JPH0229376Y2 - - Google Patents

Info

Publication number
JPH0229376Y2
JPH0229376Y2 JP1983042280U JP4228083U JPH0229376Y2 JP H0229376 Y2 JPH0229376 Y2 JP H0229376Y2 JP 1983042280 U JP1983042280 U JP 1983042280U JP 4228083 U JP4228083 U JP 4228083U JP H0229376 Y2 JPH0229376 Y2 JP H0229376Y2
Authority
JP
Japan
Prior art keywords
combustion
gas
explosion
combustion chamber
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983042280U
Other languages
Japanese (ja)
Other versions
JPS59148918U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4228083U priority Critical patent/JPS59148918U/en
Publication of JPS59148918U publication Critical patent/JPS59148918U/en
Application granted granted Critical
Publication of JPH0229376Y2 publication Critical patent/JPH0229376Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【考案の詳細な説明】 本考案は、パルス燃焼装置、詳しくは、爆発燃
焼室の上流側に、該燃焼室からの爆発燃焼ガスの
逆流を阻止するための弁機構を介して、燃焼用空
気供給路および燃料ガス供給路を連設しかつ、前
記爆発燃焼室の下流側に、爆発燃焼ガスをその爆
発力により、該燃焼室から排出させる排気路を連
設して、前記爆発燃焼室内でのガス−空気混合気
の爆発燃焼後における燃焼ガスの排出動慣性に基
づいて発生する吸引力を利用して、燃料ガスおよ
び燃焼用空気を該燃焼室内に流入混合させると共
に、排出燃焼ガスの一部を前記排気路から該燃焼
室内に逆流させることにより、その逆流燃焼ガス
の保有熱をもつてガス−空気混合気を爆発燃焼さ
せる、という爆発燃焼サイクルを連続的に繰返す
ように構成されたパルス燃焼装置に関する。
[Detailed Description of the Invention] The present invention provides a pulse combustion device, more specifically, a pulse combustion device, in which combustion air is supplied to the upstream side of an explosion combustion chamber through a valve mechanism for preventing backflow of explosion combustion gas from the combustion chamber. A supply path and a fuel gas supply path are provided in series, and an exhaust path is provided downstream of the explosion combustion chamber for discharging the explosive combustion gas from the combustion chamber by its explosive force, so that the explosion combustion chamber Using the suction force generated based on the exhaust kinetic inertia of the combustion gas after explosive combustion of the gas-air mixture, the fuel gas and combustion air are flowed into the combustion chamber and mixed, and part of the exhaust combustion gas is The pulse is configured to continuously repeat an explosive combustion cycle in which the gas-air mixture is explosively combusted by causing the gas to flow back from the exhaust passage into the combustion chamber, thereby causing the gas-air mixture to explode and burn with the heat retained in the backflowing combustion gas. Regarding combustion equipment.

かかるパルス燃焼装置は、起動時以外は燃焼用
空気供給や点火のためのエネルギーが不要なため
省エネ運転が可能であり、また、高負荷燃焼が可
能なため能力の割に装置本体をコンパクトに構成
でき、かつ、爆発燃焼形態であるために燃焼ガス
の排気圧力が高いので、排気路を非常に細く構成
しながらも高速排気が可能であり、従つて、例え
ばその排気路を細いテイルパイイプで構成すると
共に、それを流体加熱用浸管として利用するよう
な場合に極めて高い加熱効率が得られ、更には、
爆発燃焼直前に排気路から燃焼室内に燃焼ガスの
一部が逆流することによつて、所謂排ガス循環型
燃焼形態が自然発生的に現出されることとなつ
て、低NOX燃焼が可能であるといつた種々の利
点を有している。
Such pulse combustion equipment does not require energy for supplying combustion air or ignition other than when starting up, allowing for energy-saving operation.Also, since it is capable of high-load combustion, the equipment itself is compact considering its capacity. In addition, since the exhaust pressure of the combustion gas is high due to the explosive combustion mode, high-speed exhaust is possible even though the exhaust path is configured to be very narrow. Therefore, for example, the exhaust path can be configured with a thin tail pipe. In addition, extremely high heating efficiency can be obtained when it is used as an immersion pipe for heating fluids, and furthermore,
Immediately before explosive combustion, a portion of the combustion gas flows back into the combustion chamber from the exhaust passage, resulting in the so-called exhaust gas recirculation combustion mode occurring naturally, making low NOx combustion possible. It has various advantages such as.

しかしながら、かかるパルス燃焼装置を実用化
するにあたつては、未だ種々の問題が残されてい
る。そのひとつに、前記両逆流阻止用弁機構のう
ち、燃料ガス供給路に比べて流路断面積を大きく
とらざるを得ない燃焼用空気供給路に対する逆流
阻止用弁機構における弁体が非常に短期間のうち
に破損してしまうという問題があつた。
However, various problems still remain in putting such a pulse combustion device into practical use. One of the problems is that, of the two backflow prevention valve mechanisms, the valve body in the backflow prevention valve mechanism for the combustion air supply path, which has to have a larger cross-sectional area than the fuel gas supply path, is very short-lived. There was a problem with it breaking over time.

つまり、従来のパルス燃焼装置は、第7図及び
第8図に示すように、燃焼用空気供給路03への
爆発燃焼室01からのガス逆流を阻止する弁機構
04において周部に空気導入部としての比較的大
きな複数個の貫通孔04a……を備えた弁座04
Aと、周部に燃焼室01からの爆発燃焼ガスを流
入させるための比較的大きな複数個の貫通孔04
b……を、そして、中央部に主として燃焼用空気
を燃焼室01内へ導入するための大貫通孔04c
を備えた受座04Bとを、連結部材04C……に
より適当距離隔てた状態で連結すると共に、その
両者04A,04B間に、燃焼室01内での爆発
燃焼サイクルの繰返しに伴つて往復移動すること
により、前記弁座04Aの空気導入部である貫通
孔04a……を閉塞・開放するリング状弁体04
Dを介装して構成されていた。而して、前記弁体
04Dは、その逆流阻止作用時において、受座0
4Bの各孔04b,04c……を介して、燃焼室
01内での爆発燃焼に伴う強力な爆風を受けて弁
座04Aに激しく衝突する。その時、弁座04A
の空気導入部としての比較的大きな各貫通孔04
a……に対する弁体04Dの各部分は、それら各
貫通孔04a……内に入り込むように変形し、各
貫通孔04a……のエツジに相当する弁体04D
の各部分は極めて強い剪断力を受ける。そして、
このような現象は爆発燃焼サイクル毎に繰返され
る(一般に60〜70回分)ので、弁体04Dは早期
のうちに破れたり孔が開いたりして、その逆流阻
止機能を損なつてしまうのである。
In other words, in the conventional pulse combustion device, as shown in FIGS. 7 and 8, an air introduction portion is provided at the periphery of the valve mechanism 04 that prevents gas backflow from the explosion combustion chamber 01 to the combustion air supply path 03. A valve seat 04 equipped with a plurality of relatively large through holes 04a...
A, and a plurality of relatively large through holes 04 for allowing explosive combustion gas from the combustion chamber 01 to flow into the peripheral portion.
b..., and a large through hole 04c in the center for mainly introducing combustion air into the combustion chamber 01.
A catch seat 04B equipped with a seat 04B is connected to the seat 04B at an appropriate distance by a connecting member 04C..., and is moved back and forth between the two 04A and 04B as the explosion and combustion cycle is repeated within the combustion chamber 01. By this, the ring-shaped valve body 04 closes and opens the through hole 04a which is the air introduction part of the valve seat 04A.
It was constructed by interposing D. Thus, the valve body 04D is in contact with the catch seat 0 during its backflow prevention function.
Through the holes 04b, 04c, . . . of the valve 4B, it receives a powerful blast wave accompanying explosive combustion within the combustion chamber 01, and violently collides with the valve seat 04A. At that time, valve seat 04A
Each relatively large through hole 04 serves as an air introduction part.
Each part of the valve body 04D for a... deforms so as to fit into each of the through holes 04a..., and the valve body 04D corresponding to the edge of each through hole 04a...
Each part is subjected to extremely strong shear forces. and,
Since such a phenomenon is repeated for each explosion/combustion cycle (generally 60 to 70 times), the valve body 04D will tear or become punctured at an early stage, impairing its backflow prevention function.

本考案は、上記実情に鑑みてなされたものであ
つて、その目的は、爆発燃焼に伴つて弁体が弁座
に激しく衝突しても、弁体が弁座から部分的に集
中的な力を受けることが無いようにすることによ
り、弁体の耐久性を大幅に向上させんとすること
にある。
The present invention was developed in view of the above-mentioned circumstances, and its purpose is to prevent the valve body from being partially exposed to concentrated force from the valve seat even if the valve body violently collides with the valve seat due to explosive combustion. The purpose is to significantly improve the durability of the valve body by preventing it from being exposed to water.

本考案の特徴構成は、燃焼用空気供給路への爆
発燃焼ガスの逆流を阻止する弁機構において、弁
座を多孔質の壁体で形成すると共に、弁体により
開閉される空気吸入路を前記多孔質の壁体の細孔
で形成したことにあり、その作用効果は次の通り
である。
The characteristic configuration of the present invention is that, in a valve mechanism that prevents the backflow of explosive combustion gas to the combustion air supply path, the valve seat is formed of a porous wall body, and the air intake path that is opened and closed by the valve body is It is formed by the pores of a porous wall, and its effects are as follows.

つまり、燃焼ガスの排出動慣性による吸引力で
燃焼用空気が、弁座を形成する多孔質の壁体の細
孔を通つて爆発燃焼室に吸入され、そして、爆発
燃焼時には弁体が弁座にガス圧で押付けられて、
多孔質の壁体の細孔から成る空気吸入路が弁体で
閉じられ、燃焼用空気供給路への爆発燃焼ガスの
逆流が阻止される。
In other words, combustion air is sucked into the explosion combustion chamber through the pores of the porous wall that forms the valve seat by the suction force due to the exhaust kinetic inertia of the combustion gas, and during explosive combustion, the valve body moves to the valve seat. is pressed by gas pressure,
The air intake channel, which consists of pores in the porous wall, is closed by a valve body to prevent the explosive combustion gases from flowing back into the combustion air supply channel.

したがつて、弁体が弁座に衝突した時、弁体が
細孔に臨む部分を弁体の全面に分散された状態に
でき、かつ、それら細孔に臨む部分夫々を極めて
小さい面積にでき、換言すると、弁体を全面にわ
たつて均等に弁座で受止めさせて、弁座との衝突
に伴う弁体の応力を分散させて極めて小さくでき
る。このことによつて、弁体の閉弁時の弁座との
衝突による破損を効果的に抑制でき、前述の従来
技術に比して弁体の耐久性を十分に向上できるよ
うになつた。
Therefore, when the valve body collides with the valve seat, the portions of the valve body facing the pores can be dispersed over the entire surface of the valve body, and each of the portions facing the pores can be made to have an extremely small area. In other words, the valve body is evenly received over the entire surface by the valve seat, and the stress on the valve body caused by collision with the valve seat can be dispersed and extremely reduced. As a result, damage caused by collision of the valve body with the valve seat when the valve is closed can be effectively suppressed, and the durability of the valve body can be sufficiently improved compared to the above-mentioned prior art.

その結果、パルス燃焼装置の耐久性向上を十分
に図れ、実用面で優れたパルス燃焼装置を提供で
きるようになつた。
As a result, it has become possible to sufficiently improve the durability of the pulse combustion device and provide a pulse combustion device that is excellent in practical terms.

以下、本考案の実施例を図面(第1図〜第6
図)に基づいて説明する。
Examples of the present invention are shown in the drawings (Figs. 1 to 6) below.
The explanation will be based on Figure).

第1図および第2図の第1実施例に示すよう
に、起動用点火プラグ10を有する爆発燃焼室1
の上流側に、電動フアン2を備えた燃焼用空気供
給路3を、該燃焼室1からの爆発燃焼ガスの逆流
を阻止するためのエアフラツパーと呼ばれる弁機
構4を介して連設すると共に、前記逆流阻止用弁
機構4の直下流側に燃料ガスデイストリビユータ
5を設け、かつ、そのガスデイストリビユータ5
に燃焼室1からの爆発燃焼ガスの逆流を阻止する
ためのガスフラツパーと呼ばれる弁機構6を介し
て流量調節弁7を有する燃料ガス供給路8を連設
し、一方、前記爆発燃焼室1の下流側には、爆発
燃焼ガスをその爆発力により燃焼室1から排出さ
せる排気路9を形成する直管状テイルパイプを連
設し、もつて、パルス燃焼装置を構成してある。
As shown in the first embodiment of FIGS. 1 and 2, an explosion combustion chamber 1 having a starting spark plug 10
A combustion air supply path 3 equipped with an electric fan 2 is connected to the upstream side of the combustion chamber 1 via a valve mechanism 4 called an air flapper for preventing the backflow of explosive combustion gas from the combustion chamber 1. A fuel gas distributor 5 is provided immediately downstream of the backflow prevention valve mechanism 4, and the gas distributor 5
A fuel gas supply path 8 having a flow rate regulating valve 7 is connected to the combustion chamber 1 via a valve mechanism 6 called a gas flapper for preventing the backflow of the explosion combustion gas from the combustion chamber 1. A straight tail pipe forming an exhaust path 9 for discharging explosive combustion gas from the combustion chamber 1 by its explosive force is connected to the side, thereby forming a pulse combustion device.

前記燃焼用空気供給路3に対する逆流阻止用弁
機構4は、第2図にも示すように、円板状の弁座
4Aの周部近くに、空気導入部として可及的に幅
広の多孔質焼結金属製の環状壁体4aを嵌込んで
あり、一方、中央貫通孔4cを有するリング状の
受座4Bにその全周にわたつて複数個の貫通孔4
b……を並設し、多数のボルト・ナツト状連結部
材4C……によつて受座4Bを弁座4Aに対して
適当間隔離した状態で一体連結し、弁座4Aと受
座4Bの間にリング状の摺動弁体4Dを、連結部
材4C……を利用して径方向への位置決めをした
状態で設け、もつて、爆発燃焼に伴つて燃焼室1
が正圧になると、受座4Bの中央貫通孔4cおよ
び周部貫通孔4b……から弁体4Dに作用する押
圧力で弁体4Dを弁座4Aに押付けて弁機構4を
閉じて燃焼室1から空気供給路3への燃焼ガスの
逆流を阻止し、逆に、爆発燃焼後に燃焼室1が負
圧になると、受座4Bの中央貫通孔4cおよび周
部貫通孔4b……から作用する吸引力によつて弁
体4Dを弁座4A側から受座4B側へ移動させて
弁機構4を開くと共に、弁座4Aの前記した多孔
質焼結金属製環状壁体4aの細孔で形成した空気
吸入路を通つて爆発燃焼室1に燃焼用空気を吸引
導入するように構成してある。
As shown in FIG. 2, the backflow prevention valve mechanism 4 for the combustion air supply path 3 has a porous structure as wide as possible as an air introduction section near the circumference of the disc-shaped valve seat 4A. A ring-shaped seat 4B is fitted with a ring-shaped wall 4a made of sintered metal and has a central through-hole 4c, and a plurality of through-holes 4 are formed around the entire circumference of the ring-shaped seat 4B.
b... are arranged side by side, and the catch 4B is integrally connected with the valve seat 4A while being separated from the valve seat 4A by a large number of bolt-nut-shaped connecting members 4C..., and the valve seat 4A and the catch 4B are A ring-shaped sliding valve body 4D is provided in between and positioned in the radial direction using the connecting member 4C.
When the pressure becomes positive, the pressing force acting on the valve body 4D from the center through hole 4c and the peripheral through hole 4b of the catch seat 4B presses the valve body 4D against the valve seat 4A, closing the valve mechanism 4 and closing the combustion chamber. 1 to the air supply path 3, and conversely, when the combustion chamber 1 becomes negative pressure after explosive combustion, it acts from the central through hole 4c and the peripheral through hole 4b of the seat 4B... The valve body 4D is moved from the valve seat 4A side to the catch seat 4B side by suction force to open the valve mechanism 4, and the pores of the porous sintered metal annular wall 4a of the valve seat 4A are formed. The combustion air is drawn into the explosion combustion chamber 1 through the air suction passage.

次に、上記パルス燃焼装置の動作について説明
する。
Next, the operation of the pulse combustion device will be explained.

起動時に、電動フアン2を作動させて、燃料ガ
スと燃焼用空気を適当混合比で燃焼室1に供給
し、かつ、点火プラグ10により燃焼室1内で爆
発を生じさせる。すると、前記燃焼室1内でのガ
ス−空気混合気の爆発燃焼後における燃焼ガスの
排出動慣性に基づいて燃焼室1内に発生する負圧
吸引力を利用して、燃料ガスおよび燃焼用空気を
前記逆流阻止用弁機構4,6を介して、該燃焼室
1内に適当量づつ流入混合させると共に、排出燃
焼ガスの一部を前記排気路9から該燃焼室1内に
逆流させることにより、その逆流燃焼ガスの保有
熱をもつて、再びガス−空気混合気を爆発燃焼さ
せる、という爆発燃焼サイクルが連続的に繰返さ
れるのである。
At startup, the electric fan 2 is operated to supply fuel gas and combustion air to the combustion chamber 1 at an appropriate mixing ratio, and an explosion is caused within the combustion chamber 1 by the spark plug 10. Then, by using the negative pressure suction force generated in the combustion chamber 1 based on the exhaust kinetic inertia of the combustion gas after explosive combustion of the gas-air mixture in the combustion chamber 1, the fuel gas and the combustion air are removed. is mixed in an appropriate amount into the combustion chamber 1 via the backflow prevention valve mechanisms 4 and 6, and a part of the exhaust combustion gas is caused to flow back into the combustion chamber 1 from the exhaust passage 9. Then, the gas-air mixture is explosively combusted again using the heat retained in the backflowing combustion gas, and the explosion-combustion cycle is continuously repeated.

尚、電動フアン2及び点火プラグ10の作動は
パルス燃焼が安定すれば停止させる。
Note that the operation of the electric fan 2 and the spark plug 10 is stopped when pulse combustion becomes stable.

本考案によるパルス燃焼装置は、例えば流体中
に排気路9を構成するテイルパイプ等を位置させ
て流体を加熱する等の各種加熱目的、あるいは、
排気エネルギーを利用する目的等に利用できる。
The pulse combustion device according to the present invention can be used for various heating purposes, such as heating a fluid by locating a tail pipe constituting the exhaust passage 9 in the fluid, or
It can be used for purposes such as utilizing exhaust energy.

第3図および第4図は第2実施例を示し、弁座
4Aの中央部に可及的に大面積の多孔質焼結金属
製の壁体4aを嵌込んで空気導入部を形成する一
方、弁体4Dを貫通孔の無い円板に構成し、か
つ、受座4Bを小径に形成したものである。
3 and 4 show a second embodiment, in which a wall body 4a made of porous sintered metal with as large an area as possible is fitted into the center of a valve seat 4A to form an air introduction part. , the valve body 4D is formed into a disk without a through hole, and the seat 4B is formed to have a small diameter.

第5図イ,ロはまた別の実施例を示し、第5図
イは、前述の第1図および第2図に示した第1実
施例における弁座4Aを構成するに、その全体を
多孔質の焼結金属製壁体4aで一体的に製作する
と共に、空気導入部以外の外周部および中央部の
表面にコーテイング4dを施して通気不能とした
ものである。第5図ロは、前述の第3図および第
4図に示した第2実施例における弁座4Aを、同
様に多孔質焼結金属製壁体4aで一体的に構成す
ると共に、その外周部分にコーテイング4dを施
し、中央部を空気導入部としたものである。
FIGS. 5A and 5B show another embodiment, and FIG. 5A shows the valve seat 4A in the first embodiment shown in FIGS. The wall body 4a is made of high quality sintered metal and is integrally manufactured, and a coating 4d is applied to the surface of the outer peripheral part and the central part other than the air introduction part to make it impossible to ventilate. FIG. 5B shows that the valve seat 4A in the second embodiment shown in FIGS. 3 and 4 is similarly integrally constructed with a porous sintered metal wall 4a, and its outer peripheral portion is A coating 4d is applied to the inner surface, and the center portion is used as an air introduction portion.

第6図イ,ロは更に別の実施例を示し、夫々前
述の第1および第2実施例における弁座4A,4
Aを鉄板のみで構成すると共に、その空気導入部
として極めて微細な孔4e……を多数穿設したも
のである。
FIGS. 6A and 6B show still another embodiment, in which the valve seats 4A and 4 in the first and second embodiments, respectively, are shown.
A is constructed of only an iron plate, and a large number of extremely fine holes 4e are bored as air introduction portions.

また、更なる別実施例としては、前記多孔質焼
結金属の代りに、セラミツクフオームや硬質の石
綿あるいはメツシユの極めて細かい金網やパンチ
ドメタル等を用いて多孔質壁体4aを構成しても
よく、要するに、弁座4Aとその空気吸入路を微
細な孔を有する多孔性壁体4aで構成すればよ
い。
Further, as another embodiment, the porous wall body 4a may be constructed using ceramic foam, hard asbestos, extremely fine mesh wire mesh, punched metal, etc. instead of the porous sintered metal. In short, the valve seat 4A and its air suction path may be constructed of a porous wall 4a having fine holes.

尚、前記各実施例に示した弁座4Aによる圧損
は、その多孔質壁体4aの板厚や微細孔の分布密
度を選定することによつて、従来の弁座と同程度
となるように設計して、燃焼性に問題が生じない
ようにしてある。
The pressure loss due to the valve seat 4A shown in each of the above embodiments can be made to be the same as that of a conventional valve seat by selecting the thickness of the porous wall 4a and the distribution density of micropores. The design is such that there are no combustibility problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の第1実施例を示
し、第1図はパルス燃焼装置の概略縦断面図、第
2図は要部の分解斜視図であり、第3図および第
4図は第2実施例の概略縦断面図および要部の分
解斜視図、そして、第5図イ,ロおよび第6図
イ,ロは、夫々更に別の実施例の要部断面図を示
す。また、第7図、第8図は従来構成を示す概略
縦断面図および要部の分解斜視図である。 1……爆発燃焼室、3……燃焼用空気供給路、
4,6……逆流阻止用弁機構、8……燃料ガス供
給路、9……排気路、4A……4の弁座、4a…
……多孔質壁体、4D……弁体。
1 and 2 show a first embodiment of the present invention, FIG. 1 is a schematic vertical sectional view of a pulse combustion device, FIG. 2 is an exploded perspective view of the main parts, and FIGS. The figure shows a schematic vertical sectional view and an exploded perspective view of the main parts of the second embodiment, and FIGS. Moreover, FIGS. 7 and 8 are a schematic vertical sectional view and an exploded perspective view of essential parts showing a conventional configuration. 1... Explosion combustion chamber, 3... Combustion air supply path,
4, 6... Valve mechanism for backflow prevention, 8... Fuel gas supply path, 9... Exhaust path, 4A... Valve seat of 4, 4a...
... Porous wall body, 4D... Valve body.

Claims (1)

【実用新案登録請求の範囲】 1 爆発燃焼室1の上流側に、その爆発燃焼室1
からの爆発燃焼ガスの逆流を阻止するための弁
機構4,6を介して、燃焼用空気供給路3およ
び燃料ガス供給路8を連設し、かつ、前記爆発
燃焼室1の下流側に、爆発燃焼ガスをその爆発
力により前記爆発燃焼室1から排出させる排気
路9を連設して、前記爆発燃焼室1内でのガス
−空気混合気の爆発燃焼後における燃焼ガスの
排出動慣性による吸引力で燃料ガスおよび燃焼
用空気を前記爆発燃焼室1内に流入させると共
に、排出燃焼ガスの一部を前記排気路9から前
記爆発燃焼室1内に逆流させることにより、そ
の逆流燃焼ガスの保有熱をもつてガス−空気混
合気を爆発燃焼させ、爆発燃焼サイクルを連続
的に繰返すように構成されたパルス燃焼装置で
あつて、前記燃焼用空気供給路3への爆発燃焼
ガスの逆流を阻止する弁機構4において、弁座
4Aを多孔質の壁体4aで形成すると共に、弁
体4Dにより開閉される空気吸入路を前記多孔
質の壁体4aの細孔で形成してあるパルス燃焼
装置。 2 前記多孔質の壁体4aが多孔質焼結金属であ
る実用新案登録請求の範囲第1項に記載のパル
ス燃焼装置。
[Scope of claim for utility model registration] 1. On the upstream side of the explosion combustion chamber 1, the explosion combustion chamber 1
A combustion air supply path 3 and a fuel gas supply path 8 are connected to each other via valve mechanisms 4 and 6 for preventing backflow of explosion combustion gas from the explosion combustion chamber 1, and on the downstream side of the explosion combustion chamber 1, An exhaust passage 9 for discharging the explosive combustion gas from the explosion combustion chamber 1 by its explosive force is provided in series, so that the combustion gas is discharged by the dynamic inertia after the explosive combustion of the gas-air mixture in the explosion combustion chamber 1. By causing fuel gas and combustion air to flow into the explosion combustion chamber 1 using suction force, and by causing a part of the exhaust combustion gas to flow back into the explosion combustion chamber 1 from the exhaust passage 9, the backflow combustion gas is A pulse combustion device configured to explosively burn a gas-air mixture using retained heat and to continuously repeat an explosive combustion cycle, wherein the explosion combustion gas is prevented from flowing back into the combustion air supply path 3. In the valve mechanism 4 that prevents pulse combustion, the valve seat 4A is formed by a porous wall 4a, and the air suction passage opened and closed by the valve body 4D is formed by the pores of the porous wall 4a. Device. 2. The pulse combustion device according to claim 1, wherein the porous wall body 4a is made of porous sintered metal.
JP4228083U 1983-03-23 1983-03-23 pulse combustion device Granted JPS59148918U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228083U JPS59148918U (en) 1983-03-23 1983-03-23 pulse combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228083U JPS59148918U (en) 1983-03-23 1983-03-23 pulse combustion device

Publications (2)

Publication Number Publication Date
JPS59148918U JPS59148918U (en) 1984-10-04
JPH0229376Y2 true JPH0229376Y2 (en) 1990-08-07

Family

ID=30172830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228083U Granted JPS59148918U (en) 1983-03-23 1983-03-23 pulse combustion device

Country Status (1)

Country Link
JP (1) JPS59148918U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627404U (en) * 1979-08-08 1981-03-14

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141742U (en) * 1975-05-10 1976-11-15
JPS5834288Y2 (en) * 1978-10-07 1983-08-01 ヤンマーディーゼル株式会社 Cyclone type air cleaner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627404U (en) * 1979-08-08 1981-03-14

Also Published As

Publication number Publication date
JPS59148918U (en) 1984-10-04

Similar Documents

Publication Publication Date Title
KR100236579B1 (en) Flame trap for use in a pulse combustor
JPS5826498B2 (en) Combustion device for gas turbine engine
US4653694A (en) Intermittent type swirl injection nozzle
JPS5813734B2 (en) engine exhaust diffuser
KR890002613Y1 (en) Pulse combustion apparatus
JPH0229376Y2 (en)
JP2905627B2 (en) Pulse combustor
JPS6218733B2 (en)
JP2000073917A (en) Fuel injection nozzle for internal combustion engine
JPH0125845Y2 (en)
JP3117349B2 (en) Combustion chamber of subchamber internal combustion engine
JPH0141092Y2 (en)
JPH0144884Y2 (en)
JPS611904A (en) Pulse combustion device
JPH0141091Y2 (en)
JPH0125846Y2 (en)
JPH0229375Y2 (en)
US4089312A (en) Means for introducing additional air into air fuel stream of internal combustion engines
JPH04318277A (en) Fuel injection nozzle
JP3368053B2 (en) Pulse burner flame trap
JPS5915710A (en) Pulse combustion device
JPH0144882Y2 (en)
JP2630971B2 (en) Pulse combustion equipment
KR100279997B1 (en) Hole formation method of hole nozzle for direct injection engine
JPS621526Y2 (en)