JPH02291943A - Aggregation testing method based on measurment of aggregation speed and average floc diameter/number - Google Patents

Aggregation testing method based on measurment of aggregation speed and average floc diameter/number

Info

Publication number
JPH02291943A
JPH02291943A JP11246489A JP11246489A JPH02291943A JP H02291943 A JPH02291943 A JP H02291943A JP 11246489 A JP11246489 A JP 11246489A JP 11246489 A JP11246489 A JP 11246489A JP H02291943 A JPH02291943 A JP H02291943A
Authority
JP
Japan
Prior art keywords
aggregation
stage
transmitted light
reaction
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11246489A
Other languages
Japanese (ja)
Inventor
Fumio Nakamura
文雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11246489A priority Critical patent/JPH02291943A/en
Publication of JPH02291943A publication Critical patent/JPH02291943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to judge the quality of aggregation reaction in a short time and to determine the optimum injecting amount of flocculant based on a continuously computed aggregation speed, a dimensionless total-cross-sectional-area decreasing speed, a floc diameter a floc number and the minimum or minimum values thereof. CONSTITUTION:In the first stage, the mixed liquid of suspension and flocculant is prepared. In the second stage, the mixed liquid is agitated at a specified agitating speed in an aggrega tion reaction tank wherein an agitator and a transmitted-light-intensity measuring device comprising a light source part and a light receiving part are provided. Thus aggregation reaction is made to progress. In the third stage, the intensity of the transmitted light emitted in the steps of the second stage is continuously measured. In the fourth stage, the aggregation speed, the dimensionless total-cross-sectional-area decreasing speed, the diameter of a floc and the number of the flocs are computed based on the change in intensity of the transmitted light which is continuously measured in the third stage. In the fifth stage, the quality of the aggregating reaction is judged and the optimum injecting amount of the flocculant is determined based on the aggregation speed, the dimensionless total-cross-sectional-area decreas ing speed, the diameter of the floc, the number of the flocs and the maximum or minimum values thereof which are continuously computed in the fourth stage.

Description

【発明の詳細な説明】 (1)発明の目的 く産業上の利用分野〉 この発明は、連続的に測定された透過光強度変化から.
aa速度、無次元総断面積減少速度、フロック径、フロ
ック数の算出法に基づく懸濁液の凝集試験方法であるの
で、反応水槽内における各種の粒子の成長過程の検知、
検出、解析に有効であり、特に、上水、下水、産業用廃
水等におけるaa沈殿処理分野に有効である. く従来の技術〉 従来、懸濁液の凝集試験は、主としてジャーテスト法に
より実施されており、その結果に基づいてSaW集剤注
入量が決定されてきた。しかしながら、ジャーテスト法
はバッチ方式で実施されるものであり、時間、労力、経
験を必要とする欠点があり、したがって、水質の時闇変
勤に即応しない欠点がある. この対応策として、実験式法及びフィードバック法があ
るが、これらは基本的には、数個の水質項目と関連づけ
た凝集剤注入量決定方法であり、水質の変動に対する対
応性と信頼性に欠ける欠点がある. 他に、ファジー法
やPDA法等があるが、未だ検討段階にあるものであり
、実用性に乏しい.く発明が解決しようとする問題点〉 凝集沈殿処理に25ける最適凝集剤注入量は、水温、水
中の各種共存イオンの種類とその濃度、懸濁物の質およ
び量、撹拌条件などの多様な因子の変動により時々刻々
変化するものであり、したがって、、各時点における条
件に即応した最適凝集剤注入量を決定する必要がある.
しかしながら、前述のように、従来の′a集試験方法(
ジャーテスト法)に基づく最適凝集剤注入量決定方法は
時間、労力、経験を必要とし、水質の時間変動に対する
即応性と信頼性にかける欠点がある。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of industrial application for the purpose of the invention> This invention is based on continuously measured changes in transmitted light intensity.
Since this is a suspension flocculation test method based on the calculation method of aa rate, dimensionless total cross-sectional area reduction rate, floc diameter, and floc number, it is possible to detect the growth process of various particles in the reaction tank,
It is effective for detection and analysis, and is particularly effective in the field of aa precipitation treatment in water supplies, sewage water, industrial wastewater, etc. BACKGROUND ART Conventionally, agglomeration tests for suspensions have mainly been carried out by the jar test method, and the amount of SaW concentrate to be injected has been determined based on the results. However, the jar test method is carried out in a batch manner, and has the drawback of requiring time, effort, and experience, and therefore does not respond quickly to changes in water quality. As countermeasures to this problem, there are experimental methods and feedback methods, but these are basically methods for determining the amount of coagulant to be injected in relation to several water quality items, and they lack responsiveness and reliability to changes in water quality. There are drawbacks. There are other methods, such as the fuzzy method and the PDA method, but they are still in the study stage and have little practical use. Problems to be Solved by the Invention> The optimum amount of coagulant to be injected in coagulation-sedimentation treatment depends on various factors such as water temperature, types and concentrations of various coexisting ions in water, quality and quantity of suspended matter, and stirring conditions. It changes from time to time due to fluctuations in factors, so it is necessary to determine the optimal amount of coagulant to be injected in response to the conditions at each point in time.
However, as mentioned above, the conventional 'a collection test method (
The method for determining the optimal coagulant injection amount based on the jar test method requires time, effort, and experience, and has the disadvantage of being unreliable and responsive to time fluctuations in water quality.

そこで、凝集過程における凝集速度、フロック径、フロ
ック数を同時に、かつ、連続的に推定する方法を確立し
、それに基づいて、水質の時間変動への即応性を持ち、
短時間に、しかも、労力と経験を必要とせずに、自動的
にi&適凝鶏剤注入量を決定し得る方法を確立せんとす
るものである.(2)発明の構成 〈問題点を解決するための手段〉 前記の問題点を解決するための本発明の手段は「(a)
懸濁液と凝集剤との混和液を作成する第1の段階と (b)撹拌機及び光源部と受光部とから成る透過光強度
測定装置とを具備する凝 集反応槽中において所定の撹拌速度で 撹拌し、凝集反応を進行させる第2の 段階と (C)第2の段階の過程で、連続的に透過光強度を測定
する第3の段階と (d)第3の段階で連続的に測定された透過光強度変化
から、凝集速度、無次元 総断面積減少速度、フロック径、フロ ック数を算出する第4の段階と (e)第4の段階で連続的に算出された凝集速度、無次
元総断面積減少速度、フ ロック径、フロック数、及び、それら の最大値又は最小値に基づき、凝集反 応の良否の判定と最適凝A剤注入量を 決定する第5の段階 とを具備することを特徴とする懸濁液の凝集試験方法と
!&適凝集剤注入量決定方法」である. 〈作用〉 撹拌機及び光源部と受光部とから成る透過光強度測定装
置とを具備する凝集反応槽中において、所定の撹拌速度
で撹拌しa集反応を進行させると、a28@の進行にと
もない透過光強度(又は電圧〉の連続的な変化が起こる
, 透過光強度は次式にしたがって変化する.1   = 
  In   exp   (−KN π r2)I;
透過光強度 In.光源強度 K;定数 N;粒子数 r.粒子半径 ここで、半径=r、粒子数=N の懸濁液が凝集して、
q倍の粒子半径(qr)を持つ粒子に成長するとすれば
、系内に粒子数は1 / q 2,総粒子断面積(Nπ
『2)は1/qになると期待される.すなわち、凝集反
応によりフロックが成長すると、結果として、系内のフ
ロック粒子の総断面積が減少する.従って、(1)式に
より透過光強度が増大することになる. 実際の′a集反応におけるフロックの成長過程は、上記
より複雑であるが、凝集の進行にともない透過光強度が
連続的に変化することには変りない.即ち、透過光強度
変化は凝集速度、無次元総断面積減少速度、フロック径
、フロック数を曵映しており、これらの指標に基づき最
適凝集剤注入量を決定することが可能となる. 本発明の凝集速度、平均フロック径・数の計測による凝
集試験方法は、凝集反応槽を介して光源装置より受光装
置に与えられた透過光強度を測定し、その透過光強度か
ら凝集速度、無次元総断面積減少速度、フロック径、フ
ロック数を計測・算出する作用を持つと共に、短時間に
、しかも、労幅及び沈降速度とJ1gk剤注入量との関
係を示す力と経験を必要とせずに自動的に最′a凝集剤
注入量を決定する方法を提供する作用をもつ.〈実施例
〉 次に、本発明について添付図面を参照しつつ具体的に説
明する. 第1図は、本発明の凝集速度、平均フロック径・数の計
測による凝集試験方法を実施するための測定装置を示す
断面図である. 第2図は、第1図の測定装置によって本発明の実施例を
実行した時の透過光強度の時間変化を示す図である. 第3図は、透過光強度と系内の粒子の総断面積との関係
を示す図である. 第4図は、第2図の方法で求めた粒子半径の実測値と計
算値との関係を示す図である. 第5図は第2図の方法で求めた懸濁液中の粒子数の実測
値と計算値との関係を示す図である.第6図は、第2図
の方法で求めた凝集速度、変動図である. まず、第1図の測定装置について説明する。
Therefore, we established a method to simultaneously and continuously estimate the flocculation rate, floc diameter, and floc number during the flocculation process, and based on this method, we can quickly respond to temporal changes in water quality.
The purpose of this invention is to establish a method that can automatically determine the i&appropriate amount of curdling agent to be injected in a short time and without requiring labor or experience. (2) Structure of the invention <Means for solving the problems> The means of the present invention for solving the above problems are "(a)
a first step of creating a mixture of the suspension and the flocculant; and (b) a predetermined stirring speed in a flocculation reaction tank comprising a stirrer and a transmitted light intensity measuring device consisting of a light source section and a light receiving section. (C) A third step in which the intensity of transmitted light is continuously measured during the second step; and (d) Continuously in the third step. A fourth step of calculating the aggregation rate, dimensionless total cross-sectional area reduction rate, floc diameter, and number of flocs from the measured transmitted light intensity change; and (e) the aggregation rate continuously calculated in the fourth step. A fifth step of determining whether the flocculation reaction is good or not and determining the optimal coagulant A injection amount based on the dimensionless total cross-sectional area reduction rate, floc diameter, floc number, and their maximum or minimum value. A suspension agglutination test method characterized by the following! & Method for determining the appropriate amount of coagulant to be injected. <Function> When aggregation reaction is progressed by stirring at a predetermined stirring speed in a flocculation reaction tank equipped with a stirrer and a transmitted light intensity measuring device consisting of a light source section and a light receiving section, as a28@ progresses, A continuous change in the transmitted light intensity (or voltage) occurs. The transmitted light intensity changes according to the following formula: 1 =
In exp (-KN π r2)I;
Transmitted light intensity In. Light source intensity K; constant N; number of particles r. Particle radius Here, the suspension with radius = r and number of particles = N aggregates,
If a particle grows to have a particle radius (qr) that is q times larger, the number of particles in the system is 1 / q 2, and the total particle cross-sectional area (Nπ
``2) is expected to be 1/q. That is, when flocs grow due to agglomeration reactions, the total cross-sectional area of floc particles in the system decreases as a result. Therefore, the transmitted light intensity increases according to equation (1). Although the floc growth process in the actual 'a aggregation reaction is more complicated than the above, the transmitted light intensity still changes continuously as aggregation progresses. In other words, the change in transmitted light intensity reflects the agglomeration rate, the rate of decrease in the dimensionless total cross-sectional area, the floc diameter, and the number of flocs, and it is possible to determine the optimal flocculant injection amount based on these indicators. The agglomeration test method of the present invention by measuring the aggregation rate, average floc diameter and number measures the transmitted light intensity given from the light source device to the light receiving device via the aggregation reaction tank, and from the transmitted light intensity, the aggregation rate and the number of flocs are measured. It has the function of measuring and calculating the dimensional total cross-sectional area reduction rate, floc diameter, and floc number, and also does not require the ability or experience to show the relationship between labor width, sedimentation rate, and J1gk agent injection amount in a short time. Its function is to provide a method for automatically determining the maximum amount of coagulant to be injected. <Example> Next, the present invention will be specifically explained with reference to the attached drawings. FIG. 1 is a sectional view showing a measuring device for carrying out the agglomeration test method of the present invention by measuring the agglomeration rate, average diameter and number of flocs. FIG. 2 is a diagram showing temporal changes in transmitted light intensity when the embodiment of the present invention is carried out using the measuring device shown in FIG. Figure 3 is a diagram showing the relationship between transmitted light intensity and total cross-sectional area of particles in the system. FIG. 4 is a diagram showing the relationship between the measured particle radius and the calculated value obtained by the method shown in FIG. 2. Figure 5 is a diagram showing the relationship between the measured value and the calculated value of the number of particles in a suspension determined by the method shown in Figure 2. Figure 6 is a diagram of the agglomeration rate and fluctuation obtained using the method shown in Figure 2. First, the measuring device shown in FIG. 1 will be explained.

装置は、基本的には,(1)懸濁液と凝集剤との混和液
作成部分、(2)凝集反応槽部分、(3)光センサー部
分の3部分から成る. 混和液作成部分では、開閉弁(12)を介して導入され
、管や水槽等(16)を循環している所定量の懸濁液中
に所定量の凝集剤(20〉が注入されて混徊液が作成さ
れ、所定時間後に開閉弁〈14)を介してaS反応槽部
分に導入される. 一方、凝集反応槽部分は、反応容器(2)と撹拌機(1
0)とから成る.反応容器(2)はガラス等の透明な素
材によるもので、容量、形状は適宜であるが,レンズ効
果が起こらず、撹拌強度の計算に便利なものが望ましい
.また第1図に示すように、光源部と受光部との空間を
深くすれば、反応容器を開放にし、外部からの観察を可
能とすることもできるが、蓋をしても、暗箱に入れても
よい.また、半連続的な測定に便ならしめる為に、試料
及び凝集剤の注入装置、排出装置、恒温装置を凝集反応
槽に付加してもよい. 攪拌機(10)は所望の撹拌速度及び撹拌強度が得られ
るような撹拌羽根(8).撹拌モーターが具備されてい
る。
The device basically consists of three parts: (1) a part for preparing a mixture of suspension and flocculant, (2) a flocculation reaction tank part, and (3) a light sensor part. In the mixed liquid preparation section, a predetermined amount of flocculant (20) is injected into a predetermined amount of suspension that is introduced via an on-off valve (12) and circulated through a pipe, water tank, etc. (16) and mixed. A liquid is prepared, and after a predetermined period of time, it is introduced into the aS reaction tank section via the on-off valve (14). On the other hand, the flocculation reaction tank part consists of a reaction vessel (2) and a stirrer (1).
0). The reaction vessel (2) is made of a transparent material such as glass, and has an appropriate capacity and shape, but it is preferably one that does not cause a lens effect and is convenient for calculating the stirring intensity. Furthermore, as shown in Figure 1, by deepening the space between the light source section and the light receiving section, the reaction container can be opened and observed from the outside, but even if it is covered, it can be placed in a dark box. You can. Furthermore, in order to facilitate semi-continuous measurement, a sample and flocculant injection device, a discharge device, and a constant temperature device may be added to the flocculation reaction tank. The stirrer (10) is equipped with stirring blades (8) to obtain the desired stirring speed and strength. Equipped with a stirring motor.

光センサ一部分は、1対または数対の光源部と受光部と
から成り、光源部分から発した平行光線をしてフロック
(6)の存在する凝集反応容器(2)を通過せしめ、こ
の透過光を受光部分で受けるようにしてある.光源部分
はタングステンランプ等の光源(26),光量調節ボタ
ン(32),フィルター〈30)レンズ(28〉により
構成されており、受光部分はスリット(33),フォト
ダイオード等の光電変換素子(34)、増幅器(36>
,感度inボタン(38)により構成されている. 加えて、測定装置(40)がリード線(24)により受
光部と接続されており、凝集反応開始前から終了時まで
の透過光量〈1》または電圧(V)の時間変化゛が測定
され、コンピューター(42)により各凝集指標が計算
される. 第2図は、凝集過程における透過光強度の経時変化の一
例を示す. 透過光強度は、はじめの数分問はほとんど
変化せず、凝集・フロック形成とともにしだい増大する
.つまり、凝集が進むにつれてフロック粒径が大きくな
り、反応槽内の総粒子数が減少してくると、さらに透過
光強度は大きくなり.振幅も大きくなってくる.その後
、透過光強度も振幅もほぼ変化しなくなる, 従って、透過光強度変化速度(凝集速度)は、KIK2
, Ksの3部分に区分される. また、直線K1とK
2との交点までの時間(T)は、凝集を開始するまでの
時間と目される. 一方、凝集反応槽からの透過光を測定する場合、粒子径
が5μ謙以上で、かつ、光路長が一定の時、透過光強度
(工)は次式で示される.log(l./T)  ” 
 k  N  xr2   .  .  .  .  
(2)X :透過光強度 (一) !。二粒子数 0の時の透過光強度 (−)N :粒子
数 (個/ml) r :粒子半径 (cm) k :定数 ( cnr” ) 第3図は、球形樹脂粒子を使用した場合の総粒子断面積
と透過光強度(記録紙上の目盛り)との関係を示したも
のである。   ここで、凝集反応槽に粒子が存在しな
い時(蒸留水のみの時)の記録計の目盛りの読みを L
o 、粒子が存在する時の目盛りの読みを Lとすると
く第2図参照)、第3図の結果から Io/I= Lo
/L  が成り立つ.この櫟な関係は、フロックのよう
な粒子にも適用可能である.そこで、透過光強度変化が
ら総粒子所面積変化を求めると、第1図と同様に、総粒
子断面積変化速度は、3部分に区分される(図示せず) したがって、総粒子断面積変化を標準化すれば、第2図
と同様に、各区分の無次元総断面積減少速度 Kt+,
 Kt2, Kt3が得られる.  また、直線Ktl
と直線xt2との交点までの時間(Tt)を求めること
ができる. 一方、第2図に示した透過光強度の振15(D)は、L
1と L2の差 であり、粒子半径の措標である. し
かし,総所面積は log ( L0/L)に比剥して
いるので,粒径の指標としては、その総断面積の差: 
 log(Lo/L+) − log(L0/L2)一
log ( Ll/L2)を用いるのがより妥当である
. ここで、粒径及び 個数が既知の球形樹脂(平均粒径は
 3.2〜8.9 X 10−2c腫の範囲内にある5
種)を用いて,実験的に求めた系内の粒子個数とlog
 ( Ll/L2 )の閏係は次式で示される。
A part of the optical sensor consists of one or several pairs of light source parts and light receiving parts, and allows parallel light rays emitted from the light source parts to pass through the flocculation reaction vessel (2) in which flocs (6) are present, and the transmitted light is is received by the light-receiving part. The light source part consists of a light source (26) such as a tungsten lamp, a light intensity adjustment button (32), a filter <30>, and a lens (28>), and the light receiving part consists of a slit (33) and a photoelectric conversion element (34) such as a photodiode. ), amplifier (36>
, Sensitivity in button (38). In addition, a measuring device (40) is connected to the light receiving part by a lead wire (24), and the amount of transmitted light (1) or the time change in voltage (V) from before the start of the aggregation reaction to the end is measured. Each agglomeration index is calculated by the computer (42). Figure 2 shows an example of the change in transmitted light intensity over time during the aggregation process. The transmitted light intensity hardly changes for the first few minutes, but gradually increases as aggregation and floc formation occur. In other words, as flocculation progresses, the floc particle size increases, and as the total number of particles in the reaction tank decreases, the transmitted light intensity further increases. The amplitude also increases. After that, the transmitted light intensity and amplitude almost do not change. Therefore, the transmitted light intensity change rate (aggregation rate) is KIK2
, Ks. Also, the straight lines K1 and K
The time (T) until the intersection with 2 is regarded as the time until aggregation starts. On the other hand, when measuring the transmitted light from the aggregation reaction tank, when the particle size is 5 μm or more and the optical path length is constant, the transmitted light intensity (unit) is expressed by the following formula. log(l./T)”
k N xr2. .. .. ..
(2) X: Transmitted light intensity (1)! . 2 Transmitted light intensity when the number of particles is 0 (-) N: Number of particles (particles/ml) r: Particle radius (cm) k: Constant (cnr”) Figure 3 shows the total when spherical resin particles are used. This shows the relationship between particle cross-sectional area and transmitted light intensity (scale on recording paper).Here, the reading of the recorder scale when there are no particles in the flocculation reaction tank (when only distilled water is present) is shown. L
o, the scale reading when there are particles is L (see Figure 2), and from the results in Figure 3, Io/I= Lo
/L holds true. This linear relationship can also be applied to particles such as flocs. Therefore, when calculating the change in the total particle area from the change in transmitted light intensity, the rate of change in the total particle cross-sectional area is divided into three parts (not shown), as in Figure 1. If standardized, the dimensionless total cross-sectional area reduction rate for each section is Kt+, as in Figure 2.
Kt2 and Kt3 are obtained. Also, the straight line Ktl
The time (Tt) until the intersection of and the straight line xt2 can be found. On the other hand, the amplitude 15 (D) of the transmitted light intensity shown in FIG.
1 and L2, which is a measure of the particle radius. However, since the total cross-sectional area is proportional to log (L0/L), the difference in total cross-sectional area is used as an indicator of particle size:
It is more appropriate to use log (Lo/L+) - log (L0/L2) - log (Ll/L2). Here, spherical resin of known particle size and number (average particle size is within the range of 3.2 to 8.9 x 10-2cm) is used.
The experimentally determined number of particles in the system and the log
The leap factor of (Ll/L2) is expressed by the following formula.

log(L+/L2)=  C+  Np    ..
..  (3)N :系内の粒子個数 (個 ) CI:粒径によって変化する係数 p :係数 係数 pは、いがなる粒径に対してもほぼ一定である.
また、係数C!は粒径によって変化する変数であり、粒
子半径との関係は次式で示される.C+=C2rq  
    ....−  <4)C2:係数 r:粒子半径 q:係数 したがって、(3)式は次のようになる.log ( 
LL/L2) =  C2r qN p故に、(2)式
と(5)弐より次式が得られる.<  kff  )”
(q−2p)  (  log(L+/L2)  }l
/(q−2p)この様に、(6)式によって,透過光強
度の振幅の上端と下端,及びその中央値を涜み取ること
によって.反応槽内の粒子の粒径が求められる.なお、
透過光強度の振幅の上端(L2)と下トL1)の設定方
法は、その出現頻度を基漠にすることが望ましい 一方、(6)式より粒子半径(r)が求まれば、(3)
式及び(4)式より、系内における懸濁粒子数(N>は
次式により求められる. (  log(L+/L2))  ”’N ± (:21/p  .  r q/p 第4図は、第2図の方法による計測値及び(6)式から
求められた粒子半径(r)計算値と実測値との関係を示
している. ここでも、前述と同様の球形樹脂を用いて
いる.  計算精度は平均で約±9%であるが、アルミ
ニウムフロックの場合も類似の結果が得られる. 第5図は、第2図の方法による計測値及び(7)式から
求められた系内の粒子数(N)の計算値と実測値との関
係を示している.計算精度は平均で約±19%である このように、(6)式から粒子半径<r)が、また、(
7)式から系内の粒子数(N)が計算されるが、その計
算精度は、懸濁液のような不均一系における凝集機構の
解明、凝集反応の解析、最適凝集剤注大量の決定等の目
的の為には十分な精度を持っている。
log(L+/L2)=C+Np. ..
.. .. (3) N: Number of particles in the system (number of particles) CI: Coefficient that changes depending on particle size p: Coefficient coefficient p is almost constant regardless of the particle size.
Also, the coefficient C! is a variable that changes depending on the particle size, and its relationship with the particle radius is shown by the following equation. C+=C2rq
.. .. .. .. - <4) C2: Coefficient r: Particle radius q: Coefficient Therefore, equation (3) becomes as follows. log (
LL/L2) = C2r qN p Therefore, from equation (2) and (5) 2, the following equation is obtained. <kff)”
(q-2p) (log(L+/L2) }l
/(q-2p) In this way, by removing the upper and lower ends of the amplitude of the transmitted light intensity and their median value using equation (6). The particle size of the particles in the reaction tank is determined. In addition,
While it is desirable to set the upper end (L2) and lower end (L1) of the amplitude of the transmitted light intensity based on the frequency of their appearance, once the particle radius (r) is determined from equation (6), (3 )
From equations and equations (4), the number of suspended particles in the system (N>) can be found using the following equation: shows the relationship between the measured value using the method shown in Figure 2, the calculated value of the particle radius (r) obtained from equation (6), and the actual measured value. Here, the same spherical resin as above was used. The calculation accuracy is about ±9% on average, but similar results can be obtained for aluminum flock. Figure 5 shows the measured values using the method shown in Figure 2 and the system internal values obtained from equation (7). It shows the relationship between the calculated value and the actual measured value of the number of particles (N).The calculation accuracy is about ±19% on average.In this way, from equation (6), particle radius < r) is also expressed as (
7) The number of particles (N) in the system is calculated from the formula, but the calculation accuracy depends on the elucidation of the aggregation mechanism in a heterogeneous system such as a suspension, the analysis of the aggregation reaction, and the determination of the optimal amount of flocculant injection. It has sufficient accuracy for such purposes.

第6図は、カオリン 50 mg/I を含有する人工
濁水に対して、アルミニウム塩による凝集反応を行わせ
た時の各指標と凝集剤注入量との関係を示している図で
ある. 第6図一aから、凝集剤注入量 (Cロ) 8 −10
 mg/lにおいて凝集速度K2は最大値を、凝集速度
K3および凝集開始時闇(T)は最小値を収っているこ
とが示されている。一方、第6図−bがら、上記の′a
4A剤注入i(Co)において、透過光強度のMhi 
 D =L2−Ll (第2図参照)、粒子半径 r 
(図示せず)及び沈降速度 V(第2図参照)は最大値
を取り、系内の粒子数 N (図示せず)は最小値を取
っている事が示されている. 従って、懸濁液のil2集沈殿処理の目的である沈降性
の良いフロックを形成させるような最適atA剤注入量
を決定するためには、凝集速度K2,無次元総断面積滅
少速炭 Kt2および粒子半径 rが最大値を取り、凝
集速度 K3,無次元総断面積滅少速度Kt3 ,凝集
開始時間T,Ttおよび系内の粒子数 Nが最小値を取
るような最適凝集剤注入量を決定すれば良いことになる
Figure 6 is a diagram showing the relationship between each index and the amount of flocculant injected when a flocculation reaction using aluminum salt was performed on artificial turbid water containing 50 mg/I of kaolin. From Figure 6 1a, the amount of coagulant injected (Cro) 8 -10
It is shown that at mg/l, the aggregation rate K2 reaches the maximum value, and the aggregation rate K3 and the darkness at the start of aggregation (T) reach the minimum values. On the other hand, as shown in Figure 6-b, the above 'a'
In 4A agent injection i (Co), the transmitted light intensity Mhi
D = L2-Ll (see Figure 2), particle radius r
(not shown) and sedimentation velocity V (see Figure 2) take the maximum value, and the number of particles in the system N (not shown) takes the minimum value. Therefore, in order to determine the optimum amount of atA agent to be injected to form flocs with good sedimentation properties, which is the purpose of the IL2 collection and sedimentation treatment of the suspension, it is necessary to The optimum flocculant injection amount is determined so that the particle radius r takes the maximum value, the aggregation rate K3, the dimensionless total cross-sectional area reduction rate Kt3, the aggregation start time T, Tt, and the number of particles in the system N take the minimum values. It will be a good thing if you decide.

く発明の効果〉 本発明の凝集速度、平均フロック径・数の計測による凝
集試験方法は、上述のような作用を持っているので、 (1)従前の方法より短時間で凝鎮反応の良否の判定と
最遡凝集剤注入量の決定が可能となる効果 を有し、 ( 11)原水の水質変動に容易に対応しうる効果を有
し、 ( II+)本発明において用いている凝集反応の指標
は、自動的な計測・計算・出力が可能であり、従って、
凝集反応試験および最適凝集剤注入量の決定の自動化が
可能となる効果を有し、 (IV)多数の指標に基づく試験法であることがら、判
定および決定精度が向上する効果を有する.
Effects of the Invention The flocculation test method of the present invention, which measures the flocculation rate and average floc diameter/number, has the above-mentioned effects. (11) It has the effect of easily responding to changes in the quality of raw water; (II+) The flocculation reaction used in the present invention has the following effects: Indicators can be automatically measured, calculated, and output, and therefore,
(IV) Since the test method is based on a large number of indicators, it has the effect of improving judgment and decision accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の凝集速度、平均フロック径数の計測
による凝集試験方法を実施するための測定装置を示す断
面図である. 第2図は、第1図の測定装置によって本発明の実施例を
実行した時の透過光強度の時間変化を示す図である. 第3図は、透過光強度と系内の粒子の総断面積との関係
を示す図である. 第4図は、第2図の方法で求めた粒子半径の実澗値と計
算値との関係を示す図である. 第5図は第2図の方法で求めた懸濁液中の粒子数の実測
値と計算値との関係を示す図である.第6図は、第2図
の方法で求めた′a集速度、変動福及び沈降速度と凝集
剤注入量との関係を示す区である. 2........凝#&反応容器 10, 12.14 22.24 26、 30. 33. 34. 36. 38. 混和液 フロック 撹拌羽根 撹拌機 開閉弁 混和槽 循環パイプ ′as剤槽 リード線 光源 レンズ フィルター 光量調節ボタン スリット 光電変換素子 増幅器 感度調整ボタン 測定装置 才 t 図 壓2口 ’r−srn nb+呂 NWr′ Co (1/λ)
FIG. 1 is a sectional view showing a measuring device for carrying out the agglomeration test method of the present invention by measuring the agglomeration rate and average floc diameter number. FIG. 2 is a diagram showing temporal changes in transmitted light intensity when the embodiment of the present invention is carried out using the measuring device shown in FIG. Figure 3 is a diagram showing the relationship between transmitted light intensity and total cross-sectional area of particles in the system. FIG. 4 is a diagram showing the relationship between the actual and calculated particle radius values determined by the method shown in FIG. 2. Figure 5 is a diagram showing the relationship between the measured value and the calculated value of the number of particles in a suspension determined by the method shown in Figure 2. Figure 6 shows the relationship between the collection rate, fluctuation rate and sedimentation rate determined using the method shown in Figure 2 and the amount of flocculant injected. 2. .. .. .. .. .. .. .. Coagulation # & reaction vessel 10, 12.14 22.24 26, 30. 33. 34. 36. 38. Mixed liquid floc Stirring blade Stirrer Open/close valve Mixing tank Circulation pipe 'AS agent tank Lead line Light source Lens filter Light intensity adjustment button Slit Photoelectric conversion element Amplifier Sensitivity adjustment button Measuring device Diagram 2 ports 'r-srn nb+ro NWr' Co (1/λ)

Claims (5)

【特許請求の範囲】[Claims] (1)(a)懸濁液と凝集剤との混和液を作成する第1
の段階と (b)撹拌機及び光源部と受光部とから成る透過光強度
測定装置とを具備する凝集反応槽中において所定の撹拌
速度で撹拌し、凝集反応を進行させる第2の段階と (c)第2の段階の過程で、連続的に透過光強度を測定
する第3の段階と (d)第3の段階で連続的に測定された透過光強度変化
から、凝集・フロック形成速度(以下凝集速度と記す)
、無次元総断面積減少速度、フロック径、フロック数を
算出する第4の段階と (e)第4の段階で連続的に算出された凝集速度、無次
元総断面積減少速度、フロック径、フロック数、及び、
それらの最大値又は最小値に基づき、凝集反応の良否の
判定と最適凝集剤注入量を決定する第5の段階 とを具備することを特徴とする懸濁液の凝集試験方法と
最適凝集剤注入量決定方法
(1) (a) The first step of creating a mixture of the suspension and the flocculant
(b) a second step in which the aggregation reaction is progressed by stirring at a predetermined stirring speed in a coagulation reaction tank equipped with a stirrer and a transmitted light intensity measuring device consisting of a light source section and a light receiving section; c) A third stage in which the transmitted light intensity is continuously measured during the second stage; and (d) From the changes in the transmitted light intensity continuously measured in the third stage, the rate of aggregation and floc formation ( (hereinafter referred to as aggregation rate)
, a fourth step of calculating the dimensionless total cross-sectional area reduction rate, floc diameter, and number of flocs; and (e) agglomeration rate, dimensionless total cross-sectional area reduction rate, and floc diameter continuously calculated in the fourth step; number of flocks, and
A suspension flocculation test method and optimal flocculant injection characterized by comprising a fifth step of determining whether the flocculation reaction is good or not and determining the optimal flocculant injection amount based on the maximum or minimum value thereof. Quantity determination method
(2)第3の段階において、連続的に測定された透過光
強度変化から、凝集反応を3区分に区分し、各区分内に
おける凝集速度(X_1、X_2、及びX_3)を算出
する方法、さらに、凝集剤注入時点から、第1区分の凝
集速度K_1が第2区分の凝集速度X_2に変化する時
点までの凝集開始時間(T)を算出する方法、さらに、
算出された凝集速度(K_1、K_2、及びK_3)、
凝集開始時間(T)、および、それらの最大値または最
小値から、凝集反応の良否の判定と最適凝集剤注入量を
決定する方法を特徴とする特許請求の範囲(1)項記載
の懸濁液の凝集試験方法と最適凝集剤注入量決定方法
(2) In the third step, a method of dividing the aggregation reaction into three categories from the continuously measured changes in transmitted light intensity and calculating the aggregation rate (X_1, X_2, and X_3) within each category; , a method for calculating the aggregation start time (T) from the time of coagulant injection to the time when the aggregation rate K_1 in the first section changes to the aggregation rate X_2 in the second section;
calculated agglomeration rates (K_1, K_2, and K_3),
The suspension according to claim (1), characterized by a method of determining whether the aggregation reaction is good or not and determining the optimum amount of coagulant to be injected from the aggregation start time (T) and the maximum or minimum value thereof. Liquid flocculation test method and optimal flocculant injection amount determination method
(3)第3の段階において、連続的に測定された透過光
強度変化から、系内粒子の総断面積変化を次式により算
出する方法、 I=I■ exp(−KNπr^2) さらに、総断面積変化から凝集反応を3区分に区分し、
各区分内における無次元総断面積減少速度Kt値(Kt
_1、Kt_2、及びKt_3)を算出する方法、 さらに、凝集剤注入時点から、第1区分の無次元総断面
積減少速度Kt_1が第2区分のKt_2に変化する時
点までの凝集開始時間(Tt)を算出する方法、さらに
、算出された無次元総断面積減少速度Kt値(Kt_1
、Kt_2、およびKt_3)、凝集開始時間(Tt)
、および、それらの最大値または最小値から、凝集反応
の良否の判定と最適凝集剤注入量を決定する方法を特徴
とする特許請求の範囲(1)項もしくは第(2)項記載
の懸濁液の凝集試験方法と最適凝集剤注入量決定方法
(3) In the third step, a method of calculating the change in the total cross-sectional area of the particles in the system from the continuously measured changes in transmitted light intensity using the following formula, I=I■ exp(-KNπr^2) Furthermore, The aggregation reaction was divided into three categories based on the change in the total cross-sectional area,
Kt value (Kt
_1, Kt_2, and Kt_3); Furthermore, the aggregation start time (Tt) from the time of coagulant injection to the time when the dimensionless total cross-sectional area reduction rate Kt_1 of the first section changes to Kt_2 of the second section. Furthermore, the calculated dimensionless total cross-sectional area decreasing speed Kt value (Kt_1
, Kt_2, and Kt_3), aggregation onset time (Tt)
The suspension according to claim (1) or (2), characterized by a method for determining whether the flocculant reaction is good or not and determining the optimal flocculant injection amount from the maximum value or minimum value thereof. Liquid flocculation test method and optimal flocculant injection amount determination method
(4)第3の段階において、連続的に測定された透過光
強度の変動幅より各時点におけるフロック径(r_t)
を次式により算出する方法、 r_t=[(kπ)^p^/^(^q^−^2^p^)
{log(L_1/L_2)}^t^/^(^q^−^
2^p^)]/[C_2^t^/^(^q^−^2^p
^){log(L_0/L)}^p^/^(^q^−^
2^p^)] さらに、算出されたフロック径(r_t)の時間変化状
況、所望時点におけるr_t、及び、その最大値より凝
集反応の良否の判定と最適凝集剤注入量を決定する方法
を特徴とする特許請求の範囲(1)項記載の懸濁液の凝
集試験方法と最適凝集剤注入量決定方法
(4) In the third stage, the floc diameter (r_t) at each time point is calculated from the fluctuation range of the continuously measured transmitted light intensity.
How to calculate by the following formula, r_t=[(kπ)^p^/^(^q^-^2^p^)
{log(L_1/L_2)}^t^/^(^q^-^
2^p^)]/[C_2^t^/^(^q^-^2^p
^) {log (L_0/L)}^p^/^(^q^-^
2^p^)] Furthermore, it is characterized by a method of determining the quality of the flocculation reaction and the optimal flocculant injection amount based on the temporal change of the calculated floc diameter (r_t), r_t at a desired time, and its maximum value. A suspension flocculation test method and a method for determining the optimum flocculant injection amount according to claim (1)
(5)第3の段階において、連続的に測定された透過光
強度の変動幅より、第(4)項記載の方法により算出さ
れた各時点のフロック径(r_t)をを用いて、各時点
におけるフロック数(N_t)を次式により算出する方
法、 N_t=[{log(L_1/L_2)}^1^/^p
]/[(C_2^1^p)・(r^q^/^p)] また、算出されたフロック数(N_t)の時間変化状況
、所望時点におけるN_t、及び、その最小値より凝集
反応の良否の判定と最適凝集剤注入量を決定する方法を
特徴とする特許請求の範囲第(1)項もしくは第(4)
項記載の懸濁液の凝集試験方法と最適凝集剤注入量決定
方法
(5) In the third step, the floc diameter (r_t) at each time point calculated by the method described in paragraph (4) from the fluctuation range of the transmitted light intensity that was continuously measured is used. A method of calculating the number of flocs (N_t) using the following formula, N_t=[{log(L_1/L_2)}^1^/^p
]/[(C_2^1^p)・(r^q^/^p)] Also, from the time change status of the calculated number of flocs (N_t), N_t at the desired time, and its minimum value, the aggregation reaction can be determined. Claim (1) or (4) characterized by a method for determining quality and determining the optimum amount of coagulant to be injected.
Aggregation test method for suspension and method for determining optimal flocculant injection amount described in section
JP11246489A 1989-05-01 1989-05-01 Aggregation testing method based on measurment of aggregation speed and average floc diameter/number Pending JPH02291943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11246489A JPH02291943A (en) 1989-05-01 1989-05-01 Aggregation testing method based on measurment of aggregation speed and average floc diameter/number

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11246489A JPH02291943A (en) 1989-05-01 1989-05-01 Aggregation testing method based on measurment of aggregation speed and average floc diameter/number

Publications (1)

Publication Number Publication Date
JPH02291943A true JPH02291943A (en) 1990-12-03

Family

ID=14587295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11246489A Pending JPH02291943A (en) 1989-05-01 1989-05-01 Aggregation testing method based on measurment of aggregation speed and average floc diameter/number

Country Status (1)

Country Link
JP (1) JPH02291943A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263480A (en) * 1991-02-18 1992-09-18 Nippon Telegr & Teleph Corp <Ntt> Oxide superconductor single crystal thin film forming board and manufacture thereof
JPH04137708U (en) * 1991-06-19 1992-12-22 株式会社スイレイ Coagulant injection control device for solid-liquid separation systems for raw water such as sludge water
KR100357432B1 (en) * 2000-09-19 2002-10-19 한무영 Method for the Evaluation of Sedimentation Performance in Water Treatment Plant Using Particle Counters
JP2009000672A (en) * 2007-05-18 2009-01-08 Metawater Co Ltd Method and device for deciding flocculating agent infusion rate in method for treating water which performs coagulation/sedimentation treatment
JP2009145354A (en) * 1997-11-28 2009-07-02 Michelin & Cie Alumina filler, and rubber composition containing the filler
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2011200841A (en) * 2010-03-26 2011-10-13 Metawater Co Ltd Method and apparatus for controlling injection rate of flocculant in real time
WO2013008520A1 (en) * 2011-07-12 2013-01-17 積水アクアシステム株式会社 Sedimentation evaluation device and optimum addition amount calculation device
CN105300860A (en) * 2015-11-03 2016-02-03 华东师范大学 Large-size movable suspended matter section high-resolution measurement and slidable sampling device
JP2020018978A (en) * 2018-08-02 2020-02-06 オルガノ株式会社 Coagulation condition evaluation apparatus, coagulation condition evaluation method, coagulation processing system, and coagulation processing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263480A (en) * 1991-02-18 1992-09-18 Nippon Telegr & Teleph Corp <Ntt> Oxide superconductor single crystal thin film forming board and manufacture thereof
JPH04137708U (en) * 1991-06-19 1992-12-22 株式会社スイレイ Coagulant injection control device for solid-liquid separation systems for raw water such as sludge water
JP2009145354A (en) * 1997-11-28 2009-07-02 Michelin & Cie Alumina filler, and rubber composition containing the filler
KR100357432B1 (en) * 2000-09-19 2002-10-19 한무영 Method for the Evaluation of Sedimentation Performance in Water Treatment Plant Using Particle Counters
JP2009000672A (en) * 2007-05-18 2009-01-08 Metawater Co Ltd Method and device for deciding flocculating agent infusion rate in method for treating water which performs coagulation/sedimentation treatment
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2011200841A (en) * 2010-03-26 2011-10-13 Metawater Co Ltd Method and apparatus for controlling injection rate of flocculant in real time
WO2013008520A1 (en) * 2011-07-12 2013-01-17 積水アクアシステム株式会社 Sedimentation evaluation device and optimum addition amount calculation device
JP5326055B2 (en) * 2011-07-12 2013-10-30 積水アクアシステム株式会社 Precipitation evaluation device and optimum addition amount calculation device
CN105300860A (en) * 2015-11-03 2016-02-03 华东师范大学 Large-size movable suspended matter section high-resolution measurement and slidable sampling device
JP2020018978A (en) * 2018-08-02 2020-02-06 オルガノ株式会社 Coagulation condition evaluation apparatus, coagulation condition evaluation method, coagulation processing system, and coagulation processing method

Similar Documents

Publication Publication Date Title
US5194921A (en) Method and apparatus for detecting flocculation process of components in liquid
JP3192364B2 (en) Method and apparatus for recording the state of a moving suspension
Gregory Turbidity and beyond
JPH02291943A (en) Aggregation testing method based on measurment of aggregation speed and average floc diameter/number
US4936674A (en) Apparatus and method for determining functions of cells
US4276119A (en) Method and apparatus for on-line monitoring of specific surface of mechanical pulps
US4576723A (en) Estimation of the degree of dispersion in flowing concentrated dispersions
CA1081497A (en) System for rate immunonephelometric analysis
Fukuyama et al. Continuous measurement of shear-induced platelet aggregation
US4006988A (en) Photo-electric depth or turbidity meter for fluid suspensions
US4775991A (en) Method of and apparatus for grain-size analysis
US5426054A (en) Process and apparatus for determining an optimal energy insertion in coagulating systems
JPS5827464B2 (en) Method and apparatus for measuring the beating degree of pulp fibers in the papermaking process
Kayode et al. A new technique for monitoring alum sludge conditioning
US4348112A (en) Method of and apparatus for measuring the volume of material in suspension in a liquid
JP3300764B2 (en) Suspension coagulation test method and coagulant injection amount determination method
JP3500606B2 (en) How to determine the optimal coagulant injection amount
JP2824164B2 (en) Particle measurement method
CN1264007C (en) Method for investigating fresh degree of rice grains
JPH0817893B2 (en) Coagulant injection controller for water purification plants
Staudinger et al. Quick optical measurement of particle distribution in a sedimentation apparatus
JPS649566B2 (en)
JPH05215666A (en) Method and device for measuring number of bacteria
JP3088122B2 (en) Method and apparatus for measuring specific surface area of ultrafine powder
JPS62255851A (en) Method and instrument for measuring coagulating sedimentation reaction