JPH02293386A - Hetero-bonded material using inorganic material as base material - Google Patents

Hetero-bonded material using inorganic material as base material

Info

Publication number
JPH02293386A
JPH02293386A JP11203089A JP11203089A JPH02293386A JP H02293386 A JPH02293386 A JP H02293386A JP 11203089 A JP11203089 A JP 11203089A JP 11203089 A JP11203089 A JP 11203089A JP H02293386 A JPH02293386 A JP H02293386A
Authority
JP
Japan
Prior art keywords
inorganic material
alkali metal
titanate
plating
alkali titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11203089A
Other languages
Japanese (ja)
Other versions
JPH0645513B2 (en
Inventor
Norio Shimizu
紀夫 清水
Akira Seki
明 関
Yoshio Aso
阿曽 良雄
Hidefumi Konnai
秀文 近内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP1112030A priority Critical patent/JPH0645513B2/en
Publication of JPH02293386A publication Critical patent/JPH02293386A/en
Publication of JPH0645513B2 publication Critical patent/JPH0645513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To enable the bonding of a metallized film having excellent bonding strength, gas-tightness and surface-smoothness to an inorganic material by plating a substrate made of an inorganic material with a metallized film using an alkali metal titanate as an interlayer. CONSTITUTION:An alkali metal titanate is applied to at least the surface of a substrate made of an inorganic material and a metallized film is formed on the titanate layer by plating. The material for the substrate is e. g. glass, cement, ceramics, refractory and new ceramics. The alkali metal titanate used in the present process is expressed by general formula AaBbTicOd.eH2O (A is one or more materials selected from alkali metal and H<+>; B is bivalent or trivalent metal; a and b are >=0 and <8; c is >=1 and <=9; d is >=2 and <=19; e is >=0 and <=10). The application of alkali metal titanate as an interlayer can be performed e.g. by mixing raw material powder for the inorganic material with an alkali metal titanate powder and solidifying the mixture after forming.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、無機質材料に密着性、気密性、表面平滑性に
優れる金属化膜を一体的に形成させたヘテロ接合物つま
り複合構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application 1] The present invention relates to a heterojunction, that is, a composite structure, in which a metalized film having excellent adhesion, airtightness, and surface smoothness is integrally formed on an inorganic material. .

無機質材料に金属化膜を形成することは、無機質材料単
味では出せない金属的な外観の他、耐摩耗性、機械的強
度、導電性、又、化学的性質等の諸性質を付与しつる.
又、その異種材料との組合せによりデバイス、システム
としての特徴を生かし用途の拡大、機能の向上を図るこ
とができる。
Forming a metallized film on an inorganic material gives it various properties such as wear resistance, mechanical strength, conductivity, and chemical properties, in addition to a metallic appearance that cannot be achieved with an inorganic material alone. ..
Furthermore, by combining it with different materials, it is possible to take advantage of the characteristics of devices and systems to expand the range of applications and improve functionality.

従って、装飾品、日用品、電子基板材料,機能材籾等と
して広範囲の分野に広く利用可能である。
Therefore, it can be widely used in a wide range of fields such as ornaments, daily necessities, electronic board materials, and functional rice grains.

[従来の技術] 無機質材料に対するメクライジング(金属化膜を形成す
る)方法は、種々の方法がある.例えば蒸着法、イオン
ブレーティング法、スパッタ法、CVD法などの固相一
気相系では,高価な設備、装置を要し、かつそれに伴っ
て基材の寸法に制約を受ける.又,更に上贋金属として
メッキ法で厚みを増すことが多い.従って、装置、プロ
セス上,コスト高になってしまうと共に大型品のメタラ
イジングは困難である。
[Prior Art] There are various methods for meclizing (forming a metallized film) on inorganic materials. For example, solid-phase vapor phase systems such as vapor deposition, ion-blating, sputtering, and CVD require expensive equipment and equipment, and are therefore subject to restrictions on the dimensions of the substrate. Furthermore, as counterfeit metal, the thickness is often increased by plating. Therefore, the equipment and process costs are high, and it is difficult to metalize large products.

また有機接着剤法は、簡便、低価格であるが耐熱性,到
侯性が悪いという短所がある.無機質接着剤法は、簡便
、低価格で耐熱性もあるが、接合操作の加熱時に水分が
抜けて出て硬化し、その微細な穴のために完全には気密
性になり難いことが欠点である。
Furthermore, the organic adhesive method is simple and inexpensive, but has the disadvantages of poor heat resistance and accessibility. The inorganic adhesive method is simple, inexpensive, and heat resistant, but the drawback is that moisture escapes and hardens during the heating process during the bonding operation, and it is difficult to achieve complete airtightness due to the microscopic holes. be.

その他の方法として、高融点金属法,圧着法,直流電圧
印加法、還元法、厚膜法、などがあるが、基材の変化、
寸法精度の低下、又、残留応力が大きくなることに伴う
接合強度の低下をきたしたり、コスト高となってしまう
.それは、無機質材料が、一般に金属よりも熱膨張係数
が小さいので、特に加熱による接合では、無機質材料側
に引張応力、金属側に圧縮応力が残留することになる。
Other methods include high melting point metal method, pressure bonding method, DC voltage application method, reduction method, thick film method, etc.
Dimensional accuracy decreases, bonding strength decreases due to increased residual stress, and costs increase. This is because inorganic materials generally have a smaller coefficient of thermal expansion than metals, so especially when joining by heating, tensile stress remains on the inorganic material side and compressive stress remains on the metal side.

周知の如く無機質材料は引張応力に弱い為、残留引張応
力が加わり接合体は増々引張応力に対して弱いものとな
る. いずれにしても、無機質材料と金属との熱膨張の相対関
係及び濡れ、界面反応が重要であり、低価格で、接合強
度、気密性、耐熱性などを満足するものではない. このような中で、無機質材料への直接メッキ法は、ほぼ
室温下での簡便な低価格なプロセスであること、複雑な
形状基材へのまわり込みが可能であること、又、微細配
線を施す手法として注目される。
As is well known, inorganic materials are weak against tensile stress, so the addition of residual tensile stress makes the bonded body increasingly vulnerable to tensile stress. In any case, the relative relationship of thermal expansion between the inorganic material and the metal, wetting, and interfacial reaction are important, and it is not possible to meet the requirements such as low cost, bonding strength, airtightness, and heat resistance. Under these circumstances, the direct plating method on inorganic materials is a simple and low-cost process that can be performed at almost room temperature, can be wrapped around substrates with complex shapes, and can be used to form fine wiring. It is attracting attention as a method of applying

[発明が解決しようとする課題1 しかし,無機質材料をメッキ可能な表面(粗化面)とす
ることは難しく、特殊な技術を要する。
[Problem to be Solved by the Invention 1] However, it is difficult to make an inorganic material a plateable surface (roughened surface), and special techniques are required.

サンドブラスト、タンブラ磨き等で硬質の無機質材料に
合理的な機械的エッチングを行なうことは困難であると
共に、多くの場合、基材の表面平滑性が損なわれ、均一
な状態で金属化膜を基材に形成させることは困難である
. 又,無機質材料は、わずかな表面の傷の影響で応力集中
を受けやすく、構造材料としての信頼性を低下させる原
因となっている. 本発明は上記従来の問題点を解決し、無機質材料に低価
格なプロセスで、高い接合強度、気密性に加え,表面平
滑性にも優れる金属化膜を形成させることにより、無機
質材料に高信頼性を与え、又、耐摩耗性、導電性、化学
的性質等の諸性質を具備したヘテロ接合物を提供するこ
とを目的とする。
It is difficult to perform reasonable mechanical etching on hard inorganic materials by sandblasting, tumble polishing, etc., and in many cases, the surface smoothness of the substrate is impaired, and the metallized film is not uniformly etched on the substrate. It is difficult to form a In addition, inorganic materials are susceptible to stress concentration due to the influence of slight surface scratches, which reduces their reliability as structural materials. The present invention solves the above-mentioned conventional problems and provides highly reliable inorganic materials by forming a metallized film that has high bonding strength, airtightness, and excellent surface smoothness using a low-cost process. The object of the present invention is to provide a heterojunction having various properties such as wear resistance, electrical conductivity, and chemical properties.

[課題を解決するための手段] 本発明者らは、上記目的を達成するため、鋭意研究の結
果,チタン酸アルカリを介在物とすることにより、密着
強度、気密性、表面平滑性に優れる金属化膿を無機質材
料に接合できる知見を得、本発明に到達した. すなわち本発明は、無機質材料を基材とし少なくとも表
面にチタン酸アルカリを固結せしめ、これを介してメッ
キ法により金属化膜が形成されていることを特徴とする
ヘテロ接合物である.本発明に用いられる基材は、ガラ
ス、セメント,陶磁器,耐火物等古くから使用されてい
る無機質材料、新しい工業材料として脚光を浴びている
ニューセラミックス、又、マトリックスを無機材料とす
る複合材料を挙げることができる.又、本発明に介在物
として用いられるチタン酸アルカリは、 AaBbT1cOa ’ aHxOの一般式で示される
[Means for Solving the Problem] In order to achieve the above object, the present inventors have conducted intensive research and found that a metal with excellent adhesion strength, airtightness, and surface smoothness can be obtained by using alkali titanate as an inclusion. We obtained the knowledge that suppuration can be bonded to inorganic materials and arrived at the present invention. That is, the present invention is a heterojunction characterized in that an inorganic material is used as a base material, an alkali titanate is solidified on at least the surface, and a metallized film is formed through this by plating. The base materials used in the present invention include inorganic materials that have been used for a long time such as glass, cement, ceramics, and refractories, new ceramics that are attracting attention as new industrial materials, and composite materials whose matrix is an inorganic material. I can list the following. Further, the alkali titanate used as an inclusion in the present invention is represented by the general formula of AaBbT1cOa'aHxO.

ここでAは,アルカリ金属及びH9の一種以上、Bは、
2価又は3価金属である。
Here, A is one or more of alkali metals and H9, and B is:
It is a divalent or trivalent metal.

Cは、1以上9以下の数として.a.bは0以上8より
少ない数であり、 dは、2以上19以下の数であり、eは0以上10以下
の数である. すなわち,チタン酸アルカリとは、基本的にはTiOz
との複合酸化物及び水和物で、T106八面体、(Ti
.BlOs八面体、あるいはTies三角両錘体の連鎖
様式より成る結晶構造を持つ特徴があるものを表わす。
C is a number from 1 to 9. a. b is a number from 0 to 8, d is a number from 2 to 19, and e is a number from 0 to 10. In other words, alkali titanate is basically TiOz
complex oxide and hydrate with T106 octahedron, (Ti
.. It is characterized by a crystal structure consisting of a BlOs octahedron or a Ties triangular bipyramidal chain structure.

粉体であるチタン酸アルカリの形状は、繊維状、板状、
球状、不定形などで形状的な制約を受けるものでない. 金属化膜の密着性、その他特性が、その用途として利用
される範囲内に於いて、チタン酸アルカリと共に炭酸カ
ルシウム、アルミナ、マグネシア、酸化亜鉛、カオリナ
イト、クルク、ワラストナイト、ガラス等の粉体を一種
以上加えても良い.介在物であるチタン酸アルカリの量
を少なくする別の方法は、成形あるいは固結された無機
質材料表面に塗布等の方法でチタン酸アルカリ粉を密着
せしめ、必要があれば固結する方法が選ばれる。
The shape of powdered alkali titanate is fibrous, plate-like,
It is not subject to any shape restrictions such as spherical or irregular shapes. Powders such as calcium carbonate, alumina, magnesia, zinc oxide, kaolinite, curcum, wollastonite, glass, etc., as well as alkali titanate, may be used to improve the adhesion and other properties of the metallized film within the scope of its intended use. You may add more than one type of body. Another method for reducing the amount of alkali titanate, which is an inclusion, is to adhere alkali titanate powder to the surface of the formed or consolidated inorganic material by coating, etc., and if necessary, consolidate it. It will be done.

又、繊維状チタン酸アルカリを利用して,基材の特性を
高めた上に、基材表面にチタン酸アルカノを与えるには
、基材の無機質材料の原料扮とチタン酸アルカリ扮を混
合し,成形後固結する方法が選ばれる. 上記の固結する方法が、焼成による場合チタン酸アルカ
リの生成する温度域であれば、チタン源とアルカリ源と
のチタン酸アルカリ原料混合粉であっても良い. 後に形成される金属膜の一層の密着強さを高めるために
、基材にチタン酸アルカリを融着もしくは焼結させる事
が好ましい。その時の温度は、チタン酸アルカリのfI
類を選ぶことにより,800〜1600℃程度の広い温
度範囲で可能であるため、基材の特性を損うことなく、
基材に合った固着、又は、同時焼結を可能とするもので
ある。
In addition, in order to improve the properties of the base material and provide alkano titanate to the surface of the base material by using fibrous alkali titanate, it is necessary to mix the raw material of the inorganic material of the base material and the alkali titanate. , a method of solidifying after forming is selected. When the above-mentioned consolidation method is by firing, as long as the temperature range is such that alkali titanate is produced, a mixed powder of alkali titanate raw materials containing a titanium source and an alkali source may be used. In order to further enhance the adhesion strength of the metal film to be formed later, it is preferable to fuse or sinter the alkali titanate to the base material. The temperature at that time is fI of alkali titanate.
By selecting the same type, it is possible to operate in a wide temperature range of about 800 to 1600℃, without damaging the properties of the base material.
This allows for fixation or simultaneous sintering that suits the base material.

少なくとも、表面にチタン酸アルカリを固結した基材に
、チタン酸アルカリを介在物として金属化模を形成させ
る方法は,従来のメッキ設備を全く変更しないで行なえ
る.メッキ方法は、公知の方法が採用されエッチング,
脱脂、洗浄、センシタイジング、アクチベーティングを
経た後、無電解メッキを行なう。必要があれば更に電解
メッキ,又、ろう付けを施す方法を採用することができ
る。例λば、無電解Niを析出させたい場合、SnCl
2水溶液に入れ、さらにPdC1.水溶中で活性化する
。このことが,無電解Niメッキ溶液から金属Niを析
出させる発端となる.活性化剤には、pbに限らず金、
白金族などの貴金属も用いられる.[作用,効果] 本発明によれば、チタン酸アルカリを介在物とすること
により,密着強度にすぐれた金属化膜を無機質材料に接
合することができる。そしてこの高い密着強度,気密性
は、チタン酸アルカリのTies八面体,fTi.Bl
os八面体あるいはTies三角両神体の連鎖様式より
成る前述した結晶構造に起因し、形成されるトンネルあ
るいは層側、あるいは稜を共有して作るジグザグ状の連
結部分が重要な役割を演じ、そのミクロな凹部が、強力
なアンカー効果(投錨効果)をもたらす. 又、本発明は、チタン酸アルカリの基材表面露出量を増
大させる目的で、前処理としてのエッヂングを行なうこ
とが好ましい.化学的なエッチングの場合は、基材とず
る無機質材料をエッチングする(容液を使用する。
At least, the method of forming a metallized pattern on a base material with alkali titanate solidified on its surface using alkali titanate as an inclusion can be carried out without changing the conventional plating equipment at all. The plating method is a well-known method such as etching,
After degreasing, cleaning, sensitizing, and activating, electroless plating is performed. If necessary, further electrolytic plating or brazing can be employed. For example, if you want to deposit electroless Ni, SnCl
2 aqueous solution, and then PdC1. Activates in water. This is the origin of the precipitation of metallic Ni from the electroless Ni plating solution. Activators include not only PB but also gold,
Noble metals such as platinum group metals are also used. [Operations and Effects] According to the present invention, a metallized film with excellent adhesion strength can be bonded to an inorganic material by using an alkali titanate as an inclusion. This high adhesion strength and airtightness are due to the Ties octahedron of alkali titanate, fTi. Bl
Due to the above-mentioned crystal structure consisting of a chain of os octahedrons or Ties triangular bodies, the tunnels formed, the layer sides, or the zigzag-shaped connecting parts created by sharing the edges play an important role, and the microscopic The concave portion provides a strong anchor effect. Further, in the present invention, it is preferable to perform etching as a pretreatment for the purpose of increasing the amount of alkali titanate exposed on the surface of the base material. In the case of chemical etching, the inorganic material that is connected to the substrate is etched (using a liquid solution).

同様の目的で行なう機械的なエッチングの場合は、チタ
ン酸アルカリの硬度の低いことから、合理的な切削,加
工が可能であり金属膜を形成させる表面を極めて平滑に
することができ、又、その加工性を生かし、鏡面光沢を
持った金属膜を得ることも容易となる. 以北説明した様に本発明は無機質材料にメッキ法により
従来困難であった高い密着強度、気密性と{憂ねた表面
平滑性とをかねそなえた金属膜を低コストで形成させる
ことができ、広範囲の分野に利用することができ、その
効果は極めて大きい.[実 施 例] 次に本発明の実施例を説明する.本発明は下記の実施例
に限定されるものではない。
In the case of mechanical etching for the same purpose, the low hardness of alkali titanate allows for reasonable cutting and processing, and the surface on which the metal film is formed can be made extremely smooth. Taking advantage of its workability, it is also easy to obtain metallic films with specular luster. As explained above, the present invention makes it possible to form a metal film on an inorganic material at a low cost by using a plating method, which has both high adhesion strength and airtightness, which were difficult to achieve in the past, and surface smoothness, which was difficult to achieve in the past. It can be used in a wide range of fields, and its effects are extremely large. [Example] Next, an example of the present invention will be explained. The present invention is not limited to the following examples.

[実施例11 陶石24,3%、長石4.1%、ケイ石4.9%、蛙目
粘土10.7%、本節粘土6.0%、及び(K+. 3
110. 11 14Mgo. 7T1710111な
る化学組成を?つチタン酸アルカリ50%をボールミル
にて混合し、プレス成形で、厚さl Omm、長さ15
0mm.幅50mnnの大きさの長方形状試験片に形成
し、1200℃で5時間焼成し、基材となる焼結体を得
た、焼結体の表面を粒度0、05μmのガンマアルミナ
研磨剤を使用し、パフ研磨仕上げ、中世洗剤で脱脂後、
常法に従い、無電解メッキと電解メッキによりニッケル
メッキ層を得た.得られたニッケル膜を表面粗さ計によ
り、表面粗さ測定、及び250℃ 10秒→20℃ 3
0秒の加熱冷却熱サイクル試験を5サイクルまで試験し
た.又,密着度試験を行なった.その結果を表1に示す
. [実施例2] SiOz80%、s,oxt3%、Na20  5%.
AlzO*2%の組成のホウケイ酸ガラス粉末に、Na
2o・3TiO■の化学組成のチタン酸アルカリを20
%添加混合し、厚さ5mm、長さ150mm、幅50m
mの大きさの長方形状試験片を成形し.1000℃で、
3時間焼成し基体となる焼結体をλだ.?結体の表面を
粒度0.05μmのガンマアルミナ研磨剤を使用し、パ
フ研磨仕上げ、中世洗剤で脱脂後,無電解銅メッキを行
ない,更に電解ニッケルメッキを施した.実施例1と同
様の試験を行なった結果を表1に示す. [実施例3』 99.5%アルミナ基板表面にκzO.6Txo■の化
学組成のチタン酸アルカリを塗布し乾燥後、1300℃
で1時間焼成し、チタン酸アルカリを固着させた.表面
を粒度0.05μmのガンマアルミナ研磨剤を使用し、
パフ研磨仕上げし、脱脂後、常法に従い無電解メッキと
電解メッキにより銅メッキ層を得た.実施例lと同様の
試験を行なった結果を表1に示す. 〔実施例4] ZrCh9 4 . 7%、YzOm5. 2%からな
る部分安定化ジルコニア基板表面に、KaO・15Ti
O■・0.5H.0の化学組成のチタン酸アルカリを塗
布し、乾燥後、1 500℃で1時間焼成し、チタン酸
アルカリを固着させた. その後、研磨仕上げを行なわずに、3%カセイソーダ溶
液で脱脂後,無電解メッキと電解メッキにより銅メッキ
層を得た.実施例lと同様の試験を行なった結果を表1
に示す. [比較例1] 実施例3で使用した表面中心線平均粗さRa=0.2μ
mのアルミナ基板表面をエメリー研磨仕上げで、中心線
平均粗さRa=0.6μmに調整した。Ra=0.2u
mと0.6μmの2種類についで,実施例3と同様の操
作で,銅メッキ層を得た。実施例lと同様の試験を行な
った結果を表1に小す. 表  1 表1に見られる様に本発明による接合物は、高い密着強
度と優れた表面平滑性をかねそなλているものである.
[Example 11 Pottery stone 24.3%, feldspar 4.1%, silica stone 4.9%, frog's eye clay 10.7%, Honbushi clay 6.0%, and (K+.3
110. 11 14Mgo. What is the chemical composition of 7T1710111? 50% alkali titanate was mixed in a ball mill and press-molded to a thickness of 1 Omm and a length of 15 mm.
0mm. A rectangular specimen with a width of 50 mnn was formed and fired at 1200°C for 5 hours to obtain a sintered body as a base material. The surface of the sintered body was polished using gamma alumina abrasive with a particle size of 0.05 μm. After finishing with puff polishing and degreasing with medieval detergent,
A nickel plating layer was obtained by electroless plating and electrolytic plating according to conventional methods. The surface roughness of the obtained nickel film was measured using a surface roughness meter and heated at 250°C for 10 seconds → 20°C 3
A 0 second heating/cooling thermal cycle test was conducted for up to 5 cycles. We also conducted an adhesion test. The results are shown in Table 1. [Example 2] SiOz 80%, s,oxt 3%, Na20 5%.
Borosilicate glass powder with a composition of AlzO*2%, Na
20% alkali titanate with a chemical composition of 2o・3TiO■
% added and mixed, thickness 5mm, length 150mm, width 50m
A rectangular test piece with a size of m was formed. At 1000℃,
The sintered body that is fired for 3 hours and becomes the base is called λ. ? The surface of the compact was finished by puff polishing using a gamma alumina abrasive with a particle size of 0.05 μm, and after degreasing with a medieval detergent, electroless copper plating was performed, followed by electrolytic nickel plating. Table 1 shows the results of a test similar to Example 1. [Example 3] κzO. After applying alkali titanate with a chemical composition of 6Txo■ and drying it, heat it at 1300℃.
The alkali titanate was baked for 1 hour to fix the alkali titanate. The surface was polished using gamma alumina abrasive with a particle size of 0.05 μm.
After finishing with puff polishing and degreasing, a copper plating layer was obtained by electroless plating and electrolytic plating according to conventional methods. Table 1 shows the results of a test similar to Example 1. [Example 4] ZrCh9 4. 7%, YzOm5. KaO・15Ti is applied to the surface of a partially stabilized zirconia substrate consisting of 2%
O■・0.5H. After drying, the alkali titanate having a chemical composition of 0 was applied and baked at 1,500°C for 1 hour to fix the alkali titanate. Thereafter, without polishing, after degreasing with a 3% caustic soda solution, a copper plated layer was obtained by electroless plating and electrolytic plating. Table 1 shows the results of a test similar to Example 1.
It is shown in [Comparative Example 1] Surface center line average roughness Ra used in Example 3 = 0.2μ
The surface of the alumina substrate of m was finished by emery polishing and adjusted to have a centerline average roughness Ra of 0.6 μm. Ra=0.2u
Copper plating layers of two types, m and 0.6 μm, were obtained in the same manner as in Example 3. Table 1 shows the results of a test similar to Example 1. Table 1 As seen in Table 1, the bonded product according to the present invention has high adhesion strength and excellent surface smoothness.

Claims (1)

【特許請求の範囲】[Claims] 1、無機質材料を基材とし、少なくともその表面にチタ
ン酸アルカリを固結せしめ、これを介してメッキ法によ
り金属化膜が形成されていることを特徴とするヘテロ接
合物。
1. A heterojunction comprising an inorganic material as a base material, an alkali titanate solidified on at least the surface thereof, and a metallized film formed thereon by a plating method.
JP1112030A 1989-05-02 1989-05-02 Heterojunction based on inorganic material Expired - Fee Related JPH0645513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112030A JPH0645513B2 (en) 1989-05-02 1989-05-02 Heterojunction based on inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112030A JPH0645513B2 (en) 1989-05-02 1989-05-02 Heterojunction based on inorganic material

Publications (2)

Publication Number Publication Date
JPH02293386A true JPH02293386A (en) 1990-12-04
JPH0645513B2 JPH0645513B2 (en) 1994-06-15

Family

ID=14576247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112030A Expired - Fee Related JPH0645513B2 (en) 1989-05-02 1989-05-02 Heterojunction based on inorganic material

Country Status (1)

Country Link
JP (1) JPH0645513B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125638A (en) * 1975-04-22 1976-11-02 Matsushita Electric Works Ltd Material with metallized surface
JPS51126931A (en) * 1975-04-29 1976-11-05 Matsushita Electric Works Ltd Method of surface metallizing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125638A (en) * 1975-04-22 1976-11-02 Matsushita Electric Works Ltd Material with metallized surface
JPS51126931A (en) * 1975-04-29 1976-11-05 Matsushita Electric Works Ltd Method of surface metallizing

Also Published As

Publication number Publication date
JPH0645513B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US4917958A (en) Metal coated ceramic composition
JP3177915B2 (en) Articles and methods having a support with a surface barrier layer
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
Shi et al. The effects of sintering temperature on mechanical and electrical properties of Al2O3/Ti composites
EP0396240B1 (en) Ceramic meterial and method for producing the same
Phillips A concise introduction to ceramics
JP2023182686A (en) Electronic device case, electronic device, and complex
WO2006136610A2 (en) Materials for coating ceramic bodies, processes for the preparation thereof, use thereof and ceramic articles including these materials
JPH04275975A (en) Glass-ceramics composite body
Nie et al. Fabrication of Al2O3/AlN composite ceramics with enhanced performance via a heterogeneous precipitation coating process
Zhang et al. Eco-friendly, cost-effective electroless Ag plating based on a novel Ni–P activation process on magnesium titanate ceramic
Elahinejad et al. The influence of nickel coating on the interface of pressureless infiltrated with vibration Al–SiC composites
JPH02293386A (en) Hetero-bonded material using inorganic material as base material
US3089196A (en) Process for making laminated material
CN100453700C (en) Surface gradient protective coating and its preparing method
Li et al. Electroless deposition of nickel on the surface of silicon carbide/aluminum composites in alkaline bath
JPH03141181A (en) Production of alumina ceramic having improved surface
JPH01192775A (en) Formation of porous membrane
JP3486438B2 (en) Glaze composition and inorganic substrate provided with the composition
Cai et al. A comparison of two methods for metallizing fly-ash cenosphere particles: electroless plating and magnetron sputtering
JPS6314877B2 (en)
Shreeram et al. Tailoring of functionally graded mullite: La 2 O 3 coatings by transferred arc plasma for thermal barrier coatings
JPH0371833A (en) Formation of inorganic coating with mirror face
KR0173404B1 (en) Coating method
Liu et al. A study of roughness improvement of Al2O3 substrates using sol-gel method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees