resistance were subjected to an oxidation test at 900° C. in a static atmosphere for 25 to 150 hours. Further, as comparison materials, Ni-based superalloy Inconel 713C and SOS 430 stainless steel were also subjected to oxidation tests at the same time. The composition of Inconel 713C used is the same as shown in Table 3. Also SOS 43
The composition of the 0 stainless steel is shown in Table 4.

この酸化試験の結果は連続酸化による酸化増量を示した
ものではなく、所定時間経過後一旦炉から出して質量変
化を測定したのち、また炉内に戻し酸化をつづけるとい
う方法の断続的酸化によるものである。またはく離した
皮膜も一緒に質量測定した。
The results of this oxidation test do not indicate an increase in oxidation due to continuous oxidation, but are due to intermittent oxidation in which the oxidation process is continued by taking the product out of the furnace after a predetermined period of time, measuring the change in mass, and then returning it to the furnace. It is. The mass of the peeled film was also measured.

各処理が耐酸化性に及ぼす影響については酸化試験後、
試験片の観察、単位表面積当たりの酸化増量の測定など
によって行い、またX線ディフラクトメータ, XMA
  等も使用して評価をした。
The effects of each treatment on oxidation resistance are determined after the oxidation test.
This is done by observing the test piece and measuring the oxidation weight increase per unit surface area, and by using an X-ray diffractometer, XMA, etc.
etc. were also used for evaluation.

まず最初に未処理のTiAL(TA) 、1.5%Mn
−TiAl(TAM) 、ニッケル基超合金(インコネ
ル713C )およびステンレス鋼(SOS 430)
について行った酸化試験の結果は第4図に示す通りであ
る。すでに知られているように、Mn添加のTiALは
無添加の場合に比べ酸化の度合が大きい。T iAL 
(TA)の酸化皮膜は白色、Mn添加TiAL (TA
M)は黒色であった。
First, untreated TiAL (TA), 1.5% Mn
-TiAl (TAM), nickel-based superalloy (Inconel 713C) and stainless steel (SOS 430)
The results of the oxidation test conducted on the sample are shown in Figure 4. As is already known, TiAL with Mn added has a higher degree of oxidation than TiAL without Mn. T iAL
The oxide film of (TA) is white, and the Mn-added TiAL (TA)
M) was black.

またこの温度ではTA, TAMとも皮膜のはく離が認
められ、安定な皮膜を維持するインコネル713Cに比
べかなり大きな酸化増壷を示した。
Furthermore, at this temperature, peeling of both TA and TAM films was observed, and the oxidation enhancement was considerably greater than that of Inconel 713C, which maintains a stable film.

次に各表面処理について酸化試験の結果と併せて説明す
る。
Next, each surface treatment will be explained together with the results of an oxidation test.

まず、拡散浸透処理については粉末バック法を採用する
ことにした。これはステンレス鋼管中に粒度200メッ
シュ以下の粉末パック材とともに試験片を充填し、カン
タル線炉で第5表に示したような条件の処理を施す。
First, we decided to use the powder bag method for the diffusion and penetration treatment. For this purpose, a test piece is filled in a stainless steel tube together with a powder packing material having a particle size of 200 mesh or less, and then treated in a Kanthal wire furnace under the conditions shown in Table 5.

第5表 拡散浸透処理条件 これらの方法はすでに超合金などに対して確立されてい
る技法であり、TiAlに対してもその効果が期待され
るものである。拡散材としてはCr,SiおよびAlの
3種について試みたが、発明者の行った範囲ではCr,
 Si については十分な拡散皮膜を得るのが困難であ
った。
Table 5 Diffusion and Penetration Treatment Conditions These methods have already been established for superalloys, and are expected to be effective for TiAl as well. Three types of diffusion materials were tried: Cr, Si, and Al, but within the scope of the inventor's work, Cr, Si, and Al were used.
It was difficult to obtain a sufficient diffusion film for Si.

Alの拡散浸透処理については処理温度と処理時間を第
5表に示した範囲で変化させて、またバック材の配合も
2種類を試み最適条件を捜したところ、750℃、10
時間でもっとも良好な拡散皮膜が得られることがわかっ
た。このとき拡散浸透皮膜の厚さはおよそ100μmで
緻密で外観も良好であった。この皮膜の組成はX線ディ
フラクトメータの結果よりTiAL3であると同定した
。処理条件を変化すると、一般に高温短時間側では皮膜
の組織にクラブクが多く見られ、低温長時間側では密着
性の良い緻密な皮膜が得られた。
Regarding the diffusion and penetration treatment of Al, we varied the treatment temperature and treatment time within the range shown in Table 5, and tried two types of backing material formulations to find the optimal conditions.
It has been found that the best diffusion film can be obtained with the longest time. At this time, the thickness of the diffusion film was approximately 100 μm, dense, and had a good appearance. The composition of this film was identified as TiAL3 based on the results of an X-ray diffractometer. When the treatment conditions were changed, in general, many cracks were observed in the structure of the film at high temperatures for a short period of time, while a dense film with good adhesion was obtained at low temperatures and for a long period of time.

第6表 拡散浸透後の熱処理条件 またAl拡散浸透後、第6表に示したような真空熱処理
を施したものも用意し、併せて酸化試験を行った。酸化
試験の結果が第5図である。未処理のTiAlに比べ^
1の拡敗浸透処理を施したものは耐酸化性に優れ、イン
コネル713Cに匹敵するものになるということがわか
った。また真空熱処理を施したものは、さらに耐酸化性
に優れ、インコネル713Cを凌ぐことがわかった。
Table 6 Heat treatment conditions after diffusion and penetration Also, after Al diffusion and penetration, vacuum heat treatment as shown in Table 6 was prepared, and oxidation tests were also conducted. The results of the oxidation test are shown in FIG. Compared to untreated TiAl^
It was found that the material subjected to the spreading penetration treatment of No. 1 has excellent oxidation resistance and is comparable to Inconel 713C. It was also found that the material subjected to vacuum heat treatment had even better oxidation resistance, surpassing Inconel 713C.

ところで、ここでいかなる処理条件においても発生する
問題があった。第6図(a)に示したように試験片エッ
ジ付近で拡敗皮膜に大きな割れが発生する。本試験の試
験片はエッジのシャープな直方体形状をしていたので、
試みに試験片のエッジにアールを取ったものを用意して
拡散浸透処理を施したところ第6図ら)のようにその割
れが明らかに小さくなった。そこでこの問題については
さらに最適形状を見つけることにより解決されることと
推測され、工業的にもこの方向で対処できるものと考え
られる。
However, there is a problem that occurs under any processing conditions. As shown in FIG. 6(a), large cracks occur in the spreading film near the edge of the test piece. The specimen in this test had a rectangular parallelepiped shape with sharp edges, so
As a trial, a test piece with rounded edges was prepared and subjected to diffusion infiltration treatment, and as shown in Figure 6, etc.), the cracks became clearly smaller. Therefore, it is assumed that this problem can be solved by further finding an optimal shape, and it is considered that this problem can be dealt with industrially as well.

さて本発明者は真空蒸着処理についてCr, Si,N
iおよびA1の4種を試みた。Cr, Siについては
蒸着自体が困難であるが、一方Ni, Al について
は蒸着が可能だったため、蒸着後、拡散のため10−3
Paの真空中で1000〜1050℃ 4時間の熱処理
を施してから酸化試験を行った。この結果は第7図に示
す通りである。第7図に示したようにNi蒸着について
は耐酸化性の著しい改善は認められなかった。またAl
 については若干の効果は認められたものの、その効果
は比較的短時間で失われ、光学顕微鏡での観察によって
も次の第8図のように十分な拡散が起こっていないのが
明らかで、今後さらに適切な蒸着条件、拡散条件の検討
が必要であると考える。
Now, the inventor of the present invention has investigated the vacuum deposition process for Cr, Si, and N.
Four types were tried: i and A1. Vapor deposition itself is difficult for Cr and Si, but on the other hand, Ni and Al can be vapor-deposited.
After heat treatment at 1000 to 1050°C for 4 hours in a vacuum of Pa, an oxidation test was conducted. The results are shown in FIG. As shown in FIG. 7, no significant improvement in oxidation resistance was observed with Ni vapor deposition. Also, Al
Although a slight effect was observed, the effect was lost in a relatively short period of time, and observation with an optical microscope revealed that sufficient diffusion had not occurred, as shown in Figure 8 below. We believe that it is necessary to further consider appropriate vapor deposition and diffusion conditions.

実施例2 第1表に示したと同じ金属間化合物TiALおよびMn
添加TiALについて、広範囲の条件で低酸素分圧下で
熱処理を施して900℃静止大気中での繰り返し酸化試
験を行った。
Example 2 The same intermetallic compounds TiAL and Mn as shown in Table 1
The added TiAL was subjected to heat treatment under low oxygen partial pressure under a wide range of conditions, and repeated oxidation tests were conducted at 900° C. in still air.

第7表は金属間化合物TiALあるいはTiAL基合金
に対して施した低酸素分圧下熱処理の処理条件を示した
ものである。この熱処理における処理条件として変化さ
せたパラメータは、処理空気圧(真空度)、処理温度お
よび処理時間の二者であり、実際の熱処理はそれぞれ第
7表に示したような条件の雰囲気中で試料を所定時間保
持するというものである。
Table 7 shows the treatment conditions of the low oxygen partial pressure heat treatment applied to the intermetallic compound TiAL or TiAL-based alloy. The parameters that were changed as processing conditions in this heat treatment were processing air pressure (degree of vacuum), processing temperature, and processing time, and the actual heat treatment was performed by heating the sample in an atmosphere with the conditions shown in Table 7. It is held for a predetermined period of time.

第7表 第7表に示した条件の熱処理を施した金属間化合物Ti
ALあるいはTiAL基合金試験片について900℃静
止大気中における繰り返し酸化試験を行って各処理条件
と耐酸化性との関係について検討した。第9図から第1
1図までのグラフは酸化試験を行った際の各試験片の質
量増加を表したものである。これらのグラフの横軸は累
積酸化時間を示し、縦軸は試験片の質量変化を単位表面
積当たりの値にして示したものである。
Table 7 Intermetallic compound Ti subjected to heat treatment under the conditions shown in Table 7
Repeated oxidation tests were conducted on AL or TiAL-based alloy test pieces at 900° C. in a static atmosphere to examine the relationship between each treatment condition and oxidation resistance. Figure 9 to 1
The graphs up to Figure 1 represent the increase in mass of each test piece when an oxidation test was conducted. The horizontal axis of these graphs shows the cumulative oxidation time, and the vertical axis shows the change in mass of the test piece as a value per unit surface area.

本発明により金属間化合物TiALに低酸素分圧下熱処
理を施す際の処理空気圧と処理時間をそれぞれ6.7X
10−’ PaとlO時間に一定とし、処理温度を変化
させたときの各試験片の酸化増量を第9図に示す。先に
示した第1図の未処理の場合と比較して、低酸素分圧下
熱処理による耐酸化性の改善は明らかである。この効果
については処理温度900℃から1000℃までの範囲
で酸化増量が900℃より1000℃に近づくにつれて
減少することが認められ、特に1000℃付近で耐酸化
性改善の効果が最も大きい。
According to the present invention, the treatment air pressure and treatment time when heat treating the intermetallic compound TiAL under low oxygen partial pressure are 6.7X, respectively.
FIG. 9 shows the oxidation weight gain of each test piece when the treatment temperature was changed while keeping the 10-' Pa and lO time constant. It is clear that the oxidation resistance is improved by the heat treatment under low oxygen partial pressure compared to the untreated case shown in FIG. 1 shown above. Regarding this effect, it is recognized that the oxidation weight gain decreases as the temperature approaches 1000°C from 900°C within the treatment temperature range of 900°C to 1000°C, and the effect of improving oxidation resistance is particularly greatest at around 1000°C.

第10図は処理空気圧6.7 x1o−3Pa ,処理
温度1000℃、処理時間10時間の低酸素分圧下熱処
理を施した金属間化合物TiAL試験片の耐酸化性を長
時間にわたる繰り返し酸化試験によってインコネル71
3Cのそれと比較したものである。累積酸化時間500
時間までの範囲ではインコネル713Cを凌ぐ耐酸化性
を有するものになっていることが見いだされる。
Figure 10 shows the oxidation resistance of an intermetallic compound TiAL test piece that was heat-treated under low oxygen partial pressure at a treatment air pressure of 6.7 x 1o-3Pa, a treatment temperature of 1000℃, and a treatment time of 10 hours. 71
This is a comparison with that of 3C. Cumulative oxidation time 500
It is found that the oxidation resistance exceeds that of Inconel 713C in the range of up to 100 minutes.

第11図は1.5%のMnを添加したT1^L基合金に
対して本発明の低酸素分圧下熱処理を施した試料の酸化
曲線(J)を示したものである。同処理を行わない同じ
試料の酸化曲線(K)  も併記してある。
FIG. 11 shows the oxidation curve (J) of a sample of a T1^L-based alloy to which 1.5% Mn was added, which was subjected to the heat treatment under low oxygen partial pressure according to the present invention. The oxidation curve (K) of the same sample without the same treatment is also shown.

本発明による低酸素分圧下で熱処理は、このMnを含む
試料TiAL合金についても耐酸化性改善の効果のある
ことが認められる。
It is recognized that the heat treatment under low oxygen partial pressure according to the present invention is effective in improving the oxidation resistance of this Mn-containing sample TiAL alloy as well.

以上のように繰り返し酸化試験による耐酸化性改善の評
価を処理条件別にまとめたものが第8表である。表中の
記号Oはインコネル713Cと同程度あるいはそれ以上
の耐酸化性が得られたことを表し、記号△はインコネル
713Cの数倍程度までの酸化増量を示したことを、ま
た記号×はそれ以上の酸化増量を示したことを表すもの
である。
Table 8 summarizes the evaluation of oxidation resistance improvement by repeated oxidation tests according to treatment conditions as described above. The symbol O in the table indicates that oxidation resistance equivalent to or higher than that of Inconel 713C was obtained, the symbol △ indicates that the oxidation resistance was increased several times that of Inconel 713C, and the symbol × indicates that the same level of oxidation resistance was obtained. This indicates that the amount increased by oxidation as described above.

第8表 A1.OPa B  6.7 xto−3Pa C  I.3xto−3Pa 以上のように、本発明では金属間化合物TiALおよび
TiAL基合金の耐酸化性を改善するための表面処理法
として、低酸素分圧下熱処理に顕著な効果を現わすこと
が確かめられた。本発明の処理を施すことにより金属間
化合物TiAL(TA)および1.5%のMnを添加し
たTiAL基合金(TAM)の耐酸化性は改善され、そ
れらの内で最も優れたものはN1基超合金インコネル7
13Cの耐酸化性を凌ぐものであることが確言忍された
Table 8 A1. OPa B 6.7 xto-3Pa C I. 3xto-3Pa As described above, in the present invention, it has been confirmed that heat treatment under low oxygen partial pressure has a remarkable effect as a surface treatment method for improving the oxidation resistance of intermetallic compounds TiAL and TiAL-based alloys. . By applying the treatment of the present invention, the oxidation resistance of the intermetallic compound TiAL (TA) and the TiAL-based alloy (TAM) added with 1.5% Mn is improved, and the most excellent among them is the N1-based alloy. superalloy inconel 7
It was confirmed that the oxidation resistance exceeded that of 13C.

(発明の効果) 本発明の処理を施すことにより金属間化合物TiAL(
TA)および1.5%のMnを添加したTiAL器合金
(TAM)の耐酸化性は改善され、それらの内で最も優
れたものはN1基超合金インコネル713Cの耐酸化性
を凌ぐ900℃以上の高温において耐熱性があり、軽量
で、安価な耐酸化性材料を提供し得る点で工業上大なる
効果があり、航空機、船舶などに使用される内燃機関、
宇宙船材料、あるいは発電用の蒸気タービンまたはガス
タービンなどの構造用材料、ジェットエンジン材料、あ
るいは自動車用ターボチャージャー用材料として極めて
有用である。
(Effect of the invention) By applying the treatment of the present invention, the intermetallic compound TiAL (
The oxidation resistance of TA) and TiAL alloy (TAM) with 1.5% Mn added is improved, and the best of them is above 900°C, which exceeds the oxidation resistance of the N1-base superalloy Inconel 713C. It has great industrial effects in that it can provide heat-resistant, lightweight, and inexpensive oxidation-resistant materials at high temperatures, and is useful for internal combustion engines used in aircraft, ships, etc.
It is extremely useful as a spacecraft material, a structural material for steam turbines or gas turbines for power generation, a jet engine material, or a material for automobile turbochargers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は処理を施さない金属間化合物TiALおよび比
較材(純Tl材およびインコネル713C)について比
較酸化試験を行った結果を示す特性図、第2図は本発明
の処理を施した試験片NαLNα2ASNα2B,Nα
3および未処理材(TA)とインコネル713Cとを比
較して酸化試験に供した結果を示した比較試験特性図、 第3図(A).  (B)は本発明の低酸素分圧雰囲気
下で熱処理したTiAL試験片断面の顕微鏡写真図およ
びXMA図、 第4図はTi八1(T八)とTiAl(T八M)とをイ
ンコネノレ713C及びステンレス鋼SUS430と比
較した酸化試験結果を示す耐酸化特性図、 第5図はAl拡散浸透処理被膜をもったTiA]の熱処
理をしたものと熱処理をしないものとをインコネル71
3Cと比較した酸化試験結果を示す耐酸化特性図、 第6図(a). (b)はAl拡散浸透処理被膜をもっ
た試験片(TiAl)の急な隅角部と緩い隅角部におけ
る被膜亀裂状態を示す顕微鏡写真図、 第7図は試験片TAとTAlA表面にNiを蒸着したも
のと、試験片TAにAlを蒸着したものとの酸化試験結
果を示す耐酸化特性図、 第8図はTiAlにAlを蒸着した被膜の顕微鏡写真図
、 第9図および第10図は本発明の低酸素分圧下熱処理を
施した金属間化合物TiAL  (D,  E,  F
曲線)をインコネル713C  (G, H曲線)と比
較して酸化試験に供した結果を示す比較試験特性図、第
11図は1.5%財を添加したTiAl基合金に低酸素
分圧下熱処理を施したものを未処理材と比較して酸化試
験に供した結果を示す比較試験特性図である。 第2図 !績酸化時間A 第1図 累積酸化時蘭/h 第4図 50        l〃 1#献化糾聞A 第5図 gt宵顔イビσ今閣/λ 第6図 第7図 50          f00 】【オ貴酸イ乙iキ^i/入 f50 酸イL増th−m−2 ―タイとJtiF/t−オー2 手 続 主甫 正 書(方式) 第11図 平成 元年 9月27日
Figure 1 is a characteristic diagram showing the results of a comparative oxidation test on the untreated intermetallic compound TiAL and comparative materials (pure Tl material and Inconel 713C), and Figure 2 is a test piece NαLNα2ASNα2B treated with the present invention. ,Nα
Figure 3 (A) is a comparative test characteristic diagram showing the results of an oxidation test comparing 3 and untreated material (TA) with Inconel 713C. (B) is a micrograph and an XMA diagram of a cross section of a TiAL specimen heat-treated in a low oxygen partial pressure atmosphere according to the present invention. Figure 5 shows the oxidation resistance characteristics of Inconel 71, which shows the results of an oxidation test compared with stainless steel SUS430.
Oxidation resistance characteristic diagram showing oxidation test results compared with 3C, Figure 6(a). (b) is a micrograph showing the state of coating cracks at the steep corners and gentle corners of the test specimen (TiAl) with the Al diffusion treatment film. Figure 8 is a microscopic photograph of a film obtained by depositing Al on TiAl, Figures 9 and 10. are intermetallic compounds TiAL (D, E, F
Figure 11 shows the results of an oxidation test comparing Inconel 713C (G, H curves) with Inconel 713C (G, H curves). It is a comparative test characteristic diagram showing the results of an oxidation test comparing the treated material with the untreated material. Figure 2! Figure 1 Cumulative oxidation time A Fig. 1 Cumulative oxidation time/h Fig. 4 50 l〃 1# Presentation examination A Fig. 5 gt Yoigao Ibi σ Konkaku/λ Fig. 6 Fig. 7 50 f00 ] [Oki Acid-i Otsui Ki^i/Inf50 Acid-i L increase th-m-2 - Thailand and JtiF/t-O2 Procedural master book (method) Figure 11 September 27, 1989

Claims (1)

【特許請求の範囲】[Claims] 1、TiALの金属間化合物または合金を酸素分圧1×
10^−^2〜1×10^−^5Paの酸素雰囲気下で
温度900℃〜1050℃において、30分ないし10
0時間保持してTiを酸化させず、Alだけを選択的に
酸化させ、前記金属間化合物または合金の表面に予め耐
酸化性のAl_2O_3皮膜を生成せしめることを特徴
とするTiAlの金属間化合物または合金の表面に耐酸
化皮膜を形成させる方法。
1. TiAL intermetallic compound or alloy at oxygen partial pressure 1×
At a temperature of 900°C to 1050°C in an oxygen atmosphere of 10^-^2 to 1 x 10^-^5 Pa for 30 minutes to 10
A TiAl intermetallic compound or an intermetallic compound of TiAl, which is held for 0 hours to selectively oxidize only Al without oxidizing Ti, thereby forming an oxidation-resistant Al_2O_3 film on the surface of the intermetallic compound or alloy in advance. A method of forming an oxidation-resistant film on the surface of an alloy.
JP11307189A 1989-05-02 1989-05-02 Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy Granted JPH02294458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11307189A JPH02294458A (en) 1989-05-02 1989-05-02 Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11307189A JPH02294458A (en) 1989-05-02 1989-05-02 Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12406192A Division JPH05239614A (en) 1992-04-18 1992-04-18 Formation of oxidation resistant film on surface of alloy of ti-al intermetallic compound

Publications (2)

Publication Number Publication Date
JPH02294458A true JPH02294458A (en) 1990-12-05
JPH0463148B2 JPH0463148B2 (en) 1992-10-08

Family

ID=14602758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11307189A Granted JPH02294458A (en) 1989-05-02 1989-05-02 Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy

Country Status (1)

Country Link
JP (1) JPH02294458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239614A (en) * 1992-04-18 1993-09-17 Yokohama Kokuritsu Univ Formation of oxidation resistant film on surface of alloy of ti-al intermetallic compound
US6410154B2 (en) 1996-03-29 2002-06-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Tial-based alloys with excellent oxidation resistance, and method for producing the same
JP2009030110A (en) * 2007-07-27 2009-02-12 Ihi Corp Method of high-temperature resistant oxidation treatment of aluminum alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239614A (en) * 1992-04-18 1993-09-17 Yokohama Kokuritsu Univ Formation of oxidation resistant film on surface of alloy of ti-al intermetallic compound
US6410154B2 (en) 1996-03-29 2002-06-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Tial-based alloys with excellent oxidation resistance, and method for producing the same
JP2009030110A (en) * 2007-07-27 2009-02-12 Ihi Corp Method of high-temperature resistant oxidation treatment of aluminum alloy

Also Published As

Publication number Publication date
JPH0463148B2 (en) 1992-10-08

Similar Documents

Publication Publication Date Title
An et al. Effect of the θ–α-Al2O3 transformation in scales on the oxidation behavior of a nickel-base superalloy with an aluminide diffusion coating
JP4060911B2 (en) Platinum aluminide diffusion coating and thermal insulation coating system
RU2355891C2 (en) Gas turbine part equipped with protective coating, and method of applying protective coating to metal base made from superalloy
Zhou et al. A study of aluminide coatings on TiAl alloys by the pack cementation method
US8221901B2 (en) Material for heat resistant component
EP1784517B1 (en) HIGH-TEMPERATURE COATINGS AND BULK -Ni+ &#39;-Ni3Al ALLOYS MODIFIED WITH PT GROUP METALS HAVING HOT-CORROSION RESISTANCE
JPS6246628B2 (en)
JPS6223062B2 (en)
US20080166589A1 (en) Component having a coating
Tseng et al. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating
Li et al. Improving oxidation resistance of Ti3Al and TiAl intermetallic compounds with electro-spark deposit coatings
JP3976599B2 (en) Heat resistant Ti alloy material excellent in high temperature corrosion resistance and oxidation resistance and method for producing the same
Liu et al. Oxidation behavior of cast Ni3Al alloys and microcrystalline Ni3Al+ 5% Cr coatings with and without Y doping
Romanowska et al. Effect of Pd and Hf co-doping of aluminide coatings on pure nickel and CMSX-4 nickel superalloy
Migas et al. Surface condition of new γ–γ′ Co-Al-Mo-Nb and Co-Al-W cobalt-based superalloys after oxidation at 800 C
JPH07508561A (en) Structural component made of intermetallic compound with aluminum diffusion coating
JPH02503576A (en) Coated near-α titanium product
JPH02294458A (en) Method for forming oxidation-resistant film on the surface of ti-al intermetallic compound or alloy
Jung et al. Effect of a yttrium coating on the oxidation behavior of Ni3Al (II)
Nijdam et al. Effect of partial oxygen pressure on the initial stages of high-temperature oxidation of γ-NiCrAl alloys
US20100028712A1 (en) y&#39;-Ni3Al MATRIX PHASE Ni-BASED ALLOY AND COATING COMPOSITIONS MODIFIED BY REACTIVE ELEMENT CO-ADDITIONS AND Si
JP2922346B2 (en) Heat-resistant Ti-based alloy
Pedraza et al. Evolution of oxide scales on an ODS FeAl intermetallic alloy during high temperature exposure in air
Ramandhany et al. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating
Murakami et al. Process dependence of Ir-based bond coatings

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term