JPH02292885A - Oscillation wavelength stabilized semiconductor laser device - Google Patents

Oscillation wavelength stabilized semiconductor laser device

Info

Publication number
JPH02292885A
JPH02292885A JP11267889A JP11267889A JPH02292885A JP H02292885 A JPH02292885 A JP H02292885A JP 11267889 A JP11267889 A JP 11267889A JP 11267889 A JP11267889 A JP 11267889A JP H02292885 A JPH02292885 A JP H02292885A
Authority
JP
Japan
Prior art keywords
gas
light absorbing
light
semiconductor laser
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11267889A
Other languages
Japanese (ja)
Inventor
Shoichi Sudo
昭一 須藤
Yoshihisa Sakai
義久 界
Hiroshi Yasaka
洋 八坂
Tetsuhiko Ikegami
池上 徹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11267889A priority Critical patent/JPH02292885A/en
Publication of JPH02292885A publication Critical patent/JPH02292885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a light absorption line narrow in width so as to make an oscillation frequency small in fluctuation with time by a method wherein gas including a mixed gas of light absorbing gas high in light absorbing property in a specific range of wavelength and inert gas is filled in a light absorbing gas cell at a normal pressure. CONSTITUTION:Gas containing a mixed gas obtained by mixing one or more kinds of light absorbing gases selected from such as C2H4, NH3 CO2, CH4, and the like which are possessed of a high light absorbing property in a wavelength range of 0.3-3.0mum with one or more kinds of inert gases selected from such as He, Ar, Ne, Xe, and the like is filled into a light absorbing gas cell 12 at a normal pressure. A control circuit 14 controls a current injected into a semiconductor laser so as to make the incident light volume of a photodetector from the light absorbing gas cell 12 minimum. As mentioned above, the partial pressure of light absorbing gas possessed of an intense light absorbing property in a wavelength range of 0.3-3.0mum is regulated by diluting it with inner gas of small molecular weight, whereby a light absorbing line of narrow width equivalent to that obtained under a depressurized condition can be realized and the fluctuation with time of an oscillation frequency can be made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発振波長が特定の波長に極めて精密に安定化
された半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device whose oscillation wavelength is very precisely stabilized at a specific wavelength.

〔従来の技術〕[Conventional technology]

第6図は従来の半導体レーザ装置を示す概略構成図であ
る。同図において、■は半導体レーザ、2は光吸収用ガ
スセル、3は受光器、4は制御回路、5は半導体レーザ
1からの出射光、6は光吸収用ガスセル2を通過後の出
射光、7は半導体レーザ1の主要な出射光である。
FIG. 6 is a schematic configuration diagram showing a conventional semiconductor laser device. In the figure, ■ is a semiconductor laser, 2 is a light absorption gas cell, 3 is a light receiver, 4 is a control circuit, 5 is light emitted from the semiconductor laser 1, 6 is light emitted after passing through the light absorption gas cell 2, 7 is the main emitted light of the semiconductor laser 1.

この半導体レーザ装置においては、まず、半導体レーザ
1から出射した光をガスセル2に入射し、特定の波長に
おける光吸収を生じさせる。次に、受光器3によって光
電変換された電気信号が制御回路4に送られ、制御回路
4内の処理によって半導体レーザ1の注入電流が調整さ
れる。この結果、半導体レーザ1の発振波長がわずかに
変化する。
In this semiconductor laser device, first, light emitted from a semiconductor laser 1 is incident on a gas cell 2 to cause light absorption at a specific wavelength. Next, the electrical signal photoelectrically converted by the photodetector 3 is sent to the control circuit 4, and the injection current of the semiconductor laser 1 is adjusted by processing within the control circuit 4. As a result, the oscillation wavelength of the semiconductor laser 1 changes slightly.

典型的には、より強い光吸収が得られる方向、すなわち
受光器3で受光する光量が小さくなる方向に、制御回路
4によって注入電流が調整される。
Typically, the control circuit 4 adjusts the injection current in a direction that provides stronger light absorption, that is, a direction that reduces the amount of light received by the light receiver 3.

?うした帰還操作によって、半導体レーザ1の発振波長
は、光吸収が最も強い波長すなわちガスセル2中の光吸
収線のピーク波長に安定化されるものである。
? By this feedback operation, the oscillation wavelength of the semiconductor laser 1 is stabilized at the wavelength at which light absorption is strongest, that is, the peak wavelength of the light absorption line in the gas cell 2.

第6図の従来の装置においては、光吸収用ガスセル2中
の気体として、CZH2,NH3,Co■, C H 
4等をlOTorr (約100分の1気圧)あるいは
lTorr  (約1000分の1気圧)に減圧した気
体が使用されていた。
In the conventional device shown in FIG. 6, the gases in the light absorption gas cell 2 are CZH2, NH3, Co■, CH
4 etc. was used at reduced pressure to lOTorr (approximately 1/100th of an atmosphere) or lTorr (approximately 1/1000th of an atmosphere).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来技術においては、減圧しながら0 
2 H z等の光吸収性ガスをガスセル2中に封入する
必要があり、所望の圧力を得るのが難しいほか、長時間
の使用中に減圧下のガスセル2中に他の気体が混入して
圧力が変化し、光吸収特性が劣化する等の問題があった
。これらの問題を解決するには気体を常圧(l気圧)で
封入すればよいが、1気圧で封入した気体の場合、光吸
収線幅が広くなり(たとえばC z H tを1気圧で
封入した場合、光吸収線幅は20GHz程度となる)、
半導体レーザ1の発振波長を精度良く所定の値に保持す
ることが困難となる。
However, in the conventional technology, while reducing the pressure,
It is necessary to seal a light-absorbing gas such as 2 Hz into the gas cell 2, which makes it difficult to obtain the desired pressure, and also prevents other gases from getting mixed into the gas cell 2 under reduced pressure during long-term use. There were problems such as changes in pressure and deterioration of light absorption characteristics. To solve these problems, it is sufficient to seal the gas at normal pressure (1 atm), but if the gas is sealed at 1 atm, the light absorption line width will become wider (for example, if C z H t is sealed at 1 atm) In this case, the optical absorption line width will be about 20 GHz),
It becomes difficult to maintain the oscillation wavelength of the semiconductor laser 1 at a predetermined value with high precision.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、安定性、耐久性に優れ、かつ高
精度に発振波長を所定の値に設定できる発振波長安定化
半導体レーザ装置を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide an oscillation wavelength stabilized semiconductor laser that is excellent in stability and durability, and that can set the oscillation wavelength to a predetermined value with high precision. The goal is to provide equipment.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するために本発明の第1の発明は
、光吸収性ガスセル内の気体の有する光吸収特性を利用
して発振波長の時間変動を安定化する発振波長安定化半
導体レーザ装置において、光吸収性ガスセル内の光吸収
特性を有する気体として、0.3μm〜3.0μmの波
長範囲に強い光吸収性を有する気体と不活性ガスとの混
合ガスを含む気体を使用するようにしたものである。
In order to achieve such an object, the first invention of the present invention provides an oscillation wavelength stabilizing semiconductor laser device that stabilizes temporal fluctuations in the oscillation wavelength by utilizing the light absorption characteristics of the gas in the light-absorbing gas cell. In this method, a gas containing a mixed gas of a gas having strong light absorption in the wavelength range of 0.3 μm to 3.0 μm and an inert gas is used as the gas having light absorption characteristics in the light absorption gas cell. This is what I did.

また、本発明の第2の発明は、第1の発明において、光
吸収性ガスをアンモニア、アセチレン、メタン、二酸化
炭素とし、不活性ガスをヘリウム、アルゴン、ネオンと
し、混合ガスを光吸収性ガスと不活性ガスのうち1種以
上を混合したガスとしたものである。
Further, in the second invention of the present invention, in the first invention, the light-absorbing gas is ammonia, acetylene, methane, or carbon dioxide, the inert gas is helium, argon, or neon, and the mixed gas is a light-absorbing gas. The gas is a mixture of one or more of the following: and an inert gas.

C作用〕 本発明による発振波長安定化半導体レーザ装置の光吸収
用ガスセルには常圧のガスが封入される。
C Effect] The light absorption gas cell of the oscillation wavelength stabilized semiconductor laser device according to the present invention is filled with gas at normal pressure.

〔実施例〕〔Example〕

第1図は、本発明による発振波長安定化半導体レーザ装
置の実施例を示す概略構成図である。同図において、1
1は半導体レーザ、l2は光吸収用ガスセル、13は受
光器、14は制御回路、15は半導体レーザ1からの出
射光、l6は光吸収用ガスセルl2を通過後の出射光、
17は半導体レーザ1の主要な出射光である。機能的に
見た場合、光吸収用ガスセルl2以外は第6図の従来装
置と同一である。本実施例では、光吸収用ガスセル12
内の気体として、CzHz,NHx.COt.CHa等
のように0.3〜3.0μmの波長域において強い光吸
収特性を有する光吸収性ガスとHe,Ar,Ne,Xe
等の不活性ガスとのうち゜のl種以上を混合して得られ
る混合ガスを含む気体を使用することを最も主要な特徴
とするものであり、減圧下で光吸収性ガスを封入した光
吸収用ガスセルを使用する従来記技術とは技術思想とし
て大いに異なるものである。
FIG. 1 is a schematic diagram showing an embodiment of an oscillation wavelength stabilized semiconductor laser device according to the present invention. In the same figure, 1
1 is a semiconductor laser, l2 is a light absorption gas cell, 13 is a light receiver, 14 is a control circuit, 15 is light emitted from the semiconductor laser 1, l6 is light emitted after passing through the light absorption gas cell l2,
17 is the main emitted light of the semiconductor laser 1. Functionally, the device is the same as the conventional device shown in FIG. 6 except for the light absorption gas cell l2. In this embodiment, the light absorption gas cell 12
As the gas in CzHz, NHx. COt. Light-absorbing gases such as CHa, which have strong light-absorbing properties in the wavelength range of 0.3 to 3.0 μm, and He, Ar, Ne, and Xe.
The main feature is that it uses a gas containing a mixed gas obtained by mixing at least 1 type of inert gas such as The technical concept is very different from the conventional technique using a gas cell.

第I図に示す装置構成を使用して、作用効果の確認実験
を行なった。半導体レーザ11としては1.5315p
m帯で発振するDFB (分布帰還)型半導体レーザ、
光吸収用ガスセル12内の気体としては、C 2 H 
2 1%、He99%を混合した混合ガスを1気圧で封
入した。受光器13としてはGe−PINホトダイオー
ドを使用した。制御回路14は、受光器l3における光
吸収用ガスセル12からの受光量が最小になるように半
導体レーザへの注入電流を調整する機能を有するもので
ある。本実験では、まず、ガスセル12の光吸収測定を
行なった。
Using the apparatus configuration shown in Figure I, an experiment was conducted to confirm the effects. 1.5315p for semiconductor laser 11
DFB (distributed feedback) type semiconductor laser that oscillates in the m-band,
The gas in the light absorption gas cell 12 is C 2 H.
A mixed gas of 21% He and 99% He was sealed at 1 atm. As the light receiver 13, a Ge-PIN photodiode was used. The control circuit 14 has a function of adjusting the current injected into the semiconductor laser so that the amount of light received from the light absorption gas cell 12 in the light receiver l3 is minimized. In this experiment, first, light absorption measurement of the gas cell 12 was performed.

第2図は、上記DFB型半導体レーザの注入電流を変え
て発振波長を変化させ、光吸収用ガスセル12の光吸収
特性を測定した結果である。注入電流■。すなわち発振
波長λ。=1.513588を中心として波長幅Δλ−
0.3人(周波数幅にして3GH2)の狭い光吸収線が
観測された。光吸収率は約30%であった。次に、第1
図の装置を使用して半導体レーザ11の発振波長安定化
動作を行なわせた。これは、混合ガス( C z H 
2 1%、He99%)の光吸収ピークの存在する注入
電流値I0付近において受光器13の受光量が最小にな
るように制御回路14を動作させて、注入電流を調整し
て安定化を図ったものである。なお、注入電流の初期設
定はI0を狙って設定される。この電流値は例えば50
mAである。
FIG. 2 shows the results of measuring the light absorption characteristics of the light absorption gas cell 12 by changing the injection current of the DFB type semiconductor laser to change the oscillation wavelength. Injection current■. That is, the oscillation wavelength λ. Wavelength width Δλ− centered at =1.513588
A narrow optical absorption line of 0.3 GH (3 GH2 in frequency width) was observed. The light absorption rate was about 30%. Next, the first
The device shown in the figure was used to stabilize the oscillation wavelength of the semiconductor laser 11. This is a mixed gas (C z H
The control circuit 14 is operated so that the amount of light received by the photoreceiver 13 is minimized near the injection current value I0 where the optical absorption peak of 2.1%, He 99%) exists, and the injection current is adjusted and stabilized. It is something that Note that the initial setting of the injection current is aimed at I0. This current value is, for example, 50
It is mA.

第3図は、安定化操作前後の半導体レーザl1の発振波
長の時間変化を約3時間にわたって測定した結果である
。同図で、TOは安定化操作前の期間、T1は安定化操
作後の期間である。安定化操作前では半導体レーザ11
の発振波長は約460MHzの時間変動幅であったが、
安定化操作後の時間変動は3MHz程度と極めて小さい
値まで安定化された。また、安定化操作に際しては、半
導体レーザ発振部の温度を所定の値に保持するこ?も精
密な波長安定化には重要であると共に、注入電流に微小
な変調を加える手法も有効であることを付言する。
FIG. 3 shows the results of measuring temporal changes in the oscillation wavelength of the semiconductor laser l1 before and after the stabilization operation over a period of approximately 3 hours. In the figure, TO is the period before the stabilizing operation, and T1 is the period after the stabilizing operation. Semiconductor laser 11 before stabilization operation
The oscillation wavelength of was a time fluctuation range of about 460 MHz,
After the stabilization operation, the time fluctuation was stabilized to an extremely small value of about 3 MHz. Also, during the stabilization operation, is it necessary to maintain the temperature of the semiconductor laser oscillation unit at a predetermined value? It should be noted that this is important for precise wavelength stabilization, and that adding a small modulation to the injection current is also effective.

上記実施例はC.H2分子の1.513588μmの波
長における光吸収スペクトルを使用した安定化の場合を
示すものであるが、C.H,分子の他の波長における光
吸収線を利用しても同様の安定化操作を行なえる。また
、NH3,Co■,CH.の有するそれぞれの光吸収線
を利用した場合にも、上記実施例と同様の安定化操作を
行なうことができる。
The above embodiment is based on C. This shows the case of stabilization using the optical absorption spectrum of H2 molecules at a wavelength of 1.513588 μm. A similar stabilizing operation can be performed using the optical absorption line of the H, molecule at other wavelengths. In addition, NH3, Co■, CH. The same stabilizing operation as in the above embodiment can also be performed when using the respective optical absorption lines of the .

第4図は、本発明についての検討で明らかとなったアセ
チレン(C2H2)分子の1.515μm〜1.535
μm帯における光吸収特性である。C2H2分子による
周期的な光吸収線は1.520μmを中心とした1.5
15μm〜1.525μmの波長域と1.530μmを
中心とした1.525μm〜1.535μmの波長域と
にあることがわかった。第4図に示した周期的な数多く
の光吸収線のうちの1つの光吸収線を使えば、その波長
において半導体レ一ザの発振波長を安定化することがで
きる。
Figure 4 shows the size of acetylene (C2H2) molecules of 1.515 μm to 1.535 μm, which was revealed through the study of the present invention.
This is a light absorption characteristic in the μm band. The periodic light absorption line due to C2H2 molecules is 1.5 centered at 1.520 μm.
It was found that there is a wavelength range of 15 μm to 1.525 μm and a wavelength range of 1.525 μm to 1.535 μm centered on 1.530 μm. By using one of the many periodic optical absorption lines shown in FIG. 4, the oscillation wavelength of the semiconductor laser can be stabilized at that wavelength.

第5図はアンモニア(NH.)分子の1.475μm〜
1.525μm帯における光吸収特性である.第5図に
示した周期的な数多くの光吸収線のうちの1つの光吸収
線を使えば、その波長において半導体レーザの発振波長
を安定化することができる。
Figure 5 shows an ammonia (NH.) molecule with a diameter of 1.475 μm.
This is the light absorption characteristic in the 1.525 μm band. By using one of the many periodic optical absorption lines shown in FIG. 5, the oscillation wavelength of the semiconductor laser can be stabilized at that wavelength.

第4図,第5図の光吸収特性はアンリツ社製スペクトル
アナライザMA9001Sで測定したものであるが、本
発明において重要な点は、第4図第5図の光吸収特性に
おいて、光吸収強度の強い光吸収線を利用することにあ
る。即ち、第4図に示したアセチレン分子の場合、1.
515μm〜1.535μmの光吸収線の中で、1.5
172μm1.51 8 1 μm.  1.51 9
 1 μm.  1.52 0 0μm,1.5211
μm.1.5220μm.1.5230μm,1.52
78μm,1.5290μm,1.5300μm,1.
5311μm,1.5323μm1.5337μm(こ
れらの波長は上記スペクトルアナライザによって測定し
たものであり、測定機種によって若干前後する場合があ
る)の各波長の光吸収線を利用することが、装置の小型
化、高精度の波長安定化に極めて有効である。第5図に
示したアンモニア分子の場合にも同様で、第5図から読
み取れる光吸収強度の大きな光吸収線を利用することが
、装置の小型化、高精度の波長安定化に有効である。し
たがって、本発明のポイントの1つは、アセチレン分子
.アンモニア分子等について、第4図,第5図に示した
ような精密な光吸収特性を解明し、装置の小型化、高精
度な波長安定化に有効な波長を明確に特定した点にある
と言える。
The light absorption characteristics shown in FIGS. 4 and 5 were measured using an Anritsu Spectrum Analyzer MA9001S.The important point in the present invention is that the light absorption characteristics shown in FIGS. The purpose is to utilize strong optical absorption lines. That is, in the case of the acetylene molecule shown in FIG. 4, 1.
Among the optical absorption lines from 515 μm to 1.535 μm, 1.5
172 μm1.51 8 1 μm. 1.51 9
1 μm. 1.52 0 0 μm, 1.5211
μm. 1.5220μm. 1.5230μm, 1.52
78μm, 1.5290μm, 1.5300μm, 1.
Utilizing the optical absorption lines of each wavelength of 5311 μm, 1.5323 μm, and 1.5337 μm (these wavelengths were measured by the above spectrum analyzer, and may differ slightly depending on the measurement model) can reduce the size of the device, It is extremely effective for highly accurate wavelength stabilization. The same applies to the case of the ammonia molecule shown in FIG. 5, and it is effective to miniaturize the device and stabilize the wavelength with high precision by using the light absorption line with a large light absorption intensity that can be read from FIG. Therefore, one of the points of the present invention is that the acetylene molecule. We have elucidated the precise light absorption characteristics of ammonia molecules, etc., as shown in Figures 4 and 5, and clearly identified wavelengths that are effective for downsizing equipment and stabilizing wavelengths with high precision. I can say it.

上記実施例は混合ガスを1気圧で封入した場合であるが
、1 0 0To r rあるいは1 0To r r
の減圧下で混合ガスを封入し、光吸収性ガスセルを構成
し、、発振波長の安定な半導体レーザを提供することも
本発明の範囲内にある技術内容であるが、本発明の主要
な効果は、He.Ar,Ne,Xe等の1原子分子気体
や比較的分子量の小さい不活性ガスによって、CzHz
,NHs.COz.CHa等のように0.3〜3.0μ
mの波長域において強い光吸収特性を有する光吸収性ガ
スを希釈して光吸収性ガスの分圧を調整し、減圧条件下
と同等の狭い光吸収線幅を実現し、これを用いて発振波
長の時間変動を安定化した半導体レーザを提供できるこ
とにある。
The above example is a case where the mixed gas is sealed at 1 atm.
It is also within the scope of the present invention to provide a semiconductor laser with a stable oscillation wavelength by enclosing a mixed gas under reduced pressure to form a light-absorbing gas cell. He. CzHz using monoatomic molecular gases such as Ar, Ne, and Xe and inert gases with relatively small molecular weights.
,NHs. COz. 0.3~3.0μ like CHa etc.
The partial pressure of the light-absorbing gas is adjusted by diluting the light-absorbing gas that has strong light-absorbing properties in the m wavelength range, achieving a narrow light absorption linewidth equivalent to that under reduced pressure conditions, and using this to oscillate. The object of the present invention is to provide a semiconductor laser in which wavelength fluctuations are stabilized over time.

また、CzHz−Heの組合せ以外にも、C2H.− 
A r ,  C 2 H 2 − N H 3 − 
A r ,  C 2 H z  N H 3He,C
2H2  Ar  He等、さまざまな光吸収性ガスと
不活性ガスの組合せが可能である。また、光吸収性ガス
については、上記のC z H z. N H :+.
C O 2+ C H aに止まらず、0.3〜3.0
μmの波長域、特に0.8μm〜1.7μmの近赤外域
に強い光吸収線を有するものであればよい。不活性ガス
については、光吸収性ガスとの混合に際して光吸収性ガ
スの光吸収線幅を極力拡大しないガスであればよい。本
実験では、不活性ガスの場合は分子量の小さい気体の方
が望ましいことが明らかとなったが、これにとどまらな
い。不活性ガスにおいて重要な点は混合した際に光吸収
性ガスの光吸収線幅を極力広げないことである。
In addition to the CzHz-He combination, C2H. −
A r , C 2 H 2 − NH 3 −
A r , C 2 Hz NH 3He,C
Various combinations of light-absorbing gases and inert gases are possible, such as 2H2Ar He. Regarding light-absorbing gases, the above-mentioned C z Hz. N H :+.
Not only C O 2+ C H a but 0.3 to 3.0
Any material may be used as long as it has a strong light absorption line in the micrometer wavelength range, particularly in the near-infrared region of 0.8 to 1.7 micrometers. The inert gas may be any gas that does not expand the light absorption line width of the light absorption gas as much as possible when mixed with the light absorption gas. In this experiment, it became clear that in the case of inert gas, a gas with a small molecular weight is preferable, but this is not the only option. The important point regarding the inert gas is to avoid widening the light absorption line width of the light absorbing gas as much as possible when mixed.

〔発明の効果〕 以上説明したように本発明は、光吸収性ガスと不活性ガ
スの混合ガスを含む気体を光吸収用ガスセル中に封入す
ることにより、狭い光吸収線幅を実現でき、極めて発振
波長の時間変動の小さい半導体レーザ装置を容易に実現
できる効果がある。
[Effects of the Invention] As explained above, the present invention can realize a narrow light absorption line width by sealing a gas containing a mixed gas of a light absorbing gas and an inert gas into a light absorption gas cell, which is extremely effective. This has the effect of easily realizing a semiconductor laser device with small temporal fluctuations in the oscillation wavelength.

また、常圧でガスを封入することとすれば、長時間の安
定性、耐久性に優れている他、作製が容易で低価格化に
有利である効果がある。
In addition, if gas is filled in at normal pressure, it will not only have excellent long-term stability and durability, but also be easy to manufacture and advantageous in terms of cost reduction.

したがって、本発明によれば、耐久性に優れ、発振波長
の安定化精度にも優れた半導体レーザ装置を低価格で供
給でき、コヒーレント光通信技術の光源や光計測技術の
光源に適用できる効果がある。
Therefore, according to the present invention, it is possible to supply a semiconductor laser device with excellent durability and excellent stabilization accuracy of the oscillation wavelength at a low price, and it is possible to provide an effect that can be applied to a light source for coherent optical communication technology and a light source for optical measurement technology. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による発振波長安定化半導体レーザ装置
の実施例を示す概略構成図、第2図は光吸収用ガスセル
の光吸収特性を示すグラフ、第3図は安定化操作前後の
DFB型半導体レーザの発振波長の時間変動の測定例を
示すタイムチャート、第4図はアセチレン分子の光吸収
特性を示すグラフ、第5図はアンモニア分子の光吸収特
性を示すグラフ、第6図は従来の発振波長安定化半導体
レーザ装置を示す概略構成図である。 l1・・・半導体レーザ、12・・・光吸収用ガスセル
、l3・・・受光器、l4・・・制御回路。
Fig. 1 is a schematic configuration diagram showing an embodiment of the oscillation wavelength stabilized semiconductor laser device according to the present invention, Fig. 2 is a graph showing the light absorption characteristics of a light absorption gas cell, and Fig. 3 is a DFB type before and after stabilization operation. Figure 4 is a graph showing the light absorption characteristics of acetylene molecules, Figure 5 is a graph showing the light absorption characteristics of ammonia molecules, and Figure 6 is a graph showing the light absorption characteristics of ammonia molecules. 1 is a schematic configuration diagram showing an oscillation wavelength stabilized semiconductor laser device. l1... Semiconductor laser, 12... Light absorption gas cell, l3... Light receiver, l4... Control circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)光吸収性ガスセル内の気体の有する光吸収特性を
利用して発振波長の時間変動を安定化する発振波長安定
化半導体レーザ装置において、前記光吸収性ガスセル内
の光吸収特性を有する気体として、0.3μm〜3.0
μmの波長範囲に強い光吸収性を有する気体と不活性ガ
スとの混合ガスを含む気体を使用することを特徴とする
発振波長安定化半導体レーザ装置。
(1) In an oscillation wavelength stabilized semiconductor laser device that stabilizes temporal fluctuations in the oscillation wavelength by utilizing the light absorption properties of the gas in the light absorption gas cell, the gas having the light absorption properties in the light absorption gas cell As, 0.3 μm ~ 3.0
An oscillation wavelength stabilized semiconductor laser device characterized in that it uses a gas containing a mixed gas of an inert gas and a gas having strong light absorption in the μm wavelength range.
(2)請求項1において、光吸収性ガスはアンモニア、
アセチレン、メタン、二酸化炭素であり、不活性ガスは
ヘリウム、アルゴン、ネオンであり、混合ガスは前記光
吸収性ガスと不活性ガスのうち1種以上を混合したガス
であることを特徴とする発振波長安定化半導体レーザ装
置。
(2) In claim 1, the light-absorbing gas is ammonia,
The oscillation is characterized in that the gases are acetylene, methane, and carbon dioxide, the inert gas is helium, argon, and neon, and the mixed gas is a mixture of one or more of the light-absorbing gas and the inert gas. Wavelength stabilized semiconductor laser device.
JP11267889A 1989-05-01 1989-05-01 Oscillation wavelength stabilized semiconductor laser device Pending JPH02292885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11267889A JPH02292885A (en) 1989-05-01 1989-05-01 Oscillation wavelength stabilized semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11267889A JPH02292885A (en) 1989-05-01 1989-05-01 Oscillation wavelength stabilized semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH02292885A true JPH02292885A (en) 1990-12-04

Family

ID=14592737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11267889A Pending JPH02292885A (en) 1989-05-01 1989-05-01 Oscillation wavelength stabilized semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH02292885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035892A (en) * 2017-08-18 2019-03-07 国立大学法人横浜国立大学 Quantum-entangled light source for long-distance quantum communication
JP2019040022A (en) * 2017-08-24 2019-03-14 国立大学法人横浜国立大学 Wavelength converter and quantum communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130088A (en) * 1984-07-23 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS63137494A (en) * 1986-11-28 1988-06-09 Fujitsu Ltd Frequency stabilizer for semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130088A (en) * 1984-07-23 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS63137494A (en) * 1986-11-28 1988-06-09 Fujitsu Ltd Frequency stabilizer for semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035892A (en) * 2017-08-18 2019-03-07 国立大学法人横浜国立大学 Quantum-entangled light source for long-distance quantum communication
JP2019040022A (en) * 2017-08-24 2019-03-14 国立大学法人横浜国立大学 Wavelength converter and quantum communication system

Similar Documents

Publication Publication Date Title
US4823354A (en) Excimer lasers
Bagayev et al. Transportable He-Ne/CH4 frequency standard for precision measurements
Chung Frequency-locked 1.3-and 1.5-mu m semiconductor lasers for lightwave systems applications
Onae et al. Toward an accurate frequency standard at 1.5/spl mu/m based on the acetylene overtone band transition
Yamaguchi et al. Frequency locking of an InGaAsP semiconductor laser to the first overtone vibration‐rotation lines of hydrogen fluoride
US7180657B1 (en) Devices using high precision in-fiber atomic frequency reference
Ishibashi et al. Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 µm tunable diode laser
JPH02292885A (en) Oscillation wavelength stabilized semiconductor laser device
Edwards et al. A 633 nm iodine-stabilized diode-laser frequency standard
Blaney et al. Absolute frequencies of the methane-stabilized HeNe laser (3.39 μm) and the CO2, R (32) stabilized laser (10.17 μm)
Bagayev et al. A tunable laser at λ= 3.39 μm with line width of 7 Hz used in investigating a hyperfine structure of the F 2 (2) line of methane
Chebotayev et al. Argon ion laser with high frequency stability
Evenson et al. Laser frequency measurements: A review, limitations, extension to 197 THz (1.5 μm)
Goddon et al. Heterodyne frequency measurements of the 1-0 band of HF at 2.7 μm
Frunder et al. CARS spectrometer with cw intra‐cavity excitation for high‐resolution Raman spectroscopy
JP2756698B2 (en) Oscillation wavelength stabilized semiconductor laser device
JPH02288282A (en) Oscillation wavelength stabilized semiconductor laser device
Akulshin et al. Frequency stabilization of highly coherent AlGaAs diode lasers
Chebotayev Infrared and optical frequency standards
Gerhardt et al. A frequency stabilized, cw dye laser for high resolution spectroscopy
Barber et al. Diode laser atomic absorption using a new reference method
Pilgrim Wavelength agile external cavity diode laser for trace gas detection
Ikegami et al. Development of a frequency‐stabilized compact light source for an optically pumped Cs frequency standard
Chappuis et al. Broad band electro-optic tuning of a CW dye laser
CO BG WHITFORD, KJ SIEMSEN and J. REID* National Research Council of Canada, Ottawa, Ontario, K1A OR6, Canada Received 13 June 1977