JPH02292305A - Production of polymer-coated inorganic filler particle - Google Patents

Production of polymer-coated inorganic filler particle

Info

Publication number
JPH02292305A
JPH02292305A JP11250289A JP11250289A JPH02292305A JP H02292305 A JPH02292305 A JP H02292305A JP 11250289 A JP11250289 A JP 11250289A JP 11250289 A JP11250289 A JP 11250289A JP H02292305 A JPH02292305 A JP H02292305A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
coated
inorganic filler
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11250289A
Other languages
Japanese (ja)
Other versions
JPH0625206B2 (en
Inventor
Takashi Ono
小野 尭之
Yukio Watanabe
幸雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP11250289A priority Critical patent/JPH0625206B2/en
Publication of JPH02292305A publication Critical patent/JPH02292305A/en
Publication of JPH0625206B2 publication Critical patent/JPH0625206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers

Abstract

PURPOSE:To obtain an inorganic filler particle uniformly surface-coated with a polymer by performing the aqueous emulsion polymerization of an ethylenically unsaturated monomer in the presence of a specified colloidally dispersed inorganic filler powder. CONSTITUTION:Emulsion polymerization of a radical-emulsion-polymerizable, at least monoethylenically unsaturated monomer under agitation in water in the presence of an emulsifier and a radical initiator is performed in the presence of a colloidal dispersion of a fine inorganic filler powder which is colloidally dispersible in water and has a charge opposite to that of the emulsion polymer formed. After excess water is remove, if desirable, from the polymerization system after the polymerization, fine filler powders each of which is surface- coated with an emulsion polymer is obtained in a slurry or pasty form. If required, this slurry or paste is dehydrated and dried to obtain separate polymer- coated particles.

Description

【発明の詳細な説明】 皇1」Jと仕■遣,] 本発明は重合体で被覆された無機フィラーの製造法、更
に詳しくは本発明は水中にコロイド分散可能でかつ水中
で乳化重合体とは反対の電荷を有する無機フィラーms
体の存在下で、ラジカル重合可能な、分子中に少なくと
も1涸のエチレン性不飽和結合を有する単量体を水中で
ラジカル乳化重合させることから成る乳化重合体で被覆
された無機フィラー粒子の製造法に関する. この重合体被覆無機フィラー粒子はスラリー又はペース
トとして無機フィラー含有発泡重合体の製造に特に有用
であると共に、乾燥状態では圧縮成形等の成形材料とし
て、あるいは他の樹脂に対する強化材料として用いるこ
とがてきる.良五五且1 微細な無機充填材を重合体で被覆する方法として特開昭
61−16936号公報に開示されるものが知られてい
る.即ち、この特開昭61−16’l36号公報には、
熱可塑樹脂強化用充填材としてのアスベクト比5〜10
0の鉱物繊維の表面持性(親水性》を疎水性に変性し、
マトリックス樹脂たる熱可塑性樹脂との親和性を向上さ
せるために、そのような鉱物繊維を懸濁重合させる方法
か開示される。この公報の記載によれば、その懸濁重合
においてビニル系単量体は鉱物繊維の表面にグラフト重
合され、重合が進行して繊維表面が最終的にビニル系重
合体で被覆される.従って、この方法は獣物1a維に対
するビニル系単量体のグラフト重合という1ヒ字的手段
による微細無機材t}の被覆法ということができる. 及」ぜ肩乳示 本発明は前記特開昭(31−16’ll36号公報記載
のfヒ学的手段によるものとは異なる、物理的機構に基
づく、更に詳しくは電気的な相互作用に塞づく、そして
それにも拘わらず表面を均一に披覆し得る新規な微a無
機材料の重合体による被覆方法を提供することを目的と
する. しかして、本発明によれば、ラジカル1, (P,重合
可能な分子中に少なくとも1f[!]のエチレン性不飽
和結合を有する単量体を乳化剤とラジカル開始剤の存在
下、水中で乳化重合させる方法において、その乳化重合
を水中にコロイド分散可能でかつ生成する乳化重合体の
電荷に対して反対の電荷を有する無機フィラー微粉体の
コロイド分散状態での存在下で行い、重合後に該重合系
がら過剰の水を除去し又は除去せずに、表面が乳化重合
体で被覆された明々の無機フィラー微粉体粒子をスラリ
ー状乃至ペースト状で得、そして必要によりスラリー乃
至ペーストを脱水、乾燥して個々に分離された重合体被
覆粒子を得ることを特徴とする重合体被覆無機フ『ラー
粒子の製造法が提供される.上記の本発明において、重
合に供される単量体はラジカル開始剤により乳1ヒ重合
可能な、分子中に少なくとも1個のエチレン性不飽和結
合を有するものであればいかなる単量体であってもよい
.このような単量体の典型的な例はビニル単量体で、こ
れには例えばエチレン、プロピレン、塩化ビニル、臭化
ビニル、塩化ビニリデン、酢酸ビニル、アクリロニトリ
ル、スチレン、α−メチルスチレン、アクリル酸、メタ
クリル酸、アクリル酸メチル、メタクリル酸メチル、ア
クリルアミド、N〜メチロールアクリルアミド、4−ビ
ニルピリジン、N−ビニルピロリドン等がある.また、
共没ジエン系単量体も本発明の乳化重合に供し得る典型
的な単量体の一つである.このジエン系単量体の例を示
すと、ブタジエン、イソプレン、クロロプレンあるいは
ビベリレン等がある.これらの単量体は本発明の方法に
おいて1種だけ使用してもよいし、あるいは2睡以上を
使用し、共重合させてもよい. 本発明による重合において、使用できる単量体の重合系
中濃度は通常の乳化重合で用いられる濃度範囲である.
一般的には、約5〜80%の濃度が用いられる. 重合に際し、単量体は乳化剤を用いて所定濃度で水に乳
1ヒされる.乳1ヒ剤は常用のものが使用し得る.本発
明の方法において、一般的に用いられる乳化剤の例を示
すと、ラウリル硫酸ナトリウム、アルキルベンゼンスル
フォン酸ナトリウム等のア二オン系界面活性剤、アル斉
ルアンモニウムハライド、例えばドデジルトリメチルア
ンモニウムフロマイド及びセチルトリメチルアンモニウ
ムブロマイドのようなカチオン系界面活性剤及びポリオ
キジエチレンアルキルエーテルのようなノニオン系界面
活性剤がある。このような乳化剤は一般に水媒体に対し
て約0.01〜2重量%の範囲で用いられるが、乳1ヒ
可能である限り、また有害でない限りそれより多くても
、あるいは少なくてもよい. 上記のようにして調製された所定濃度の水性単量体エマ
ルジョンは次に無機フィラーと混合される. 本発明において水性単量体エマルジョンと混合されるフ
ィラーは当該水性エマルジョン中で生成重合体の電荷と
は反対の電荷を有し、水中でコロイド分散可能な無機フ
ィラーの微粉体である。ここで、“水性エマルジョン中
でその重合体の電荷とは反対の電荷を有する′゜無機フ
ィラーとはそれ自体水媒体中でそのように帯電するもの
のみならず、そのままでは水媒体中で電荷を有しないが
、その水中分散液を適宜の方法で処理することによって
、例えば酸、塩基あるい゛は塩、例えばAICI3 、
Fe 2  ( Son > 3又はC e(N O 
3) 3・6H20のような塩を添加することによって
帯電させ得るものも包含する. 本発明において使用される典型的な、そして現在の時点
で最も好ましい無機フィラーは含水アルミノ珪酸塩粘土
鉱物である.この含水アルミノ珪酸塩粘土鉱物の例を示
すと、セリサイト類、カリオナイト類、八ロサイト類、
ベントナイト類及び夕ロライト類があり、そしてセリサ
イト類及び力オリナイト類が好ましく、とりわけセリサ
イト類が好ましい.これらの含水アルミノ珪酸塩粘土鉱
物以外にも前記条件を満足する限り種々の無機鉱物質材
料が使用し得、例えばベンガラ及びシラス類が使用し得
る.これらの無機フィラーは一般に水によってよく濡れ
る性質を有し、従ってその微粉体は水性媒体中によく分
散され、コロイド状態の達成が助長されろ. 本発明において無機フィラーは水性エマルジョン中でコ
ロイド分散される程度の粒度に粉砕して使用される.そ
の粒度はサブミクロン乃至ミクロオーダーであるのが本
発明の目的に最も適しているが、コロイド分散が可能で
あれば更に大きな粒度を採用することも可能である.こ
のようなフィラー微粉体は常用の微粉砕機によって容易
に製造し得、分級使用することができる. 水性単量体エマルジョンと上記の無機フィラー微粉体と
の混合は水性単量体エマルジョンに無機フィラー微粉体
又はその水分散液を添加し、撹拌することによって、あ
るいは逆に無機フィラー微粉体又はその水分散液に水性
単量体エマルジョンを添加し、撹拌することによって、
あるいはまた無機フィ→一微粉体の水分散液に単量体及
び乳化剤を澁加し、撹拌することによって容易に達成す
ることができる. 混合にフィラー微粉体の水分散液を用いる場合、そのフ
ィラー濃度は水分散系がサスペンジョンを形成する範囲
で選択するのが好ましく、通常は約5〜80重量%の濃
度が用いられる.しかし、フィラー濃度自体は特に重要
な因子ではなく、仮にフィラーが均一に懸濁されていな
くても適宜撹拌を行うことによって分散させ、この状態
でフィラーが撹拌下でその分散状態が維持されるように
単量体エマルジョンに添加し、あるいは逆にその水分散
液に単量体及び乳化剤、または予じめ形成した単量体エ
マルジョンを添加することができる.重合に供される水
性単量体エマルジョン中の無機フィラーの濃度は、基本
的には撹拌重合条件下でその分散状態が維持され得る濃
度である.これは無機フィラーの微粉体粒子に所望とさ
れる重合体の被覆量、あるいは重合時の撹拌の容易さ等
にも依存する.通常用いられるフィラー濃度は混合系の
重量基準で約5〜80%、好ましくは約10〜60重量
%である. 上記のようにして得られた無機フィラー含有水性単量体
エマルジョンは、次にこれにラジカル開始剤を添加した
後、重合反応に供される.ラジカル開始剤は前記不飽和
単量体の乳化重合に通常用いられるものが使用できる.
このような開始剤の代表的な例は過酸化ベンゾイル、過
酸化ラウロイル、t−プチルヒド口ベルオキジド、クメ
ンヒドロベルオキジド等の過酸化物、過硫酸カリウム、
過硫酸アンモニウム等の過WR酸塩及びアゾビスイソブ
チロニトリル、2.2′−アゾビス(2.4−ジメチル
バレ口ニトリル)、2.2’−アゾビス(2−アミジノ
プロパン)塩酸塩等のアゾ化合物である。
[Detailed Description of the Invention] The present invention relates to a method for producing an inorganic filler coated with a polymer, and more specifically, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer, and more particularly, the present invention relates to a method for producing an inorganic filler coated with a polymer. An inorganic filler with a charge opposite to ms
Production of inorganic filler particles coated with an emulsion polymer consisting of radical emulsion polymerization of a radically polymerizable monomer having at least one ethylenically unsaturated bond in the molecule in water in the presence of a polymer. Regarding the law. These polymer-coated inorganic filler particles are particularly useful as a slurry or paste in the production of inorganic filler-containing foamed polymers, and in the dry state can be used as a molding material for compression molding, etc., or as a reinforcing material for other resins. Ru. Ryogogo and 1 As a method of coating fine inorganic fillers with a polymer, the method disclosed in JP-A-61-16936 is known. That is, in this Japanese Patent Application Laid-Open No. 61-16'136,
Aspect ratio 5-10 as filler for reinforcing thermoplastic resin
Modify the surface properties (hydrophilicity) of mineral fibers of 0 to hydrophobicity,
Disclosed is a method of suspension polymerizing such mineral fibers in order to improve their affinity with a thermoplastic resin as a matrix resin. According to the description in this publication, in the suspension polymerization, the vinyl monomer is graft-polymerized onto the surface of the mineral fiber, and as the polymerization progresses, the fiber surface is finally coated with the vinyl polymer. Therefore, this method can be said to be a method for coating animal fibers with fine inorganic material t by a simple method of graft polymerization of a vinyl monomer. The present invention is based on a physical mechanism, more specifically, based on electrical interaction, which is different from the scientific means described in Japanese Patent Application Laid-Open No. 31-16'll36. It is an object of the present invention to provide a novel method for coating an inorganic material with a polymer with a small amount of atom, which can cover the surface uniformly.According to the present invention, radicals 1, (P, A method of emulsion polymerizing a monomer having at least 1f[!] of ethylenically unsaturated bonds in its polymerizable molecule in water in the presence of an emulsifier and a radical initiator, in which the emulsion polymerization can be colloidally dispersed in water. and in the presence of a colloidal dispersion of inorganic filler fine powder having a charge opposite to that of the emulsion polymer to be produced, and after the polymerization, excess water is removed from the polymerization system or not, and the surface is characterized by obtaining clear inorganic filler fine powder particles coated with an emulsion polymer in the form of a slurry or paste, and optionally dehydrating and drying the slurry or paste to obtain individually separated polymer-coated particles. A method for producing polymer-coated inorganic filler particles is provided.In the present invention, the monomer to be subjected to polymerization has at least one monomer in the molecule that can be polymerized with a radical initiator. Typical examples of such monomers are vinyl monomers, including, for example, ethylene, propylene, vinyl chloride, etc. , vinyl bromide, vinylidene chloride, vinyl acetate, acrylonitrile, styrene, α-methylstyrene, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, acrylamide, N~methylolacrylamide, 4-vinylpyridine, N-vinylpyrrolidone etc. Also,
Coincident diene monomers are also one of the typical monomers that can be used in the emulsion polymerization of the present invention. Examples of diene monomers include butadiene, isoprene, chloroprene, and biverylene. These monomers may be used alone in the method of the present invention, or two or more monomers may be used and copolymerized. In the polymerization according to the present invention, the concentration of monomers that can be used in the polymerization system is within the concentration range used in ordinary emulsion polymerization.
Generally, concentrations of about 5-80% are used. During polymerization, the monomers are milked in water at a predetermined concentration using an emulsifier. Regular milk preparations can be used. Examples of emulsifiers commonly used in the method of the present invention include anionic surfactants such as sodium lauryl sulfate and sodium alkylbenzene sulfonate, alkylammonium halides such as dodecyltrimethylammonium furomide, and There are cationic surfactants such as cetyltrimethylammonium bromide and nonionic surfactants such as polyoxydiethylene alkyl ether. Such emulsifiers are generally used in amounts ranging from about 0.01 to 2% by weight based on the aqueous medium, but may be more or less than that, as long as it is possible and as long as it is not harmful. The aqueous monomer emulsion of a predetermined concentration prepared as described above is then mixed with an inorganic filler. In the present invention, the filler mixed with the aqueous monomer emulsion is a fine powder of an inorganic filler that has a charge opposite to that of the polymer formed in the aqueous emulsion and is colloidally dispersible in water. Here, the term "inorganic filler that has a charge opposite to that of its polymer in an aqueous emulsion" refers to not only one that itself is charged in an aqueous medium, but also one that does not have a charge in an aqueous medium as it is. However, by treating the dispersion in water in an appropriate manner, it is possible to form, for example, acids, bases or salts, such as AICI3,
Fe 2 (Son > 3 or Ce(N O
3) It also includes those that can be charged by adding a salt such as 3.6H20. The typical and presently most preferred inorganic filler used in the present invention is a hydrous aluminosilicate clay mineral. Examples of hydrated aluminosilicate clay minerals include sericites, karyonites, octosites,
There are bentonites and ololites, and sericites and oleolinites are preferred, with sericite being especially preferred. In addition to these hydrated aluminosilicate clay minerals, various inorganic mineral materials can be used as long as they satisfy the above conditions, such as red red iron and whitebait. These inorganic fillers generally have the property of being well wetted by water, and therefore their fine powders are well dispersed in the aqueous medium, facilitating the achievement of a colloidal state. In the present invention, the inorganic filler is used after being ground to a particle size that allows it to be colloidally dispersed in an aqueous emulsion. The particle size is most suitable for the purpose of the present invention if it is on the order of submicrons or microns, but it is also possible to use a larger particle size if colloidal dispersion is possible. Such filler fine powder can be easily produced using a conventional pulverizer and can be used for classification. The aqueous monomer emulsion and the above inorganic filler fine powder can be mixed by adding the inorganic filler fine powder or its aqueous dispersion to the aqueous monomer emulsion and stirring, or conversely, by adding the inorganic filler fine powder or its water dispersion to the aqueous monomer emulsion, or by stirring the inorganic filler fine powder or its water dispersion. By adding the aqueous monomer emulsion to the dispersion and stirring,
Alternatively, it can be easily achieved by adding monomers and emulsifiers to an aqueous dispersion of fine inorganic powder and stirring. When an aqueous dispersion of fine filler powder is used for mixing, the filler concentration is preferably selected within a range such that the aqueous dispersion forms a suspension, and usually a concentration of about 5 to 80% by weight is used. However, the filler concentration itself is not a particularly important factor, and even if the filler is not uniformly suspended, it can be dispersed by stirring appropriately, and in this state, the filler can be maintained in its dispersed state under stirring. The monomer emulsion can be added to the monomer emulsion, or conversely, the monomer and emulsifier, or a preformed monomer emulsion, can be added to the aqueous dispersion. The concentration of the inorganic filler in the aqueous monomer emulsion subjected to polymerization is basically such that its dispersed state can be maintained under stirring polymerization conditions. This depends on the desired amount of polymer coating on the fine powder particles of the inorganic filler, the ease of stirring during polymerization, etc. Filler concentrations commonly used are about 5-80%, preferably about 10-60% by weight based on the weight of the mixed system. The inorganic filler-containing aqueous monomer emulsion obtained as described above is then subjected to a polymerization reaction after a radical initiator is added thereto. As the radical initiator, those commonly used in the emulsion polymerization of the unsaturated monomers mentioned above can be used.
Typical examples of such initiators are peroxides such as benzoyl peroxide, lauroyl peroxide, t-butylhydroberoxide, cumene hydroperoxide, potassium persulfate,
PerWR salts such as ammonium persulfate and azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylbaretonitrile), and 2,2'-azobis(2-amidinopropane) hydrochloride It is.

ラジカル開始剤として常用のレドックス系開始剤も好適
に使用することができる.このようなしドックス系開始
剤として、典型的には、上記例示の過酸化物と還元剤と
しての硫酸第一鉄アンモニウム6水塩のような鉄(II
)化合物やクロムイオン、あるいは亜硫酸塩やヒドロキ
ジルアミン等との組み合わせがある.これらのラジカル
開始剤は通常単量体に対して約0.05〜2.0重量%
、更に一般的には約0.1〜1.0重1%、最も一般的
には約0.4〜0.6重量%の割合で用いられる.重合
は常温以上でかつ100℃未満、即ち水の沸点未満の温
度範囲で行うことができる.重合温度は勿論単量体の種
類に依存する.通常は約30〜70℃の範囲の温度が採
用される.このラジカル重合は一般に発熱反応であるの
で、反応か過度に進行しないよう温度コントロールすべ
きである.重合は実験室規模では静置状態でも行うこと
ができるか、通常は撹拌下で行われる.靜置重合では通
常重合反応がある程度進行すると生成した重合体で被覆
された無機フィラーが重合容器の底に沈降して来るのが
認められる.撹拌下での重合では、通常重合反応終了後
撹拌を止めると重合体被覆フィラー粒子か沈降する.重
合反応の終了は外部加熱系を昇温しても重合系が最早外
部加熱系の温度以上にならず、反応熱の発生がないこと
を確認することによって知ることができる.前記の例示
単量体の場合、大体数時間から数十時間で重合反応は一
般に終了する. 前記単量体の重合体又は共重合体は一般に水中で正又は
負の電荷を有する.この重合体又は共重合体の電荷には
ラジカル開始剤による重合体分子鎖の末端電荷あるいは
重合体分子鎖中の極性基の分極等が寄与することが知ら
れている.この電荷はまた周知のように使用乳化剤の影
響ら受ける.リ このような重合体又は共重合体の水中にお択る電荷は所
謂セーター電位を測定することによって知ることができ
る。
Commonly used redox initiators can also be suitably used as radical initiators. Such a dox-based initiator typically includes the above-mentioned peroxide and iron (II
) compounds, chromium ions, or combinations with sulfites, hydroxylamine, etc. These radical initiators are usually used in an amount of about 0.05 to 2.0% by weight based on the monomer.
, more commonly in a proportion of about 0.1 to 1.0% by weight, and most commonly in a proportion of about 0.4 to 0.6% by weight. Polymerization can be carried out at a temperature range above room temperature and below 100°C, that is, below the boiling point of water. The polymerization temperature naturally depends on the type of monomer. Usually a temperature in the range of about 30 to 70°C is employed. Since this radical polymerization is generally an exothermic reaction, the temperature should be controlled to prevent the reaction from proceeding excessively. Polymerization can be carried out statically on a laboratory scale, or it is usually carried out under stirring. In stationary polymerization, it is normally observed that after the polymerization reaction has progressed to a certain extent, the inorganic filler coated with the generated polymer settles to the bottom of the polymerization vessel. In polymerization under stirring, the polymer-coated filler particles usually settle when the stirring is stopped after the polymerization reaction is complete. The completion of the polymerization reaction can be determined by confirming that even if the temperature of the external heating system is increased, the temperature of the polymerization system no longer exceeds the temperature of the external heating system, and that no reaction heat is generated. In the case of the above-mentioned exemplified monomers, the polymerization reaction is generally completed in approximately several hours to several tens of hours. Polymers or copolymers of the monomers generally have a positive or negative charge in water. It is known that the terminal charge of the polymer molecular chain caused by a radical initiator or the polarization of polar groups in the polymer molecular chain contribute to the charge of this polymer or copolymer. As is well known, this charge is also affected by the emulsifier used. The electrical charge of such polymers or copolymers in water can be determined by measuring the so-called sweater potential.

従って、重合に供される単量体が乳化重合によって正負
のどちらの電荷を有する重合体を生成するか、またフィ
ラー微粉体が同じ乳化剤を含む水中でどのような帯電状
態を取るかを予備実験で前以て確認しておけば、ある単
量体に対して組み合わせるべきフィラーを容易に知るこ
とかできる.本発明によれば、上記の乳化重合によって
涸・タの無機フィラー微粉体が生成重合体で被覆される
Therefore, preliminary experiments were conducted to determine whether the monomers subjected to polymerization would produce polymers with positive or negative charges through emulsion polymerization, and what charge state the filler fine powder would take in water containing the same emulsifier. If you check in advance, you can easily know which filler to combine with a certain monomer. According to the present invention, the inorganic filler fine powder is coated with the produced polymer by the above-mentioned emulsion polymerization.

このようにフィラー粒子が重合体によって被覆されるR
楕は、フィラー粒子表面にそれとは逆に帯電している成
長ポリマーラジカルが静電的引力によって捕捉され、フ
ィラー粒子表面上で重合が進行するcm楕とフィラーの
コロイド粒子と重合体のコロイド粒子とが電気的な相互
作用によって粒子間凝集を起こす機楕の両者が考えられ
る.本発明において、重合体被覆フイラー粒子の生成が
上記百機楕のいずれによって達成されるのか、あるいは
両機構のいずれか支配的であるかは確認されていないが
、いずれにしてもフィラーと重合体とが規定される帯電
状態を満足しないと、フイラー粒子は重合体で実質的に
被覆されないまま沈降し、一方重合体はラテックスを形
成し、両相か別々に依存することから見て、重合体によ
るフィラー粒子に対する被覆は両者間の電気的相互作用
によることは確かだと思われる。
In this way, the filler particles are coated with the polymer R
The ellipse is a cm ellipse in which growing polymer radicals, which are oppositely charged on the filler particle surface, are captured by electrostatic attraction and polymerization proceeds on the filler particle surface. It is conceivable that both particles cause agglomeration between particles due to electrical interaction. In the present invention, it has not been confirmed which of the above mechanisms achieves the production of polymer-coated filler particles, or whether either of the two mechanisms is dominant, but in any case, the formation of polymer-coated filler particles is not confirmed. If the charging state specified by It seems certain that the coating of the filler particles with the filler particles is due to the electrical interaction between the two.

このような重合体による無機フィラーに対する被覆は懸
濁重合によっては十分に達成されない。
Coating of inorganic fillers with such polymers is not satisfactorily achieved by suspension polymerization.

これは懸濁重合では生成重合体の粒子寸法か゜フィラー
のコロイド粒子を均一にかつ緻密に被覆するには大き過
ぎるためと思われる. 乳化重合の終了後撹拌を止めると生成重合体被覆無機フ
ィラーは一般に重合容器の底に沈降する。
This is thought to be because the particle size of the resulting polymer in suspension polymerization is too large to uniformly and densely cover the colloidal particles of the filler. When stirring is stopped after emulsion polymerization is completed, the resulting polymer-coated inorganic filler generally settles to the bottom of the polymerization vessel.

沈降した重合体被覆無機フィラーは重合容器より過剰の
水を、例えば遠心分離あるいは単なるデカンテージョン
によって除去すればスラリー乃至ペースト状として得ら
れる.ただし、フィラー濃度及び重合体濃度によっては
重合終了時にそのままでスラリー状を呈している時もあ
る。
The precipitated polymer-coated inorganic filler can be obtained in the form of a slurry or paste by removing excess water from the polymerization vessel, for example, by centrifugation or simple decantation. However, depending on the filler concentration and polymer concentration, the polymer may remain in the form of a slurry at the end of polymerization.

このようにして得られる本発明の重合体被覆無機フィラ
ー粒子より成る水性スラリー乃至ペーストは更に脱水し
、又は脱水せずに、あるいはそれが使用目的に対して濃
厚であるときは逆に加水して使用に供することができる
.このようなスラリー乃至ペーストの最も重要な用途は
、このようなスラリー乃至ペーストを加熱、加圧下で密
封容器から低温、低圧の環境中に噴出させることによる
無機フィラー含有樹脂発泡体の製造である。
The aqueous slurry or paste made of the polymer-coated inorganic filler particles of the present invention thus obtained may be further dehydrated, or without dehydration, or conversely, if it is too thick for the purpose of use, it may be hydrated. It can be put to use. The most important use of such slurries or pastes is the production of inorganic filler-containing resin foams by ejecting such slurries or pastes from a sealed container under heat and pressure into a low temperature, low pressure environment.

上記の本発明の方法によって形成された重合体被覆無機
フィラー粒子はそのスラリー乃至ペーストから水を除去
し、例えばフィルターを介して減圧を適用し、吸引、除
去し、そして乾燥すれば明々ばらばらの重合体被覆フィ
ラー粒子に転化し得る.このことは、スラリー乃至ペー
ストの中で重合体粒子とフィラー粒子が単に混合された
状態で存在しているのではなく、フィラー粒子が重合体
で被覆され、それらの被覆フィラー粒子がスラリー乃至
ペースト中に分散していることを意味する.このように
して形成された被覆フイラー粒子の被覆層は非常に均一
である.このことは、以上のようにして形成されたスラ
リー乃至ペーストから前記で概説した方法で製造された
樹脂発泡体にフィラーが非常に微細にかつ均一に分布し
ていることから分かると共に、走査型電子顕微鏡写真に
よっても確認されている. 以上の説明から分かるように、本発明によれば無機フィ
ラー微粉体の存在下における乳化重合という極めて簡単
な手段で表面が重合体によって均一に被覆された重合体
被覆無機フィラー粒子をそのスラリー乃至ペーストとし
て製造することができる.こりスラリー乃至ペーストは
フィラー含有樹脂発泡体の製造原料として特に有用であ
ると共に、このスラリー乃至ペーストを脱水、乾燥する
ことによって得られる重合体被覆フイラー粒子はマトリ
ックス樹脂に対する配合、強化用充填材として、あるい
は圧縮成形等の成形原料として用いることができる. 以上、本発明を詳細に説明したが、次に本発明を実施例
を参照して具体的に説明する.但し、これら実施例は本
発明を単に例証するものであって、これら実施例によっ
て本発明は限定されるものではない. 塞W 水銀ジール式撹拌機、温度計、pH1ローブ及び窒素ガ
ス吹き込み管を備えた1fJの四つ口丸底フラスコにミ
クロンサイズの粒径を持つセリサイト(小坂鉱山産、商
品名ミクロクリーン)100gを取り、これに窒素ガス
を吹き込みながら煮沸し、冷却することによって酸素を
除去した水500gを加え、そして約3 0 O ra
nで撹拌してセリサイトを水に分散させた.セリサイト
分散液のpHはダ約4であった.このセリサイト分散液
にスチレン100g及びラウリル硫酸ナトリウム0.5
gを加え、そして窒素ガスを吹き込みながら強く撹拌し
てセリサイト微粉体を分散含有するスチレンの水エマル
ジョンを形成した.得られたスチレン水エマルジョンに
過vR酸カリウム1gを加え、フラスコを水銀ジールし
、次いでフラスコを温浴にて80℃に加熱し、窒素雰囲
気下で撹拌しながら重合させた.重合3時間後に少量の
サンプルを取り、後記のように走査型電子顕微鏡で調べ
ると、フィラー粒子は既に重合体により均一に被覆され
ているのが観察された.重合は合計5時間行った.その
ときの重合率は約95%であった. 重合後、重合混合物から遠心分離によって一部の水を除
去して均質なペーストを得た.このベストは高温、高圧
状態から低温、低圧環境中に噴出させる発泡体の製造法
に有用なものであった.上記のペーストから少量のサン
プルを取り、十分に吸引、脱水したf&80℃で5時間
真空乾燥すると、表面がボリスチレン(Ps)で被覆さ
れた個々に分離したセリサイト粒子が得られた.このP
s被覆セリサイト粒子から走査型電子顕微鏡により20
, 000倍の写真を撮ると、セリサイト粒子の表面全
体がその複雑な凹凸、層状構造に沿ってPsで均一に被
覆されているのが認められた.ル東泗ユ 実施例1と同様にして調製したセリサイト水分散液にI
N−NaOH水溶液を分散液のPHが6〜7になるまで
滴下した後、実施例1と同様にスチレン、ラウリル硫酸
ナトリウム及び過硫酸カリウムを加え、80℃で重合さ
せた.重合5時間後に撹拌を止めるとセリサイト粒子が
沈降するのが観察されたので、重合系に重合禁止剤とし
てのハイドロキノン2gを加え、重合反応を停止させた
.重合停止後、静置すると下層にセリサイト粒子が沈降
し、ボリスチレンはラテックスとして水相に存在してい
るのが認められた.沈降したセリサイトを取り出し、脱
水、乾燥して走査型電子顕緻鏡(SEM)により観察し
たが、セリサイト粒子表面にはボリスチレン層の存在は
実質的に認められなかった.これは、セリサイト水分散
液へのアルカリの添加によってセリサイトがその表面電
荷を失い、ボリスチレンと電気的相互作用?なし得なく
なったためと思われる. 衷l1Iλ 実施例1の開始剤・過K酸カリウムを同量の2.2′−
アゾビス( 2−アミジノプロパン》塩酸塩に代えた点
を除いて実施例1と同様に重合を行った.重合後、重合
試料を採取し、実施例1と同様に脱水、乾燥した後、S
EMにより観察すると、セリサイドかPsで均一に被覆
されているのが認められた. 栗l目l旦 実施例1の乳化剤・ラウリル硫酸ナトリウムを同量のア
ルキルベンゼンスルホン酸ナトリウムに代えた点を除い
て実施例1と同様に重合を行った.重き後、重合試料を
採取し、実施例1と同様に脱水、乾燥した後SEMによ
り観察すると、セリサイドかPsで均一に被覆されてい
るのが認められた. 衷1目肌1 実施例1のスチレン100gをスチレンとアクリル酸の
50/’50モル%混合物100gに代えた点を除いて
、実j@例1と同様に重合を行った.重合後、重合試料
を採取し、実施例1と同様に脱水、乾燥したtlt.S
EMにより観察すると、セリサイトがスチレン7′アク
リル酸共重合体で均一に被覆されているのが認められた
. 及嵐1 実施例1のスチレン100gをスチレンとメチルメタク
リレートの5 0 y’ 5 0モル%の混合物100
gに代えた点を除いて、実施例1と同様に重合を行った
.重合後、重合試料を採取し、実施例1と同様に脱水、
乾燥した後SEMにより観察すると、セリサイトがスチ
レン,′メチルメタクリレート共重合体で均一に被覆さ
れているのが認められた. 犬』自吐旦 実施例1と同様にして調製したセリサイト水分散液にメ
チルメタクリレートを0,5モル,/AH20濃度で乳
化させた.乳化剤はドデシルトリメチルアンモニウムブ
ロマイドであり、1×10−4モル/1・H2oの濃度
で使用した.得られたセリサイト微粉体含有メチルメタ
クリレート水エマルジョンに2.2′−アゾビス(2−
アミジノプロパン)塩酸塩を5.OX10”3モル,/
 jH20濃度で加え、窒素雰囲気下で撹拌しながら6
0℃で6時間重合を行った.重合率は約85%であった
. 重合後、撹拌を止めるとポリメチルメタクリレト(I−
lMMA)で被覆されたセリサイトが自然沈降した.そ
の上澄みをデカンテージョンで除去するとP M M 
A被覆セリサイト粒子がスラリー乃至ペースト状で得ら
れた.その少量のサンフ゜ルを十分に吸引、脱水した後
80℃で5時間乾燥すると、表面がPMMAで被覆され
た涸々に分離したセリサイト粒子が得られた.このPM
MA被覆セリサイト粒子から走査型電子g微鏡により2
0,000倍の写真を撮ると、セリサイト粒子の表面全
体がその複雑な凹凸、層状構造に沿ってPMMAで均一
に被覆されているのが認められた. え轟■ユ 実施例1と同様にして調製したセリサイト水分散液にア
クリロニトリル160g及びラウリル硫酸ナトリウム4
gを加え、撹拌してエマルジョンを形成した.得られた
エマルジョンに過硫酸カリウム0.2g及び亜硫酸水素
ナトリウムo.egを加え、窒素雰囲気下で撹拌しなが
ら35℃で8時間重合を行った.重合率は実質的に10
0%であった. 重合後、撹拌を止めるとポリアクリロニトリル(PAN
)で被覆されたセリサイトか自然沈降した.その上澄み
をデカンテーションで除去するとPAN被覆セリサイト
粒子がスラリー乃至ペースト状で得られた.その少量の
サンプルを実施例1と同様に十分に吸引、脱水し、続い
て真空乾燥すると、表面全体がPANで均一に被覆され
た明々に分離した樹脂被覆セリサイトが得られた.K胤
■1 実施例1と同様にして調製したセリサイト水分散液に酢
酸ビニル200g及びラウリル硫酸ナトリウム6gを加
え、撹拌してエマルジョンを形成した.?8られなエマ
ルジョンに過酸化ベンゾイル0.5g.[酸第一鉄6水
塩1。4g及びピロリン酸ナトリウム6,Ogを加え、
窒素雰囲気下で撹拌しながら40℃で4時間重合を行っ
た.
The polymer-coated inorganic filler particles formed by the method of the present invention described above can be obtained by removing water from the slurry or paste, applying vacuum, e.g. It can be converted into coalesced coated filler particles. This means that the polymer particles and filler particles do not simply exist in a mixed state in the slurry or paste, but that the filler particles are coated with the polymer and the coated filler particles are present in the slurry or paste. This means that it is dispersed in The coating layer of coated filler particles formed in this way is very uniform. This can be seen from the fact that the filler is very finely and uniformly distributed in the resin foam produced from the slurry or paste formed by the method outlined above. This has also been confirmed by microscopic photographs. As can be seen from the above explanation, according to the present invention, polymer-coated inorganic filler particles whose surfaces are uniformly coated with a polymer are prepared by a very simple method of emulsion polymerization in the presence of fine inorganic filler powder, and then the polymer-coated inorganic filler particles are processed into slurry or paste. It can be manufactured as The slurry or paste is particularly useful as a raw material for producing filler-containing resin foams, and the polymer-coated filler particles obtained by dehydrating and drying this slurry or paste can be used as fillers for blending and reinforcing matrix resins. Alternatively, it can be used as a raw material for compression molding, etc. The present invention has been described in detail above. Next, the present invention will be specifically described with reference to Examples. However, these Examples merely illustrate the present invention, and the present invention is not limited by these Examples. 100 g of sericite with a micron-sized particle size (produced by Kosaka Mine, trade name Microclean) in a 1 fJ four-necked round-bottomed flask equipped with a mercury jet stirrer, a thermometer, a pH 1 lobe, and a nitrogen gas blowing tube. , add 500 g of water which has been deoxygenated by boiling it while blowing nitrogen gas and cooling it, and boil it to about 30 O ra.
The sericite was dispersed in the water by stirring at n. The pH of the sericite dispersion was approximately 4. To this sericite dispersion, 100 g of styrene and 0.5 g of sodium lauryl sulfate were added.
g was added and stirred vigorously while blowing nitrogen gas to form a styrene water emulsion containing dispersed sericite fine powder. 1 g of potassium pervRate was added to the obtained styrene-water emulsion, the flask was sealed with mercury, and then the flask was heated to 80° C. in a hot bath and polymerized with stirring under a nitrogen atmosphere. When a small sample was taken after 3 hours of polymerization and examined using a scanning electron microscope as described below, it was observed that the filler particles were already uniformly coated with the polymer. Polymerization was carried out for a total of 5 hours. The polymerization rate at that time was approximately 95%. After polymerization, some water was removed from the polymerization mixture by centrifugation to obtain a homogeneous paste. This vest was useful in the production of foams that are ejected from high temperature, high pressure conditions into low temperature, low pressure environments. A small sample was taken from the above paste, thoroughly suctioned, dehydrated, and vacuum dried at f&80°C for 5 hours to obtain individually separated sericite particles whose surfaces were coated with boristyrene (Ps). This P
20 by scanning electron microscopy from s-coated sericite particles.
When a photograph was taken at a magnification of 1,000 times, it was observed that the entire surface of the sericite particles was uniformly coated with Ps along its complex unevenness and layered structure. I was added to the sericite aqueous dispersion prepared in the same manner as in Example 1.
After dropping an aqueous N-NaOH solution until the pH of the dispersion became 6 to 7, styrene, sodium lauryl sulfate and potassium persulfate were added in the same manner as in Example 1, and polymerization was carried out at 80°C. When stirring was stopped after 5 hours of polymerization, sericite particles were observed to settle, so 2 g of hydroquinone as a polymerization inhibitor was added to the polymerization system to stop the polymerization reaction. After stopping the polymerization, when the mixture was allowed to stand still, sericite particles were found to settle in the lower layer, and boristyrene was observed to exist as latex in the aqueous phase. The precipitated sericite was taken out, dehydrated, dried, and observed using a scanning electron microscope (SEM), but the presence of a boristyrene layer on the surface of the sericite particles was not substantially observed. Is this because the addition of alkali to the sericite aqueous dispersion causes sericite to lose its surface charge and electrically interact with boristyrene? This seems to be because it is no longer possible.辷l1Iλ The initiator of Example 1, potassium perkate, was added to the same amount of 2.2'-
Polymerization was carried out in the same manner as in Example 1 except that azobis(2-amidinopropane) hydrochloride was used. After polymerization, a polymerization sample was collected, dehydrated and dried in the same manner as in Example 1, and then treated with S
When observed by EM, it was observed that the material was uniformly coated with seriside or Ps. Polymerization was carried out in the same manner as in Example 1, except that the emulsifier of Example 1, sodium lauryl sulfate, was replaced with the same amount of sodium alkylbenzenesulfonate. After heating, a polymerized sample was collected, dehydrated and dried in the same manner as in Example 1, and then observed by SEM. It was observed that the sample was uniformly coated with cericide or Ps. Polymerization was carried out in the same manner as in Example 1, except that 100 g of styrene in Example 1 was replaced with 100 g of a 50/'50 mol% mixture of styrene and acrylic acid. After polymerization, a polymerized sample was collected, dehydrated and dried in the same manner as in Example 1. S
Observation by EM revealed that sericite was uniformly coated with styrene 7' acrylic acid copolymer. Arashi 1 100 g of the styrene of Example 1 was mixed with 100 g of a mixture of 50 y'50 mol% of styrene and methyl methacrylate.
Polymerization was carried out in the same manner as in Example 1, except that g was replaced. After polymerization, a polymerized sample was collected and dehydrated in the same manner as in Example 1.
After drying, SEM observation revealed that the sericite was uniformly coated with styrene and methyl methacrylate copolymer. Methyl methacrylate was emulsified in an aqueous sericite dispersion prepared in the same manner as in Example 1 at a concentration of 0.5 mol/AH20. The emulsifier was dodecyltrimethylammonium bromide, used at a concentration of 1 x 10-4 mol/1·H2o. 2,2'-azobis(2-
5. amidinopropane) hydrochloride. OX10” 3 mol, /
jH20 concentration and stirred under nitrogen atmosphere for 6 hours.
Polymerization was carried out at 0°C for 6 hours. The polymerization rate was about 85%. After polymerization, when stirring is stopped, polymethyl methacrylate (I-
The sericite coated with lMMA) spontaneously precipitated. When the supernatant is removed by decantation, P M M
A-coated sericite particles were obtained in the form of a slurry or paste. A small amount of the sample was sufficiently suctioned and dehydrated, and then dried at 80°C for 5 hours to obtain finely separated sericite particles whose surfaces were coated with PMMA. This PM
2 from MA-coated sericite particles by scanning electron microscopy.
When a photograph was taken at 0,000x magnification, it was observed that the entire surface of the sericite particles was uniformly coated with PMMA along its complex unevenness and layered structure. 160 g of acrylonitrile and 4 ml of sodium lauryl sulfate were added to a sericite aqueous dispersion prepared in the same manner as in Example 1.
g was added and stirred to form an emulsion. To the resulting emulsion was added 0.2 g of potassium persulfate and 0.2 g of sodium bisulfite. eg was added, and polymerization was carried out at 35°C for 8 hours with stirring under a nitrogen atmosphere. The polymerization rate is essentially 10
It was 0%. After polymerization, when stirring is stopped, polyacrylonitrile (PAN
) coated with sericite or naturally precipitated. When the supernatant was removed by decantation, PAN-coated sericite particles were obtained in the form of a slurry or paste. A small amount of the sample was thoroughly aspirated and dehydrated in the same manner as in Example 1, and then dried under vacuum to obtain clearly separated resin-coated sericite whose entire surface was uniformly coated with PAN. K-tane ■1 200 g of vinyl acetate and 6 g of sodium lauryl sulfate were added to an aqueous sericite dispersion prepared in the same manner as in Example 1, and stirred to form an emulsion. ? 0.5 g of benzoyl peroxide in a fresh emulsion. [Add 1.4 g of ferrous acid hexahydrate and 6,0 g of sodium pyrophosphate,
Polymerization was carried out at 40°C for 4 hours with stirring under a nitrogen atmosphere.

Claims (1)

【特許請求の範囲】[Claims] ラジカル乳化重合可能な、分子中に少なくとも1個のエ
チレン性不飽和結合を有する単量体を乳化剤とラジカル
開始剤の存在下、水中で撹拌しながら乳化重合させる方
法において、該乳化重合を水中にコロイド分散可能でか
つ生成する乳化重合体の電荷に対して反対の電荷を有す
る無機フィラー微粉体のコロイド分散状態での存在下で
行い、重合後に該重合系から過剰の水を除去し又は除去
せずに、表面が乳化重合体で被覆された個々の無機フィ
ラー微粉体粒子をスラリー状乃至ペースト状で得、そし
て必要により該スラリー乃至ペーストを脱水、乾燥して
個々に分離された重合体被覆粒子を得ることを特徴とす
る重合体被覆無機フィラー粒子の製造法。
A method in which a monomer capable of radical emulsion polymerization and having at least one ethylenically unsaturated bond in the molecule is subjected to emulsion polymerization in water while stirring in the presence of an emulsifier and a radical initiator, wherein the emulsion polymerization is carried out in water. The polymerization is carried out in the presence of a colloidally dispersed inorganic filler fine powder which is colloidally dispersible and has a charge opposite to that of the emulsion polymer to be formed, and after the polymerization, excess water is removed or removed from the polymerization system. The surface of each inorganic filler fine powder particle is coated with an emulsion polymer and then obtained in the form of a slurry or paste, and if necessary, the slurry or paste is dehydrated and dried to separate individual polymer-coated particles. 1. A method for producing polymer-coated inorganic filler particles, characterized by obtaining
JP11250289A 1989-05-01 1989-05-01 Method for producing polymer-coated sericite particles Expired - Lifetime JPH0625206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11250289A JPH0625206B2 (en) 1989-05-01 1989-05-01 Method for producing polymer-coated sericite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11250289A JPH0625206B2 (en) 1989-05-01 1989-05-01 Method for producing polymer-coated sericite particles

Publications (2)

Publication Number Publication Date
JPH02292305A true JPH02292305A (en) 1990-12-03
JPH0625206B2 JPH0625206B2 (en) 1994-04-06

Family

ID=14588257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11250289A Expired - Lifetime JPH0625206B2 (en) 1989-05-01 1989-05-01 Method for producing polymer-coated sericite particles

Country Status (1)

Country Link
JP (1) JPH0625206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091990A (en) * 2005-09-30 2007-04-12 Sumitomo Chemical Co Ltd Method for producing inorganic material particle-containing methacrylic resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156707A (en) * 1995-12-06 1997-06-17 Fukuoka Subaru Jidosha Kk Method of throwing garbage into garbage collector, garbage throwing-in device for garbage collector, and garbage collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091990A (en) * 2005-09-30 2007-04-12 Sumitomo Chemical Co Ltd Method for producing inorganic material particle-containing methacrylic resin

Also Published As

Publication number Publication date
JPH0625206B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
KR100306738B1 (en) Large emulsion polymer production process and polymer particles produced therefrom
JP3692077B2 (en) Method for producing aqueous dispersion of particles composed of polymer and fine inorganic solid
Schrade et al. Pickering-type stabilized nanoparticles by heterophase polymerization
DK171953B1 (en) Procedure for coating an inorganic powder with an organic polymer
US3965032A (en) Colloidally stable dispersions
JP3032562B2 (en) Method for producing hollow latex
JPS63202631A (en) Fine granular multiphase polymer
JP2003055579A (en) Aqueous composite particle composition
DE4338421A1 (en) Graft copolymers of organopolysiloxanes as free-radical macroinitiators
JP2009533495A (en) Electrically neutral dispersion and method for producing the same
WO2019218607A1 (en) Method for synthesizing magadiite/pmma nano composite microspheres by using ph value regulation in pickering emulsion
JPS62213839A (en) Preparation of composite particle coated uniformly
Li et al. A facile fabrication of amphiphilic Janus and hollow latex particles by controlling multistage emulsion polymerization
KR950014843B1 (en) Process for the preparation of an impact-resistant thermoplastic resin
JPH02292305A (en) Production of polymer-coated inorganic filler particle
EP0758658B1 (en) Redispersible polymer and production process thereof
US3917574A (en) Process for preparing substantially linear water-soluble or water-dispersible interpolymeric interfacially spreading polyelectrolytes
JPS6410004B2 (en)
CN106751304B (en) A kind of method that polymer emulsified method prepares colloidal state magnetic response photonic crystal
JPH0459321B2 (en)
JPH09151215A (en) Polymer emulsion and fiber treatment composition
JP3149487B2 (en) Method for producing methacrylic resin particles
Chen et al. Preparation of raspberry-like PMMA/SiO 2 nanocomposite particles
JPH0586433B2 (en)
CN108301252A (en) A kind of polystyrene microsphere Electrostatic Absorption transfer coated method