JPH02293630A - Liquid level flow control mechanism - Google Patents

Liquid level flow control mechanism

Info

Publication number
JPH02293630A
JPH02293630A JP11579189A JP11579189A JPH02293630A JP H02293630 A JPH02293630 A JP H02293630A JP 11579189 A JP11579189 A JP 11579189A JP 11579189 A JP11579189 A JP 11579189A JP H02293630 A JPH02293630 A JP H02293630A
Authority
JP
Japan
Prior art keywords
float
liquid level
liquid
flow control
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11579189A
Other languages
Japanese (ja)
Other versions
JPH0543974B2 (en
Inventor
Hideaki Isogai
磯貝 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11579189A priority Critical patent/JPH02293630A/en
Publication of JPH02293630A publication Critical patent/JPH02293630A/en
Publication of JPH0543974B2 publication Critical patent/JPH0543974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To enhance the measurement accuracy of a liquid level and liquid column difference by moving upward and downward plural flow control materials disposed around a float on the liquid level according to the positions in the horizontal direction of the float to restore the float to a prescribed position. CONSTITUTION:The control rods 15 are disposed at four points Y1 to Y4 at the vertexes of a square shape. The small round projecting liquid surfaces are generated at four points by the control rods 15. The float 12 is held in the prescribed position by surface tension in the static state of the liquid level. On the other hand, the float 12 deviates in position and the surface tension decreases as well when the liquid level flows. The horizontal displacement of the float 12 is detected by 4 pieces of sensors 19 and the control rods 15 are put into and out of the liquid level by the revolution of motors 16 to generate the flow in a backward direction so that the float 12 returns to the prescribed position of the liquid level. Reflected light 16 is captured from a circular reflector 13 provided at the center of the float 12 in this state and the vertical position of the float 12 is measured by an optical wave interferometer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液面の位置を検知する浮ぎ子(フロート)式
の精密液面計あるいは高精度液柱差計等のトランスデュ
ーサに用いる液面流動制御機構に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied to liquids used in transducers such as float-type precision liquid level gauges or high-precision liquid column difference gauges that detect the position of liquid levels. Regarding surface flow control mechanism.

〔従来の技術〕[Conventional technology]

従来の光波干渉式の水銀液柱差真空計による標準気圧計
では、水銀の液面から直接反射する光で光干渉計を構成
しているので、床面からの振動による水銀の液面にゆら
ぎによって、水銀の液面から反射する光はその光の波面
が乱れた上に、かなり減衰するので、干渉縞が不明瞭と
なる.そのため、その液面のゆらぎでその低圧側の測定
限界が決まり、測定分解能が0.7μm程度で、その精
度が±1%とすれば、Q.Q7Torr以下の低圧ff
ll1定は実際上困難となる。さらに、液面のゆらぎが
大きい場合には、圧射光は光検出位置からずれて信号が
消滅することもある。また、作動液として水銀を用いる
と、I Torr以下で蒸気が測定気体中に混入し、測
定不可能になるという問題があった。
In the conventional standard barometer using a light wave interference type mercury liquid column differential vacuum gauge, the optical interferometer is composed of light directly reflected from the mercury liquid surface, so it is difficult to detect fluctuations in the mercury liquid level due to vibrations from the floor. As a result, the wavefront of the light reflected from the mercury liquid surface is disturbed and is considerably attenuated, making the interference fringes unclear. Therefore, the measurement limit on the low pressure side is determined by the fluctuation of the liquid level, and if the measurement resolution is about 0.7 μm and the accuracy is ±1%, Q. Low pressure ff below Q7 Torr
ll1 constant is practically difficult. Furthermore, if the fluctuation of the liquid level is large, the pressure-injected light may shift from the light detection position and the signal may disappear. Furthermore, when mercury is used as the working fluid, there is a problem in that vapor is mixed into the measurement gas at temperatures below I Torr, making measurement impossible.

そこで、本出願人は、特願昭63− 280954号の
特許出願において、感圧素子として液体を使用し、液体
の変位を光波干渉計で計測することにより圧力を測定す
る低圧用圧力計において、液体を収納する受圧管の壁面
に対面して複数の対称的な平面、または曲面を有するフ
ロートを液体の表面に浮べ、フロートの上面全体を鏡面
に形成し、またはフロートの中心に反射器を取付けて光
波干渉計からの入射光を反射するように構成したことを
特徴とする低圧用圧力計を提案した。
Therefore, in the patent application No. 63-280954, the present applicant proposed a low-pressure pressure gauge that uses a liquid as a pressure-sensitive element and measures pressure by measuring the displacement of the liquid with a light wave interferometer. A float having multiple symmetrical planes or curved surfaces facing the wall of the pressure receiving tube containing the liquid is floated on the surface of the liquid, and the entire upper surface of the float is formed into a mirror surface, or a reflector is attached to the center of the float. We have proposed a low-pressure pressure gauge characterized by being configured to reflect incident light from a light wave interferometer.

この提案の低圧用圧力計によれば、対称形状のフロート
(浮き子)により、反射器または鏡面の反射面が液柱の
中心からずれて管壁に近づくと、表面張力により反発し
て中心位置に自動復帰する。すなわち、表面張力の合成
でフロートを所期位置に保持するので、作動液の液面の
振動が押えられて平滑化するとともに、フロートの鏡面
の位置がずれにくいので反射光の光軸が安定し、測定分
解能0.01μm以下の高精度の圧力測定が実際上可能
となる。
According to this proposed low-pressure pressure gauge, due to the symmetrical shape of the float, when the reflector or mirror reflective surface deviates from the center of the liquid column and approaches the pipe wall, it is repelled by surface tension and returns to the center position. automatically returns to. In other words, since the float is held in the desired position by the combination of surface tensions, the vibrations of the hydraulic fluid surface are suppressed and smoothed, and the mirror surface of the float does not easily shift, so the optical axis of the reflected light is stabilized. , it becomes practically possible to measure pressure with high precision with a measurement resolution of 0.01 μm or less.

一方、従来の浮子式のトランスデューサでは、例えば第
6図に示すようなダムの水位の観測用の浮き子がある(
八ppLied Optics, Vcl20 No 
20.15 Oct ’81,P3508 :  ″L
iquid LevelInterferometer
″)。
On the other hand, conventional float-type transducers include a float for observing the water level of a dam, as shown in Figure 6, for example.
8ppLied Optics, Vcl20 No
20.15 Oct '81, P3508: ″L
iquid LevelInterferometer
″).

この従来例では、所定の位置に浮き子1を保持するため
、その浮き子1とそれを包むように覆った二重のダクト
2の水平線上と垂直線上の対面した位置に永久61石3
.4を設けて、浮き子1を強力な磁力により上下左右か
ら拘束することによって、所定位置に浮き子1を保持し
、測長の安定を図っている。
In this conventional example, in order to hold the float 1 in a predetermined position, a permanent 61 stone 3
.. 4 is provided to restrain the float 1 from the top, bottom, right and left with a strong magnetic force, thereby holding the float 1 in a predetermined position and stabilizing the length measurement.

(発明が解決しようとする課題) しかしながら、前述した特願昭6:l− 280954
号のti案の装置では、液面がほぼ静止している時には
浮き子は定位値に連続して安定に保持されるが、液面が
比較的はげしく流動するときには、表面張力が低下した
状憇となっているので、浮き子が定位置からずれた場合
、浮き子の受圧管中心位置への自動復帰が遅れ、あるい
は困難となるという、さらに解決すべき課題があった。
(Problem to be solved by the invention) However, the above-mentioned patent application No. 6:1-280954
In the TI device of this issue, when the liquid level is almost stationary, the float is continuously and stably maintained at the fixed position value, but when the liquid level is flowing relatively rapidly, the surface tension is reduced. Therefore, when the float deviates from its normal position, automatic return of the float to the center position of the pressure receiving tube becomes delayed or difficult, which is another problem to be solved.

一方、第6図の磁石で拘束する浮き子の安定化機構の場
合、あるいは第7図および第8図に示すような機誠力を
介して浮き子の位置を検出する機構の場合には、浮き子
への強い拘束力があるので、例えば精密低圧用圧力計で
取り扱う低圧の限界の目標である10−’Torrの微
差圧の検出に必要な0.01Atmの分解能は、到底得
られない。
On the other hand, in the case of a stabilizing mechanism for a float that is restrained by magnets as shown in Fig. 6, or in the case of a mechanism that detects the position of a float through mechanical force as shown in Figs. 7 and 8, Due to the strong restraining force on the float, it is impossible to obtain the resolution of 0.01 Atm required to detect a minute differential pressure of 10-'Torr, which is the target of the low pressure limit handled by precision low-pressure pressure gauges, for example. .

即ち、強い磁力や機械力(摩擦力)で浮き子を現在の位
置に拘束している処で、測定すべき差圧が生じ、それに
伴って液面が移動しても、浮力又は、表面張力の発生量
と釣りあっているうちは新たな液面に向かって忠実に浮
子が追従し動いて行かない。更に、この浮き子とダクト
との間隔が狭ければ、毛細管現象で液面が上昇すること
となり、この上昇量も測定誤差に加わる。従って、従来
機構はこれらの誤差の量よりも遥かに深く長大なダムの
水位や、超高圧の液柱差を測長する限りにおいては、安
定で実用的な精度の優れた液面の認識機構とみなされる
が、上述のような10−’Torr程度の微差圧の検出
には用いることができなかった。
In other words, even if a differential pressure to be measured occurs where the float is restrained in its current position by strong magnetic force or mechanical force (frictional force), and the liquid level moves accordingly, the buoyancy or surface tension As long as the amount of water generated is balanced, the float will faithfully follow the new liquid level and will not move. Furthermore, if the distance between the float and the duct is narrow, the liquid level will rise due to capillary action, and this amount of rise will also add to the measurement error. Therefore, as long as the conventional mechanism measures the water level of a dam that is much deeper and longer than these errors, or the difference in the ultra-high pressure liquid column, it is a stable, practical and highly accurate liquid level recognition mechanism. However, it could not be used to detect a slight differential pressure of about 10-'Torr as described above.

本発明の目的は、上述の問題点に鑑み、液面が流動して
いるときでも、浮き子を所定位置に自動復帰させ、液面
の振動を抑え、安定した再現性のよい高精度測定が得ら
れる液面流動制御機構を提供することにある。
In view of the above-mentioned problems, an object of the present invention is to automatically return a float to a predetermined position even when the liquid level is flowing, suppress vibrations of the liquid level, and enable high-precision measurement with stable reproducibility. The object of the present invention is to provide a liquid level flow control mechanism that can be obtained.

〔課題を解決するための手段) かかる目的を達成するため、本発明は、垂直方向の位置
が変動する液体の液面に浮かべた浮き子の周辺の対称位
置に配設されて、液体中に伸びた複数の棒状または板状
の流動制御部材と、流動制御部材を個別に液体中で上昇
および下降の少くとも一方を行わせる駆動手段と、浮き
子の位置を検出する検出手段と、検出手段の検出信号に
応じて駆動手段を制御して浮き子を水平方向の所定位置
に戻す制御手段と、を具備したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides floats that are disposed at symmetrical positions around a float floating on the surface of a liquid whose position in the vertical direction varies, and A plurality of elongated rod-shaped or plate-shaped flow control members, a driving means for individually raising and lowering the flow control members in at least one of the liquid, a detection means for detecting the position of the float, and a detection means. The present invention is characterized by comprising a control means for controlling the drive means in accordance with the detection signal of the float to return the float to a predetermined position in the horizontal direction.

(作 用) 本発明では、上記構成により、液面が流動するときは、
その液面の流動で浮き子が漂流して行かないような逆方
向の流動を棒また板状の部材を液面に出し入れすること
により、積極的に生じさせる。また、液面が長らく静止
しているときは、表面張力の値も大きいので、自然な表
面張力の合成による所定位置への復元作用によって浮き
子を所定位置に自動復帰させる。
(Function) In the present invention, with the above configuration, when the liquid level flows,
By moving a rod or plate-shaped member into and out of the liquid surface, a flow in the opposite direction is actively generated to prevent the float from drifting away due to the flow of the liquid surface. Furthermore, when the liquid level remains stationary for a long time, the value of surface tension is large, so the float is automatically returned to the predetermined position by the natural combination of surface tensions that restores the float to the predetermined position.

従って、本発明によれば、強力な磁力や摩擦力を用いず
に、浮き子の沈下量を一定に保ったまま、測定すべき差
圧が生じ、その差圧に伴って液面が動けば、それに抗す
ることなく新たな液面の中心位置に忠実に浮き子が追従
して行くので、液面が流動しているときでも液面の流動
を制御して常に安定な高分解能の液面検知が可能となり
、特に微差圧による液柱差測長や液面の高分解能計測が
連続して安定に高精度で実現できる.(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
Therefore, according to the present invention, a pressure difference to be measured is generated while the amount of sinking of the float is kept constant without using strong magnetic force or frictional force, and if the liquid level moves along with the pressure difference, , the float faithfully follows the new center position of the liquid level without resisting it, so even when the liquid level is flowing, the flow of the liquid level is controlled and the liquid level is always stable with high resolution. Detection becomes possible, and in particular, liquid column difference measurement using minute differential pressure and high-resolution measurement of liquid level can be achieved continuously, stably, and with high precision. (Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は低圧用圧力計等に液面流動制御機構を適用した
本発明の実施例の要部構成を示し、同図(A)はその概
略縦断面図、同図(B)は線A−A’に沿って切断した
概略横断面図である。
Figure 1 shows the main structure of an embodiment of the present invention in which a liquid level flow control mechanism is applied to a low-pressure pressure gauge, etc., where (A) is a schematic vertical cross-sectional view, and (B) is a line A - It is a schematic cross-sectional view cut along A'.

第1図において、10は受圧管である断面円形のU字管
の片側(以下、受圧管と称する)であり、毛細管現象を
避けるため、その径を図示のように太くしてある。
In FIG. 1, numeral 10 is one side of a U-shaped tube with a circular cross section (hereinafter referred to as pressure receiving tube) which is a pressure receiving tube, and its diameter is made thick as shown in the figure to avoid capillarity.

l1は受圧管10に収納された感圧手段としての作動液
、12は作動液lOの液面のほぼ中心に浮かぶ正方形の
浮き子、l3は浮き子l2の中心の上面に取付けられた
円形の反射器、l4は反射器13の表面で反射して戻る
光ビームであり、浮き子l2の垂直方向の位置は光ビー
ムl4を介して図示しない光波干渉計で計測される。
11 is a working fluid as a pressure sensing means housed in the pressure receiving tube 10, 12 is a square float floating approximately at the center of the liquid level of the working fluid 10, and 13 is a circular float attached to the upper surface of the center of the float 12. The reflector l4 is a light beam that is reflected on the surface of the reflector 13 and returns, and the vertical position of the float l2 is measured by a light wave interferometer (not shown) via the light beam l4.

l5は浮き子l2の水平方向の位置を所定位置に保つた
め、浮き子l2の周囲に同一円周上に等間隔で、即ち正
方形の頂点の4個所の位置に配置した制御棒である。木
例では、制御棒l5を浮き子12の対角線の長さを一辺
の長さとする外郭の正方形の4頂点の場所に配置した.
l6は各制御棒l5の一端に取付けられて制御棒を回転
する逆転自在の小型モータであり、例えばステップそ一
夕等を用いる。l7は少くとも作動液11の最大上昇位
置よりも上方の所定位置で受圧管lOの内壁に固定され
た支持板であり、支持板l7に垂直に貫通して形成した
雌ねじl8に制御棒l5の周面に形成した雄ねじが嵌合
している。従って、小型モータl6が正転(時計回り)
すれば、制御棒l5は下降し、小型モータ16が逆転(
反時計回り)すれば、制御棒l5は上昇する。
In order to maintain the horizontal position of the float l2 at a predetermined position, control rods l5 are arranged around the float l2 at equal intervals on the same circumference, that is, at four positions at the vertices of a square. In the wooden example, the control rods 15 are placed at the four vertices of an outer square whose side length is the length of the diagonal of the float 12.
16 is a small reversible motor that is attached to one end of each control rod 15 and rotates the control rod, for example, using a step motor or the like. 17 is a support plate fixed to the inner wall of the pressure receiving pipe 1O at least at a predetermined position above the maximum rising position of the hydraulic fluid 11, and the control rod 15 is connected to a female thread 18 formed perpendicularly through the support plate 17. A male thread formed on the circumferential surface is fitted. Therefore, the small motor l6 rotates normally (clockwise).
Then, the control rod l5 descends and the small motor 16 reverses (
counterclockwise), the control rod l5 will rise.

19は浮き子l2の水平方向の移動を検知するモニター
としてのセンサであり、例えばフォトダイオードとフ才
トトランジスタからなる反射型のフォトインタラブタを
用いる。4個のセンサl9は、第1図(B) に示すよ
うに浮き子l2が液面の中心位置にあるときにおいて、
センサ19からの出射光( X I− X 4 )が反
射器l3の近傍の浮き子l2の縁部または液面に当るよ
うに、支持板l7の下面に各制御棒l5に対応してその
内側に等間隔で配設されている。20は光ビームl4が
通過する支持板17に開口した貫通孔である. 次に、本発明実施例の動作を説明する.作動液容器(U
字管)10は毛細管現象を避けるため径を大しているの
で、浮き子12を作動液11の液面の中心位置に保持す
る自然な表面張力の合成による効果が得にくくなる.し
かし、制御棒l5を外郭の正方形の頂点4個所の位置に
配置しているので、制御棒l5により小丸状の突起した
液面が4点に生じ、液面の静かな状態においては、浮き
子12との表面張力の合成で、浮き子l2の位置ずれの
復元力の拠点となる.従って、木例によれば、毛細管現
象を避けた本来の望ましい液面の所定の検出位置に、浮
き子l2を保持しておく効果が強化される。
A sensor 19 serves as a monitor for detecting the movement of the float l2 in the horizontal direction, and uses, for example, a reflective photo-interrupter made of a photodiode and a semiconductor transistor. The four sensors 19 detect when the float 12 is at the center of the liquid level as shown in FIG. 1(B).
In order that the emitted light (X I- are arranged at equal intervals. 20 is a through hole opened in the support plate 17 through which the light beam l4 passes. Next, the operation of the embodiment of the present invention will be explained. Hydraulic fluid container (U
Since the diameter of the tube 10 is increased to avoid capillarity, it becomes difficult to obtain the effect of natural surface tension synthesis that holds the float 12 at the center of the surface of the working fluid 11. However, since the control rods 15 are placed at the four vertices of the outer square, the control rods 15 create small round protrusions on the liquid surface at four points, and when the liquid surface is quiet, the float The combination of surface tension with 12 serves as the base of the restoring force for the displacement of float 12. Therefore, according to the wooden example, the effect of holding the float l2 at a predetermined detection position of the originally desirable liquid level that avoids capillary action is enhanced.

一方、液面が流動するときの浮き子l2の位置ずれに対
しては、液面の流動で表面張力が低下した状態となって
いるので、浮き子l2を積極的に所定位置に復元しなけ
ればならない。しかし、浮き子l2の垂直方向の動きを
拘束するものであってはならない.そこで、本例では、
浮き子12の水平方向の偏位な4個のセンサ19で検知
し、浮き子12が液面の所定位置に戻るように、逆方向
の流動を制御棒l5を液面中に出し入れすることにより
積極的に生じさせるや すなわち、液の流動状況を矢印で示す第2図に示すよう
に、モータl6を正回転して制御棒l5を引と下げると
、周囲の作動液11が粘性で引き下げと同方向に連続し
て引きずられて下方への局部的な流動が起こり、作動液
11の液面がそれにより制御棒l5方向へ流動するので
、浮き子l2は矢印で示すように正回転の制御棒15に
近づいて行く。一方、モータl6を逆回転して制御棒l
5を引き上げると、上記と同様の理由で、上方への局部
的な流動が起こり、浮き子l2は逆回転の制御棒l5か
ら遠ざかって行く。
On the other hand, in response to the displacement of the float l2 when the liquid level is flowing, the surface tension has decreased due to the liquid level flowing, so the float l2 must be actively restored to the predetermined position. Must be. However, it must not restrict the vertical movement of float l2. Therefore, in this example,
The horizontal deviation of the float 12 is detected by four sensors 19, and the control rod 15 is moved in and out of the liquid surface to control the flow in the opposite direction so that the float 12 returns to a predetermined position on the liquid surface. In other words, when the motor 16 is rotated in the forward direction and the control rod 15 is pulled down, the surrounding hydraulic fluid 11 is pulled down due to its viscosity, as shown in Fig. 2, which shows the liquid flow situation with arrows. As it is continuously dragged in the same direction, a local flow occurs downward, and the liquid level of the working fluid 11 flows in the direction of the control rod l5, so the float l2 controls forward rotation as shown by the arrow. Approach bar 15. On the other hand, the control rod l is rotated in the reverse direction by rotating the motor l6.
5, a local upward flow occurs for the same reason as above, and the float l2 moves away from the counter-rotating control rod l5.

従って、浮き子12が所定位置からずれたときに、浮き
子l2が近づいた制御棒l5を逆回転により引き上げる
と同時に、その制御棒と対向する制御棒を正回転に引き
下げれば、作動液11に局部的な流wJ(対流)が同時
併行して起こり、浮き子l2を所定位置に迅速に復元す
る。また、モータl6の回転速度、すなわち制御棒l5
の引き上げ、引ぎ下げの速度を可変制御することにより
、作動液11の局部的な流動の速度を変えることができ
るので、浮き子l2の位置ずれの方向と移動速度に応じ
て各モータl6の回転方向と回転速度を制御すれば、作
動液l1がはげしく流動しているときでも、浮き子l2
を所定位置に保守しておくことが可能である。
Therefore, when the float 12 deviates from the predetermined position, if the float 12 pulls up the approaching control rod 15 by reverse rotation, and at the same time pulls down the control rod facing the control rod by normal rotation, the hydraulic fluid 11 A local current wJ (convection) occurs simultaneously and quickly restores the float l2 to its predetermined position. Also, the rotational speed of the motor l6, that is, the control rod l5
By variably controlling the lifting and lowering speeds of the floats l2, the local flow speed of the hydraulic fluid 11 can be changed. By controlling the direction and speed of rotation, even when the hydraulic fluid l1 is flowing rapidly, the float l2
can be maintained in place.

第1図のセンサl9はこの浮き子l2の位置ずれを検出
するためのものであり、センサl9からの出射光が反射
器13以外に当る場合はその検出信号はOFF状態であ
るが、その出射光が反射器l3に当るとその検出信号は
ONとなって、対応して配置されている制御棒15に近
づいたことを知らせる。
The sensor l9 in FIG. 1 is for detecting the positional deviation of the float l2, and if the emitted light from the sensor l9 hits anything other than the reflector 13, the detection signal is in the OFF state, but the output When the emitted light hits the reflector l3, its detection signal turns ON, indicating that it has approached the correspondingly placed control rod 15.

このように、制御棒l5の操作と静止によって、液面の
流動と表面張力を活用して浮き子12を所定位1itに
復帰させることになるが、その作用力はいずれにせよ、
本来の液面が浮き子l2に示す作用(浮力)を損ねない
微少な力であるから、余りに重量のある浮き子では本発
明で得られる効果が十分期待できない場合があることは
注意する必要がある. 第3図は本発明の実施例の制御系の概略回路構成を示す
。第3図において、30は各センサl9からの検出信号
に応じて各小型モータ16の回転を制御する制御回路で
あり、−M的なマイクロコンピュータ、あるいは論理回
路で構成される。3lは制御回路30からの制御信号に
応じて対応する小型モータl6の回転方向と回転数を制
御するそ一タドライバ(駆動回路)である。
In this way, by operating and stopping the control rod 15, the float 12 is returned to the predetermined position 1it by utilizing the flow of the liquid level and surface tension, but in any case, the acting force is
It should be noted that the effect obtained by the present invention may not be fully expected if the float is too heavy, since the original liquid level is a very small force that does not impair the action (buoyancy) exerted on the float l2. be. FIG. 3 shows a schematic circuit configuration of a control system according to an embodiment of the present invention. In FIG. 3, numeral 30 is a control circuit that controls the rotation of each small motor 16 in accordance with the detection signal from each sensor 19, and is composed of a -M type microcomputer or a logic circuit. 3l is a driver (drive circuit) that controls the rotational direction and rotation speed of the corresponding small motor 16 according to a control signal from the control circuit 30.

第4図は第1図(B)に示す配列関係の4個のセンサ1
9 (XI, X2. X3+ X4) (7)検出信
号と、小型モータ16 (Yl, Y2, Y3, Y
4)の回転方向を示す。
Figure 4 shows four sensors 1 arranged in the arrangement shown in Figure 1 (B).
9 (XI, X2. X3+ X4) (7) Detection signal and small motor 16 (Yl, Y2, Y3, Y
4) Indicates the rotation direction.

ここで、センサ19の″1“は出射光が反射器13に当
った場合を示し、“0”は出射光が反射器13以外に当
る場合を示す。従って、第1図に示すように、全てのセ
ンサl9の検出信号の値が“0”であれば、浮き子12
は液面の所定位置、例えば中心位置に位置することにな
るので、モータl6は回転させる必要がない。
Here, "1" of the sensor 19 indicates that the emitted light hits the reflector 13, and "0" indicates that the emitted light hits something other than the reflector 13. Therefore, as shown in FIG. 1, if the values of the detection signals of all the sensors l9 are "0", the float 12
is located at a predetermined position on the liquid level, for example at the center position, so there is no need to rotate the motor l6.

一方、モータl6の“+1”は正回転を示し、モータl
6の正回転により制御棒15が引き下げられ、浮き子l
2を引きつけることとなる。また、モータl6の″−1
”は逆回転を示し、モータl6の逆回転により制御棒1
5が引き上げられ、浮き子12が遠ざかることとなる。
On the other hand, “+1” of motor l6 indicates forward rotation;
6 is rotated forward, the control rod 15 is pulled down, and the float l
It will attract 2. Also, ″-1 of motor l6
” indicates reverse rotation, and control rod 1 is rotated due to reverse rotation of motor l6.
5 is pulled up, and the float 12 moves away.

第4図に示すように、制御回路30はいずれかのセンサ
l9の出力信号が“1”となった場合、そのセンサ1g
の近傍のモータl6を逆回転し、対向するその他の千一
タl6を正回転することにより、複数の制御棒l5の引
き下げと引き上げとを同時に併行して行い、これにより
浮き子l2を所定位置に復元させ、センサl9の全ての
出力信号が“0“となつた時点でモータlδの駆動を停
止する。
As shown in FIG. 4, when the output signal of any sensor l9 becomes "1", the control circuit 30
By rotating the motor l6 near the motor in the opposite direction and rotating the other motor l6 facing forward in the forward direction, a plurality of control rods l5 are simultaneously lowered and raised, thereby moving the float l2 to a predetermined position. When all the output signals of the sensor l9 become "0", the driving of the motor lδ is stopped.

なお、制御回路30は第4図の制御内容を論理回路で構
成することも可能であるが、第4図の制御内容をテーブ
ル化して内部メモリに記憶し、センサ19の出力信号を
読み出しアドレスとしてドライバ3lへの制御信号を発
生することができる。
Note that the control circuit 30 can also be configured with a logic circuit for the control contents shown in FIG. 4, but the control contents shown in FIG. A control signal to the driver 3l can be generated.

1皿週 次に、上述の本発明実施例の変形例について説明する。1 plate a week Next, a modification of the above-described embodiment of the present invention will be described.

上述の実施例(以下、本例と称する)では、複数の制御
棒l5の引き上げと引き下げを同時に行うようにしたが
、本発明はこれに限定されず、制御棒l5の引き上げ、
または引き下げの一方を単独に行うことにより、浮き子
12の所定位置への復元を行わせることができることは
勿論である。この場合、例えば、いずれかの制御棒l5
が液面近くに達するまでは、制御棒l5の引き上げのみ
による液面流動制御を行い、いずれかの制御棒l5の先
端が液面近くに達したら、制御棒l5の引き下げのみに
よる液面流動制御を行ない、次に制御棒15の先端が下
降限界位置に達したら、制御棒l5の引き上げのみによ
る液面流動制御を行うというように制御回路30の動作
切換を繰り返し行うようにすれば、比較的短い制御棒1
5でも長時間の連続制御を行うことが可能である。この
ときの制御棒15の先端の垂直方向の位置はモータl8
の回転数、あるいはマイクロスイッチ等で容易に認識で
きる. また、本例では、制御棒l5とセンサ19を4個づつ設
けた場合を例示したが、これらは2個以上であれば何個
であってもかまわない。
In the above embodiment (hereinafter referred to as the present example), the plurality of control rods l5 are pulled up and lowered at the same time, but the present invention is not limited to this, and the control rods l5 are pulled up and lowered simultaneously.
Alternatively, it is of course possible to restore the float 12 to the predetermined position by performing one of the lowering operations alone. In this case, for example, any control rod l5
Until the control rod 15 reaches near the liquid level, the liquid level flow is controlled only by pulling up the control rod 15, and when the tip of any control rod 15 reaches near the liquid level, the liquid level flow is controlled only by pulling down the control rod 15. , and then when the tip of the control rod 15 reaches the lowering limit position, the liquid level flow control is performed only by pulling up the control rod 15. If the operation of the control circuit 30 is repeatedly switched, it is relatively easy. short control rod 1
5, it is possible to perform continuous control for a long time. At this time, the vertical position of the tip of the control rod 15 is motor l8.
It can be easily recognized by the number of revolutions or microswitches. Further, in this example, the case where four control rods 15 and four sensors 19 are provided is illustrated, but there may be any number of these as long as they are two or more.

また本例では、作動液it中に引き上げ、または引き下
げさせることにより局部的な流動を起こさせる手段とし
て、小型モータ16と制御棒15の組合せを例示したが
、本発明はこれに限定されず、小型の回転モータ16の
代りに、リニアモータ、電磁的アクチュエータ、エアー
あるいは油圧を用いたアクチュエータ等の駆動手段を用
いることができ、またねじを有する制御棒l5の代りに
、平坦な丸棒、長板等を用いることができる。また小型
の無端ベルトと回転モータの組合せ機構のものも適用可
能である. また、制御棒15の先端部分は金属に限定されず、作動
液11の性質に応じて、プラスチック、フエルト等の適
切な材料が選択され得る。
Further, in this example, a combination of the small motor 16 and the control rod 15 is illustrated as a means for causing local flow by raising or lowering the hydraulic fluid IT, but the present invention is not limited to this. Instead of the small rotary motor 16, drive means such as a linear motor, electromagnetic actuator, pneumatic or hydraulic actuator can be used, and instead of the threaded control rod l5, a flat round rod, a long A board etc. can be used. Also, a combination mechanism of a small endless belt and a rotating motor is also applicable. Further, the tip portion of the control rod 15 is not limited to metal, and an appropriate material such as plastic or felt may be selected depending on the properties of the hydraulic fluid 11.

また、浮き子l2の形状として正方形のものを示したが
、本発明はこれに限定されず、例えば六角形や円形のよ
うに、受圧管lOの壁面に対面して複数の対称的な平面
または曲面を有する浮き子であればよい。また、反射器
13は平面鏡の他に、コーナキューブを用いることがで
き、また浮き子12の全面を鏡面にしてもよい。さらに
、本例のセンサl9の出射光は浮き子l2が所定位置に
あるときに、反射器l3以外に当るようにしたが、逆に
反射器l3の周縁部に当てるようにしても同様の効果が
得られることは明らかである. また、支持板l7は本例では受圧管lOに固定して示し
たが、支持板l7の位置を手動で、あるいは液面の位置
変化に応じて自動的に調整できるようにしてもよい。ま
た、支持板l7は板状部材とは限らず、複数の棒材を組
み合せた構造物でもよく、さらに小型モータ16を支持
して案内するガイドレールを支持板17上に設けてもよ
い。
Furthermore, although a square shape is shown as the shape of the float 12, the present invention is not limited to this. For example, a plurality of symmetrical flat or Any float having a curved surface may be used. Further, the reflector 13 may be a corner cube instead of a plane mirror, and the entire surface of the float 12 may be made of a mirror surface. Furthermore, although the light emitted from the sensor l9 in this example is made to hit a part other than the reflector l3 when the float l2 is in a predetermined position, the same effect can be achieved even if the light is made to hit the peripheral part of the reflector l3. It is clear that we can obtain Further, although the support plate 17 is shown fixed to the pressure receiving pipe 1O in this example, the position of the support plate 17 may be adjusted manually or automatically according to a change in the position of the liquid level. Further, the support plate 17 is not limited to a plate-like member, and may be a structure made by combining a plurality of rods, and furthermore, a guide rail for supporting and guiding the small motor 16 may be provided on the support plate 17.

他の実施例 第5図は本発明の他の実施例の制御系の回路構成を示す
。その他の構成は第1図8第2図とほぼ同様なので、そ
の説明は省略する。
Another Embodiment FIG. 5 shows a circuit configuration of a control system according to another embodiment of the present invention. Since the other configurations are almost the same as those in FIG. 1 and FIG. 2, the explanation thereof will be omitted.

第5図において4lは支持板l7の下面、あるいは浮き
子l2の直上に取り付けた超小型の撮像カメラであり、
例えば、COD (電荷結合素子)を用いたもの、ある
いは胃カメラに使われているような光ファイバを用いた
もの等が使用できる。カメラ41で撮像された浮き子1
2の映像信号は撮像回路42を通って画像処理回路43
で、^/0 (アナログデジタル)変換され、また所定
のレベルに増幅されて、輪郭抽出回路44に入力する。
In FIG. 5, 4l is an ultra-small imaging camera attached to the lower surface of the support plate l7 or directly above the float l2,
For example, a device using a COD (charge coupled device) or a device using an optical fiber such as that used in gastrocameras can be used. Float 1 imaged by camera 41
The second video signal passes through the imaging circuit 42 and is sent to the image processing circuit 43.
Then, the signal is converted into ^/0 (analog/digital), amplified to a predetermined level, and input to the contour extraction circuit 44.

輪郭抽出回路44は入力したデジタル画像信号から浮き
子l2の輪郭部分を従来の一般的方法により抽出し、そ
の抽出信号を演算回路45に送出する。その際、輪郭抽
出回路44での輪郭抽出は、浮き子12上のあらかじめ
決めた一片の輪郭部分だけで十分である。
The contour extraction circuit 44 extracts the contour portion of the float 12 from the input digital image signal using a conventional general method, and sends the extracted signal to the arithmetic circuit 45. In this case, the outline extraction circuit 44 suffices to extract the outline of a predetermined outline on the float 12.

演算回路45では入力した輪郭データから浮包子l2の
現在位置と移動速度を所定の演算式に基いて演算し、そ
の演算結果を制御回路46へ出力する. 制御回路46は演算回路45から入力したデータに基い
て浮き子l2を所定の位置に復元するための修正量およ
び各モータ16に対する制御量を算出し、その算出結果
を制御信号として各ドライバ31に出力する。各ドライ
バ3lは制御信号に応じて対応するモータl6の回転方
向と回転速度を制御し、浮き子l2を所定位置に復元さ
せる. 第5図の実施例では第3図の実施例と比べて回路構成が
多少複雑となり、コストアップとなるが、より高精度の
液面流動制御が期待でき、また常時液面が変動して流動
しているような場合にも好適となる.また、木例の輪郭
抽出等は一時的な穆勤物体のパターン認識技術およびサ
ーボ制御技術を応用することが可能であって、容易に実
施することができ、演算係数を変えることにより、種々
の作動液や受圧管に簡単に適用することができるという
ように、汎用性や互換性にも富む.なお、回路44. 
45. 48は、マイクロコンピュータと、制御プログ
ラムを用いたソフトウエアでも実現できる。
The calculation circuit 45 calculates the current position and moving speed of the float l2 from the input contour data based on a predetermined calculation formula, and outputs the calculation results to the control circuit 46. The control circuit 46 calculates the correction amount for restoring the float l2 to the predetermined position and the control amount for each motor 16 based on the data input from the arithmetic circuit 45, and sends the calculation results to each driver 31 as a control signal. Output. Each driver 3l controls the rotational direction and rotational speed of the corresponding motor l6 according to the control signal, and restores the float l2 to a predetermined position. In the embodiment shown in Fig. 5, the circuit configuration is somewhat more complicated than in the embodiment shown in Fig. 3, which increases the cost. It is also suitable when you are In addition, it is possible to apply pattern recognition technology and servo control technology for temporary objects to extract the outline of a tree example, and it is easy to perform. By changing the calculation coefficients, various It is highly versatile and compatible as it can be easily applied to hydraulic fluids and pressure receiving pipes. Note that the circuit 44.
45. 48 can also be realized by software using a microcomputer and a control program.

(発明の効果) 以上説明したように、本発明によれば、液面が静止して
いるときも、流動しているときにも浮き子の位置を所定
位置に迅速に復元するようにされているので、液面や浮
き子の流動が抑えられて連続して安定で高分解能の液面
認識が可能となり、従来、不安定であった微差圧による
液柱差測長や液面の高分解能計測が高精度に容易に実現
できるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the position of the float can be quickly restored to a predetermined position both when the liquid level is stationary and when it is flowing. As a result, the flow of the liquid level and floats is suppressed, making continuous, stable and high-resolution liquid level recognition possible. The effect is that resolution measurement can be easily achieved with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の要部構造を示し、同図(A)
は縦断面図、同図(B)はA−A’線に沿う横断面図、 第2図は第1図の実施例における制御棒の動作を作動液
の流動状況を示す説明図、 第3図は本発明の実施例の制御系の回路構成を示すブロ
ック図、 第4図は第3図の制御回路の制御内容を示す説明図、 第5図は本発明の他の実施例の制御系の回路構成を示す
ブロック図、 第6図.第7図および第8図はそれぞれ従来の浮子式装
置の構造を示す縦断面図である.lO・・・受圧管(U
字管)、 l1・・・作動液、 l2・・・浮き子(フロート)、 13・・・反射器、 l4・・・光ビーム、 15・・・制御棒、 l6・・・小型モータ、 l7・・・支持板、 30・・・制御回路、 31・・・ドライバ、 41・・・カメラ、 44・・・輪郭抽出回路、 45・・・演算回路、 46・・・制御回路。 第 図 第 図
FIG. 1 shows the main structure of an embodiment of the present invention, and FIG.
is a longitudinal sectional view, FIG. 2 is a cross-sectional view taken along the line A-A', FIG. Figure 4 is a block diagram showing the circuit configuration of a control system according to an embodiment of the present invention, Figure 4 is an explanatory diagram showing the control contents of the control circuit shown in Figure 3, and Figure 5 is a control system according to another embodiment of the present invention. A block diagram showing the circuit configuration of FIG. 6. Figures 7 and 8 are longitudinal sectional views showing the structure of a conventional float type device, respectively. lO...Pressure tube (U
11... Hydraulic fluid, 12... Float, 13... Reflector, l4... Light beam, 15... Control rod, l6... Small motor, l7 ...Support plate, 30...Control circuit, 31...Driver, 41...Camera, 44...Contour extraction circuit, 45...Arithmetic circuit, 46...Control circuit. Figure Figure

Claims (1)

【特許請求の範囲】 1)垂直方向の位置が変動する液体の液面に浮かべた浮
き子の周辺の対称位置に配設され て、前記液体中に伸びた複数の棒状または板状の流動制
御部材と、 該流動制御部材を個別に前記液体中で上昇 および下降の少くとも一方を行わせる駆動手段と、 前記浮き子の位置を検出する検出手段 と、 該検出手段の検出信号に応じて前記駆動手 段を制御して前記浮き子を水平方向の所定位置に戻す制
御手段と、 を具備したことを特徴とする液面流動制御 機構。 2)前記検出手段は前記浮き子の位置と移動速度を検出
し、 前記制御手段は該検出手段で検出した前記 位置と移動速度に応じて前記駆動手段を介して前記流動
制御部材の上昇速度または下降速度を制御することによ
り、前記浮き子に作用する液面の流動方向と速さを調整
制御することを特徴とする請求項1に記載の液面流動制
御機構。
[Claims] 1) Flow control using a plurality of rod-shaped or plate-shaped rods extending into the liquid and arranged at symmetrical positions around a float floating on the liquid surface whose vertical position varies. a member; a driving means for individually raising and lowering the flow control member in the liquid; a detecting means for detecting the position of the float; A liquid level flow control mechanism comprising: control means for controlling a drive means to return the float to a predetermined position in a horizontal direction. 2) The detection means detects the position and movement speed of the float, and the control means controls the rising speed or the movement speed of the flow control member via the drive means according to the position and movement speed detected by the detection means. 2. The liquid level flow control mechanism according to claim 1, wherein the flow direction and speed of the liquid level acting on the float are adjusted and controlled by controlling the descending speed.
JP11579189A 1989-05-09 1989-05-09 Liquid level flow control mechanism Granted JPH02293630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11579189A JPH02293630A (en) 1989-05-09 1989-05-09 Liquid level flow control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11579189A JPH02293630A (en) 1989-05-09 1989-05-09 Liquid level flow control mechanism

Publications (2)

Publication Number Publication Date
JPH02293630A true JPH02293630A (en) 1990-12-04
JPH0543974B2 JPH0543974B2 (en) 1993-07-05

Family

ID=14671159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11579189A Granted JPH02293630A (en) 1989-05-09 1989-05-09 Liquid level flow control mechanism

Country Status (1)

Country Link
JP (1) JPH02293630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075951A3 (en) * 2004-02-03 2006-02-09 Ceno Tec Gmbh Textile Konstruk Device for observing the capacity utilisation of a gas storage container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774621A (en) * 1980-10-28 1982-05-10 Sharp Corp Displacement meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774621A (en) * 1980-10-28 1982-05-10 Sharp Corp Displacement meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075951A3 (en) * 2004-02-03 2006-02-09 Ceno Tec Gmbh Textile Konstruk Device for observing the capacity utilisation of a gas storage container

Also Published As

Publication number Publication date
JPH0543974B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
TWI390186B (en) Flowmeter
CN1296678C (en) Liquid flow proximity sensor for use in immersion lithography
JPH1130503A (en) Sensor and method for measuring distance to medium and/ or physical characteristics of medium
JP2013142688A (en) Laser type liquid level meter
JPH02293630A (en) Liquid level flow control mechanism
US6710339B2 (en) Scanning probe microscope
CN107246902A (en) The method for detecting liquid level and system of a kind of 3D printing fluent material
EP2846131A1 (en) Inclinometer of improved precision and manufacturing method thereof
JP5707627B2 (en) Laser level gauge
US4041756A (en) Force-type flowmeter
JP5288602B2 (en) Level
JP4779155B2 (en) Flatness measuring device
JP5707629B2 (en) Laser level gauge
US2974532A (en) Accelerometer
CN105783859B (en) A kind of high-accuracy control method of triaxial movement platform
US6586760B1 (en) Water level measuring method and system
JP4074971B2 (en) Tilt-setting rotating laser device
JPH0519921U (en) Liquid volume indicator
JPH04218703A (en) Displacement detection device
Abraham et al. A wide range high sensitivity film balance
AU2002100092A4 (en) Optical level sensor
EP3374828B1 (en) Alignment system and method
SU1714366A1 (en) Inclination angle sensor
Perez et al. A simple, cheap, clean, reliable, linear, sensitive, low-drift transducer for surface pressure
JPH049718A (en) Movable float type level meter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term