JPH0229242A - Response-to-refraction type ultrasonic non-linear type parameter ct - Google Patents

Response-to-refraction type ultrasonic non-linear type parameter ct

Info

Publication number
JPH0229242A
JPH0229242A JP17964288A JP17964288A JPH0229242A JP H0229242 A JPH0229242 A JP H0229242A JP 17964288 A JP17964288 A JP 17964288A JP 17964288 A JP17964288 A JP 17964288A JP H0229242 A JPH0229242 A JP H0229242A
Authority
JP
Japan
Prior art keywords
receiver
refraction
echo sounder
tomogram
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17964288A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Nakagawa
中川 義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17964288A priority Critical patent/JPH0229242A/en
Publication of JPH0229242A publication Critical patent/JPH0229242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To reduce deterioration of the picture quality of a reconfiguration tomogram due to refraction by a method wherein a hydrophone array having a wide bore is used as an echo sounder receiver in order to prevent incurring of a wave receiving loss due to refraction of ultrasonic waves by which deterioration of the picture quality of the reconfiguration tomogram is caused mainly. CONSTITUTION:When differential frequency waves are used and when second higher harmonic waves are used, an echo sounder receiver is situated in both cases so that the center thereof is located on the sound axis of echo sounder beam. An echo sounder transmitter 2 and the echo sounder receiver 4 are scanned simultaneously in the same direction (a direction A or B), and by using a conventional algorithm, a non-linear parameter tomogram is reconfigured. In this case, when the echo sounder receiver having a small bore is used, it fails to receive ultrasonic beam which is refracted within a sample and changes its coarse. However, when an array is used, an echo sounder can be received throughout a wide range, and the receiver is prevented from failing in receipt of ultrasonic beam. This constitution enables measurement of a non-linear parameter tomogram which reduces deterioration of a picture quality due to refraction.

Description

【発明の詳細な説明】 伎監分互 本発明は、屈折対応型超音波非線形パラメータCTのよ
うな超音波医療診断装置、更には、超音波非破壊検査2
画像処理等の技術に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic medical diagnostic apparatus such as a refraction-compatible ultrasonic nonlinear parameter CT, and furthermore an ultrasonic non-destructive inspection 2.
Related to technology such as image processing.

丈米技森 従来の超音波非線形パラメータCTでは、送波された超
音波ビームは直進するものと仮定し、受波器は送波され
た超音波ビームの音軸上に設置される。しかし、被検体
内では、通常、音速分布が存在するため超音波は直進せ
ず音波の伝播経路が音軸上からずれてしまう、したがっ
て、被検体を透過してきた超音波を受波器で受は損ねる
ことによって生じる投影データ上でのロスが、投影デー
タから計算される非線形パラメータの再構成トモグラム
の画質劣化を引き起こすという問題があった。
In the conventional ultrasound nonlinear parameter CT, it is assumed that the transmitted ultrasound beam travels in a straight line, and the receiver is installed on the acoustic axis of the transmitted ultrasound beam. However, within the object, there is usually a sound velocity distribution, so the ultrasound waves do not travel straight and the propagation path of the sound waves deviates from the sound axis. Therefore, the ultrasonic waves that have passed through the object are received by a receiver. There is a problem in that the loss in the projection data caused by the loss of projection data causes deterioration in the image quality of the reconstructed tomogram of the nonlinear parameters calculated from the projection data.

且−1孜 本発明は、上述のごとき実情に鑑みてなされたもので、
特に、生体軟部組織の音響的な非線形パラメータ分布を
無侵襲に映像化する超音波非線形パラメータCTにおい
て、屈折の影響による再構成トモグラムの画質劣化を小
さくすることを目的としてなされたものである。
The present invention was made in view of the above-mentioned circumstances.
In particular, this was done with the aim of reducing image quality deterioration of reconstructed tomograms due to the influence of refraction in ultrasonic nonlinear parameter CT that noninvasively visualizes the acoustic nonlinear parameter distribution of biological soft tissue.

遭−−」又 本発明は、上記目的を達成するために、生体軟部組織を
対象とした被検体に振幅の大きい超音波を−次波として
送波し、その伝播にともなって重畳的に発生する歪成分
を投影データとして非線形パラメータ・トモグラムを再
構成する超音波非線形パラメータCTにおいて、再構成
トモグラムの画質劣化の主要因となる超音波の屈折によ
る受波ロスをなくすために、受波器として広口径のハイ
ドロフオン・アレーを用いることを特徴としたものであ
る。以下1本発明の実施例に基づいて説明する。
In order to achieve the above-mentioned object, the present invention transmits large-amplitude ultrasonic waves as -order waves to a subject, which targets biological soft tissue, and generates them in a superimposed manner as the waves propagate. In ultrasonic nonlinear parameter CT, which reconstructs a nonlinear parameter tomogram by using the distortion components of It is characterized by the use of a wide-diameter hydrofon array. An explanation will be given below based on one embodiment of the present invention.

上述のように、従来の超音波非線形パラメータCTにお
いては、超音波ビームの被検体内での屈折が原因となっ
て生じる投影データ上での受波ロスが再構成される非線
形パラメータ・トモグラムの画質の劣化を引き起こして
いた。
As mentioned above, in conventional ultrasonic nonlinear parameter CT, the image quality of the nonlinear parameter tomogram is determined by reconstructing the reception loss on the projection data caused by the refraction of the ultrasound beam within the object. was causing deterioration.

本発明では、受波器に広口径のハイドロフオン・アレー
を用い、超音波ビームが屈折により音軸上からずれて進
んできても、受波器で超音波ビームを受は損なうことが
ないようにしている点に特徴を有するものである。また
、単に広口径の受波器を使うのではなく、小口径のハイ
ドロフォンでも5成されたアレーを用いているため、位
相インセンシティブな受波を行なうことができ、受波音
場の位相相殺による誤差の影響を受けることもなく、広
帯域な周波数での受波が可能である。
In the present invention, a wide-diameter hydro-on array is used for the receiver, so that even if the ultrasonic beam travels off the sound axis due to refraction, the receiver will not be able to receive the ultrasonic beam. It is characterized by the fact that it is In addition, instead of simply using a wide-diameter receiver, a five-structured array is used even for small-diameter hydrophones, making it possible to receive waves in a phase-insensitive manner, resulting in phase cancellation of the received sound field. It is possible to receive waves over a wide range of frequencies without being affected by errors due to

第1図及び第2図は、それぞれ本発明の詳細な説明する
ための構成図で、図中、1,1□、1□は発振器、2は
送波器、3は被検体、4は受信アレーで、第1図は差周
波数波を用いる場合、第2図は第二高調波を用いる場合
の例である。受波器はその中心が送波ビームの音軸上に
なるように設置される。送波器2と受波器4は同時に同
方向(入方向又はB方向)に走査され、投影データを測
定する。被検体3の周り180度方向から一次波及び二
次波それぞれについての投影データが測定され、従来の
アルゴリズムを用いて非線形パラメータ・トモグラムが
再構成される。それぞれの受波素子(ハイドロフオン)
で検出された受波音場各部の強度は信号処理の後、たし
合わされて、その走査位置での投影データとなる。
1 and 2 are block diagrams for explaining the present invention in detail, respectively. In the figures, 1, 1□, 1□ are oscillators, 2 is a transmitter, 3 is a subject, and 4 is a receiver. In the array, FIG. 1 shows an example in which a difference frequency wave is used, and FIG. 2 shows an example in which a second harmonic is used. The receiver is installed so that its center is on the acoustic axis of the transmitted beam. The transmitter 2 and the receiver 4 are simultaneously scanned in the same direction (in direction or B direction) to measure projection data. Projection data for each of the primary and secondary waves is measured from 180 degrees around the subject 3, and a nonlinear parameter tomogram is reconstructed using a conventional algorithm. Each receiving element (hydrofon)
After signal processing, the detected intensities of each part of the received sound field are added together to form projection data at that scanning position.

第3図は小口径の受波器4′を用いた場合と受波アレー
4を使う場合の受波の様子を示す図で、小口径の受波器
を使う場合は、(a)図のように被検体内で屈折し進路
を変えた超音波ビームを受は損ねてしまう。しかし、ア
レーを使う場合は(b)図のように広範囲にわたっての
受渡が可能となり、超音波ビームを受は損ねるようなこ
とはない。
Figure 3 shows how waves are received when using a small-diameter receiver 4' and when using a wave receiving array 4. As a result, the reception of the ultrasonic beam that has been refracted and changed its course within the subject is impaired. However, when an array is used, it is possible to transmit the ultrasonic beam over a wide range as shown in figure (b), and the reception of the ultrasonic beam is not impaired.

第4図及び第5図は、受波器の構成と受波信号の処理を
説明するための図で、第4図は、差周波数を使う場合、
すなわち、−次波に二つの異なる周波数成分子工+ f
Zを持つビート波を用いて、その歪成分である差周波数
成分子1〜f2を投影データとして非線形パラメータ・
トモグラムの再構成を行なう場合、第5図は、二次高調
波を使う場合、すなわち、−次波に単一周波数成分子工
を持つ波を用いて、その歪成分である第二高調波成分2
f□を投影データとして非線形パラメータ・トモグラム
の再構成を行なう場合を示し、図中、4は受波アレー 
5□、5□、5.は帯域フィルタ、6□。
FIG. 4 and FIG. 5 are diagrams for explaining the configuration of the receiver and the processing of the received signal.
In other words, the -th wave has two different frequency components + f
Using a beat wave with Z, the difference frequency components 1 to f2, which are distortion components, are used as projection data to calculate nonlinear parameters.
When reconstructing a tomogram, Fig. 5 shows that when using a second harmonic, that is, using a wave with a single frequency component in the − order wave, the second harmonic component that is the distortion component is used. 2
This shows the case where a nonlinear parameter tomogram is reconstructed using f□ as projection data, and in the figure, 4 is the receiving array.
5□, 5□, 5. is a bandpass filter, 6□.

6□、6.は加算器、7は1次波(f、)の投影データ
、8は1次波(f2)の投影データ、9は差周波数の投
影データ、10工、102は帯域フィルタ、111.1
1□は加算器、12は1次波(fユ)の投影データ、1
3は第2高調波の投影データ、14は再構成アルゴリズ
ム、15は非線形パラメータ分布像で、それぞれのアレ
ー素子からの受波信号は一次及び二次波の周波数を中心
周波数とする帯域フィルターで選別された後、たし合わ
される。この様にして測定された受波信号は、−次波、
二次波それぞれの被検体を透過してきた音波のエネルギ
ーをあたえる。再構成時に必要な一次波の初期エネルギ
ーは、被検体の存在しない水中のみでの受波信号から得
られる。この様にして得られた一次波と二次波の投影デ
ータに従来のシステムに用いられている再構成アルゴリ
ズムを適用することにより、非線形パラメータ・トモグ
ラムが得られる。
6□, 6. is an adder, 7 is projection data of the first-order wave (f,), 8 is projection data of the first-order wave (f2), 9 is projection data of difference frequency, 10 is a bandpass filter, 111.1
1□ is an adder, 12 is projection data of the primary wave (fyu), 1
3 is the projection data of the second harmonic, 14 is the reconstruction algorithm, 15 is the nonlinear parameter distribution image, and the received signal from each array element is selected by a bandpass filter whose center frequency is the frequency of the primary and secondary waves. After that, they are added together. The received signal measured in this way is the -order wave,
Apply the energy of the sound waves that have passed through the subject to each secondary wave. The initial energy of the primary wave required for reconstruction is obtained from the received signal only underwater, where no object is present. A nonlinear parameter tomogram is obtained by applying a reconstruction algorithm used in conventional systems to the projection data of the primary wave and secondary wave obtained in this manner.

劾−一二教 以上の説明から明らかなように、本発明によると、屈折
による画質の劣化が小さい非線形バラメ−タ・トモグラ
ムの測定が可能となる・
As is clear from the above explanation, according to the present invention, it is possible to measure nonlinear parameter tomograms with little deterioration in image quality due to refraction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ本発明の詳細な説明する
ための構成図、第3図は、小口径の受波器4′を用いた
場合((a)図)と、受波アレー4を使う場合((b)
図)の受波の様子を示す図、第4図及び第5図は、受波
器の構成と受波信号の処理を説明するための図である。 1.1□、12・・・発振器、2・・・送波器、3・・
・被検体。 4・・・受信アレー、5□、5□、53・・・帯域フィ
ルタ。 6□、6□、6.・・・加算器、7・・・1次波(f工
)の投影データ、8・・・1次波(f2)の投影データ
、9・・・差周波数の投影データ、10..10□・・
・帯域フィルタ、11□、112・・・加算器、12・
・・1次波(f工)の投影データ、13・・・第2高調
波の投影データ、14・・・再構成アルゴリズム、15
・・・非線形パラメータ分布像。 第 <a> 図 受S皮音場
FIGS. 1 and 2 are block diagrams for explaining the present invention in detail, and FIG. 3 shows a case where a small-diameter wave receiver 4' is used (Figure (a)) and a wave receiving array. When using 4 ((b)
FIG. 4 and FIG. 5 are diagrams for explaining the configuration of the receiver and the processing of the received signal. 1.1□, 12... oscillator, 2... transmitter, 3...
・Subject. 4...Reception array, 5□, 5□, 53...Band filter. 6□, 6□, 6. . . . Adder, 7 . . . Projection data of primary wave (f), 8 . . . Projection data of primary wave (f2), 9 . . . Projection data of difference frequency, 10. .. 10□・・
・Band filter, 11□, 112...Adder, 12・
...Projection data of the first order wave (f-engine), 13...Projection data of the second harmonic, 14...Reconstruction algorithm, 15
...Nonlinear parameter distribution image. Part <a> Illustration S skin sound field

Claims (1)

【特許請求の範囲】[Claims] 1、生体軟部組織を対象とした被検体に振幅の大きい超
音波を一次波として送波し、その伝播にともなって重畳
的に発生する歪成分を投影データとして非線形パラメー
タ・トモグラムを再構成する超音波非線形パラメータC
Tにおいて、受波器として広口径のハイドロフォン・ア
レーを用い、構成トモグラムの画質劣化の主要因となる
超音波の屈折による受波ロスをなくしたことを特徴とす
る屈折対応型超音波非線形パラメータCT。
1. An ultrasonic method in which a large-amplitude ultrasound is transmitted as a primary wave to a subject, which targets biological soft tissues, and a nonlinear parameter tomogram is reconstructed using the distortion components that occur in a superimposed manner as the ultrasound propagates as projection data. Sonic nonlinear parameter C
In T, refraction-compatible ultrasound nonlinear parameters are characterized by using a wide-diameter hydrophone array as a receiver and eliminating reception loss due to ultrasound refraction, which is the main cause of image quality deterioration in constituent tomograms. C.T.
JP17964288A 1988-07-18 1988-07-18 Response-to-refraction type ultrasonic non-linear type parameter ct Pending JPH0229242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17964288A JPH0229242A (en) 1988-07-18 1988-07-18 Response-to-refraction type ultrasonic non-linear type parameter ct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17964288A JPH0229242A (en) 1988-07-18 1988-07-18 Response-to-refraction type ultrasonic non-linear type parameter ct

Publications (1)

Publication Number Publication Date
JPH0229242A true JPH0229242A (en) 1990-01-31

Family

ID=16069338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17964288A Pending JPH0229242A (en) 1988-07-18 1988-07-18 Response-to-refraction type ultrasonic non-linear type parameter ct

Country Status (1)

Country Link
JP (1) JPH0229242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506477A (en) * 2004-07-20 2008-03-06 アッパー・オーストリアン・リサーチ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Thermoacoustic tomography method and thermoacoustic tomograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506477A (en) * 2004-07-20 2008-03-06 アッパー・オーストリアン・リサーチ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Thermoacoustic tomography method and thermoacoustic tomograph

Similar Documents

Publication Publication Date Title
Ylitalo et al. Ultrasound synthetic aperture imaging: monostatic approach
US5903516A (en) Acoustic force generator for detection, imaging and information transmission using the beat signal of multiple intersecting sonic beams
US5052394A (en) Method and apparatus for ultrasonic beam compensation
JPS5855850A (en) System for measuring medium characteristic with reflected ultrasonic wave
JPS61185259A (en) Apparatus for examination of matter by ultrasonic echography
US4552021A (en) Electro-sound transducer eliminating acoustic multi-reflection, and ultrasonic diagnostic apparatus applying it
JPS6068836A (en) Ultrasonic diagnostic apparatus
JPH043223B2 (en)
JPS59208457A (en) Method and apparatus for transmitting and receiving ultrasonic wave
JPH02307436A (en) Ultrasonic blood flow imaging apparatus
JP2629734B2 (en) Ultrasonic object inspection equipment
JPS6048736A (en) Ultrasonic diagnostic apparatus
JPH0229242A (en) Response-to-refraction type ultrasonic non-linear type parameter ct
Dianis et al. Harmonic source wavefront aberration correction for ultrasound imaging
JP3009423B2 (en) Ultrasonic probe and ultrasonic device
JPH02246946A (en) Pulse system ultrasonic non-linear parameter ct
JPH0140619B2 (en)
JPS6053133A (en) Ultrasonic diagnostic apparatus
JPS59137040A (en) Opening synthesis method ultrasonic diagnostic apparatus
JPH10127635A (en) Ultrasonic diagnostic system
JPS5991797A (en) Ultrasonic wave probe
JPH02128760A (en) Pulse type ultrasonic non-linear parameter ct
JPS61234697A (en) Ultrasonic probe
Filipczynski et al. The shadow behind a sphere immersed in water-measured, estimated, and computed
Karrer Phased Array Acoustic Imaging Systems