JPH02290257A - Carrier for catalyst and its manufacture - Google Patents

Carrier for catalyst and its manufacture

Info

Publication number
JPH02290257A
JPH02290257A JP2032483A JP3248390A JPH02290257A JP H02290257 A JPH02290257 A JP H02290257A JP 2032483 A JP2032483 A JP 2032483A JP 3248390 A JP3248390 A JP 3248390A JP H02290257 A JPH02290257 A JP H02290257A
Authority
JP
Japan
Prior art keywords
refractory inorganic
powder
carrier
inorganic particles
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2032483A
Other languages
Japanese (ja)
Other versions
JP2905535B2 (en
Inventor
Shigemi Osaka
大坂 重美
Kazuo Hata
和男 秦
Tsukasa Takahashi
典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2032483A priority Critical patent/JP2905535B2/en
Publication of JPH02290257A publication Critical patent/JPH02290257A/en
Application granted granted Critical
Publication of JP2905535B2 publication Critical patent/JP2905535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To manufacture a carrier having physical properties fit for various kinds of reaction without using a bonding agent by using fire-resistant inorganic particles as cores and carrying fire-resistant inorganic powdery grains over said cores. CONSTITUTION:Fire-resistant inorganic particles of a metal oxide such as alumina or silica, a multi-component oxide such as mullite or cordierite and silica on carbide or the like are used as cores. Fire-resistant inorganic powdery grains composed of one or two kinds or more of a metal oxide such as alumina or silica, silicon carbide, a composite oxide such as alumina-silica are carried over said cores. As a bonding agent is not used in said manufacture of carrier, the effect of transferring the bonding agent component into the catalyst substance is not generated. Also, such various properties as surface area, bore, volume of the catalyst carrier can be controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、触媒用担体およびその製造方法に関するもの
である。詳しく述べると、各種の使用対象反応に適合し
得るように、触媒用担体の表面積、細孔径、細孔容積、
それらの分布、酸・塩基度、その分布等を任意に設計す
ることが可能な触媒用担体の製造方法および新規な構造
を有する触媒用担体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a catalyst carrier and a method for producing the same. Specifically, the surface area, pore diameter, pore volume, and
The present invention relates to a method for producing a catalyst carrier that allows the distribution, acidity/basicity, distribution, etc. of the catalyst carrier to be arbitrarily designed, and to a catalyst carrier having a novel structure.

〔従来の技術〕[Conventional technology]

従来、多孔性無機質担体はアルミナ、シリカ、チタニア
、ジルコニア等の各種金属酸化物あるいは炭化珪素、窒
化珪素等の耐火性素材からなる粉粒体を骨材とし、これ
らと主に粘土質からなる接合剤を混合し、造粒等成形後
、焼成することにより製造される。
Conventionally, porous inorganic carriers have aggregates made of powder and granules made of various metal oxides such as alumina, silica, titania, and zirconia, or refractory materials such as silicon carbide and silicon nitride, and are bonded with these materials mainly made of clay. It is manufactured by mixing the ingredients, forming them by granulation, etc., and then firing them.

かくのごとく製造される担体は、該担体の表面積、細孔
径およびその分布等担体として具備すべき物性が各種反
応用に適合するように調製され工業的に広く使用されて
いる。しかしながら、この種の担体を使用した触媒は比
較的高温領域で使用されるのが通常であり、反応中に担
体に含有される結合剤の成分が触媒物質中に移動し、そ
の影響で触媒活性、選沢性が経時的に変化するという現
象が起る。特に、担体製造時の焼成温度を低下させる目
的で結合剤中にアルカリ金属が使用されるが、このナト
リウム、カリウム等のアルカリ金属は移動し易く、又ア
ルカリ金属は一般に微量の混入でも触媒性能に重大な影
響を及ぼす。それ故担体にとって不純物とも言うべき結
合剤を使用しない高純度な担体も製造されている。例え
ば、結合剤の代替えとして骨材と同種の金属のゾルや塩
類を使用する方法、あるいはSiCの場合のごとく反性
を変化できる範囲が狭く、担体として、機能性が低いの
が実情である。
The carriers produced in this way are widely used industrially because the physical properties that the carrier should have, such as surface area, pore diameter, and distribution thereof, are adjusted to suit various reactions. However, catalysts using this type of carrier are usually used at relatively high temperatures, and during the reaction, components of the binder contained in the carrier migrate into the catalyst material, resulting in catalytic activity. , a phenomenon occurs in which selectivity changes over time. In particular, alkali metals are used in the binder for the purpose of lowering the firing temperature during support production, but alkali metals such as sodium and potassium are easily mobile, and even a trace amount of alkali metals generally impairs catalyst performance. have a significant impact. Therefore, high-purity carriers are also manufactured that do not use binders, which can be considered as impurities for carriers. For example, as a substitute for the binder, there is a method of using a sol or salt of the same metal as the aggregate, or as in the case of SiC, the range in which the anti-resistance can be changed is narrow, and the actual situation is that the functionality as a carrier is low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、本発明の目的は、新規な触媒用担体および
その製造方法を提供することにある。
Therefore, an object of the present invention is to provide a novel catalyst carrier and a method for producing the same.

本発明の他の目的は、上記結合剤を使用せずに、かつ担
体物性を各種反応に適合するように広く調節することが
容易に可能な担体を提供することを目的とする。
Another object of the present invention is to provide a carrier whose physical properties can be easily adjusted to suit various reactions without using the above-mentioned binder.

本発明のさらに他の目的は、容易に実施することが可能
であり、しかも工業的に有利な担体の製造方法を提供す
ることにある。
Still another object of the present invention is to provide a method for producing a carrier that can be easily carried out and is industrially advantageous.

〔課題を解決するための手段〕[Means to solve the problem]

これらの諸目的は、耐火性無機粒子を核とし、該核上に
耐火性無機粉粒体が担持されてなる触媒用担体により達
成される。
These objects are achieved by a catalyst carrier comprising refractory inorganic particles as a core and refractory inorganic powder particles supported on the core.

これらの諸目的は、耐火性無機粒子を核とし、該核上に
耐火性無機粉粒体およびウィスカ一が担持されてなる触
媒用担体によっても達成される。
These objects can also be achieved by a catalyst carrier comprising refractory inorganic particles as a core and refractory inorganic powder and whiskers supported on the core.

これらの諸目的は、耐火性無機粒子を核とし、該核上に
耐火性無機粉粒体および無機酸化物ゾルが担持されてな
る触媒用担体によっても達成される。
These objects can also be achieved by a catalyst carrier comprising a core of refractory inorganic particles and a refractory inorganic powder and an inorganic oxide sol supported on the core.

これらの諸目的は、耐火性無機粒子を核とし、該核上に
耐火性無機粉粒体、ウィスカーおよび無機酸化物ゾルが
担持されてなる触媒用担体によっても達成される。
These objects can also be achieved by a catalyst carrier comprising a core of refractory inorganic particles and a refractory inorganic powder, whiskers, and inorganic oxide sol supported on the core.

これらの諸目的は、耐火性無機粒子に耐火性無機粉粒体
のスラリーを適用し、かつ乾燥することよりなる耐火性
無機粒子を核とし、該核に耐火性無機粉粒体が担持され
てなる触媒用担体の製造方法によっても達成される。
These objectives are achieved by applying a slurry of refractory inorganic powder to refractory inorganic particles and drying the refractory inorganic particles as a core, and the refractory inorganic powder is supported on the core. This can also be achieved by a method for producing a catalyst carrier.

これらの諸目的は、耐火性無機粒子に耐火性無機粉粒体
とウィスカーとの混合スラリーを適用し、かつ乾燥する
ことよりなる耐火性無機粒子を核とし、該核上に耐火性
粉粒体およびウィスカ一が担持されてなる触媒用担体の
製造方法によっても達成される。
These objectives are to form a core of refractory inorganic particles by applying a mixed slurry of refractory inorganic powder and whiskers to refractory inorganic particles, and drying the mixture. This can also be achieved by a method for producing a catalyst carrier on which whiskers are supported.

これらの諸目的は、耐火性無機粒子に耐火性無機粉粒体
と無機酸化物ゾルとの混合スラリーを適用し、かつ乾燥
することよりなる耐火性無機粒子を核とし、該核上に耐
火性無機粉粒体および無機酸化物ゾルが担持されてなる
触媒用担体の製造方法によっても達成される。
These objectives are to form a core of refractory inorganic particles by applying a mixed slurry of a refractory inorganic powder and an inorganic oxide sol to refractory inorganic particles and drying the mixture, and to apply a refractory inorganic particle onto the core. This can also be achieved by a method for producing a catalyst carrier on which an inorganic powder and an inorganic oxide sol are supported.

これらの諸目的は、耐火性無機粒子に耐火性無機粉粒体
とウィスカーと無機酸化物ゾルとの混合スラリーを適用
し、かつ乾燥することよりなる耐火性無機粒子を核とし
、該核上に耐火性無機粉粒体、ウィスカーおよび無機酸
化物ゾルが担持されてなる触媒用担体の製造方法によっ
ても達成される。
These objectives are achieved by applying a mixed slurry of refractory inorganic powder, whiskers, and inorganic oxide sol to refractory inorganic particles, and then drying the refractory inorganic particles as a core. This can also be achieved by a method for producing a catalyst carrier on which refractory inorganic powder, whiskers, and inorganic oxide sol are supported.

本発明によれば、触媒担体の表面積、細孔径、細孔容積
、それらの分布、酸・塩基度、その分布等の諸性状を任
意に設計することが可能となったので、遂次反応のコン
トロール、熱伝達性のコントロールおよび担体強度のコ
ントロールが可能となり、各種の使用対象反応に適合し
た触媒が提供されるという優れた効果を奏する。
According to the present invention, it has become possible to arbitrarily design various properties of the catalyst carrier such as surface area, pore diameter, pore volume, their distribution, acidity/basicity, and their distribution. This makes it possible to control the heat transfer properties and the carrier strength, and has the excellent effect of providing catalysts suitable for various target reactions.

本発明につきさらに詳しく述べる。The present invention will be described in more detail.

本発明においては核となる耐火性無機粒子に骨材物質で
ある耐火性無機粉粒体を担持せしめ、って いで必要に応じて熱処理し#担体が製造される。
In the present invention, the core refractory inorganic particles are loaded with refractory inorganic powder as an aggregate material, and then heat treated as required to produce #carrier.

従って、核となる粒子は単に骨材粉粒体を担体の形状に
形成する目的で使用されるもので、これ自体には担体と
しての機能性は要求されない。該核粒子物質としては、
アルミナ、ジルコニア、チタニア、シリカ等の金属酸化
物、ムライト、コージライト、ジルコン等の複合酸化物
及び炭化珪素、窒化珪素等の非酸化物等が使用され、こ
れらを粘土質の結合剤を使用せずに焼結した焼結体、あ
るいはこれらと同種の金属酸化物ゾルや金属塩類等を焼
結助剤とした焼結体、ないしこれらの溶融物が使用され
る。そして核粒子の形状は不定形、球形、円筒形、円柱
形、ラシヒリング形、ベールサドル形等特に制限はない
が、骨材粉粒体が均一の厚さに担持されるようにころが
り性の良好な形状が望ましい。また、核粒子の大きさは
その代表径が0. 3〜12mmの範囲で適宜選択され
、好ましくは、1〜8mmである。
Therefore, the core particles are used simply for the purpose of forming the aggregate powder into the shape of a carrier, and are not required to have functionality as a carrier in themselves. As the nuclear particle material,
Metal oxides such as alumina, zirconia, titania, and silica, composite oxides such as mullite, cordierite, and zircon, and non-oxides such as silicon carbide and silicon nitride are used. A sintered body sintered without sintering, a sintered body using the same kind of metal oxide sol or metal salt as a sintering agent, or a molten product thereof are used. The shape of the core particles is not particularly limited, such as amorphous, spherical, cylindrical, cylindrical, Raschig ring, veil saddle, etc., but should have good rolling properties so that the aggregate powder is supported with a uniform thickness. A shape is desirable. In addition, the size of the core particle has a representative diameter of 0. The length is appropriately selected within the range of 3 to 12 mm, preferably 1 to 8 mm.

担体としての機能性、例えば表面積、細孔径、細孔容積
、酸・塩基度等の物性及び化学的諸特性を決定する骨材
物質の選択が重要である。これらの諸特性値は、触媒の
活性、選択性、耐久性に大きく影響をおよぼし、対象と
する反応に至通な担体の設計が必要である。
It is important to select an aggregate material that determines its functionality as a carrier, such as physical and chemical properties such as surface area, pore diameter, pore volume, acidity and basicity. These characteristic values greatly affect the activity, selectivity, and durability of the catalyst, and it is necessary to design a support that is compatible with the target reaction.

骨材物質としてはアルミナ、チタニア、ジルコニア、マ
グネシア、シリカ等の金属酸化物、炭化珪素、窒化珪素
、窒化アルミナ等の非酸化物、あるいはアルミナーシリ
カ、アルミナーチタニア、チタニアーシリカ、チタニア
ージルコ二ア、コージライト、ムライト、ジルコン等の
複合酸化物等の一種又は二種以上を混合した粉粒体が使
用される。
Aggregate materials include metal oxides such as alumina, titania, zirconia, magnesia, and silica, non-oxides such as silicon carbide, silicon nitride, and alumina nitride, or alumina silica, alumina titania, titania silica, and titania zirconia. Powder or granules made by mixing one or more of complex oxides such as , cordierite, mullite, and zircon are used.

これらの素材を骨材用粉粒体として使用するにあたって
は、担体として要求される物性に適合するように表面積
や細孔径、細孔径分布、酸・塩基度、その分布等が調整
される。例えば、担体の細孔径分布において2つ以上の
ピークを有する担体は、2種以上の異なる細孔径を有す
る粉粒体を所望の量混合して使用することによって製造
することができる。
When these materials are used as aggregate powder, the surface area, pore diameter, pore diameter distribution, acidity/basicity, and their distribution are adjusted to suit the physical properties required as a carrier. For example, a carrier having two or more peaks in its pore size distribution can be produced by mixing desired amounts of two or more types of powder particles having different pore sizes.

又、粉粒体を構成する粒子の形状は、通常は不定形であ
るが、球状、薄片状、短冊状等粒子形状を規制すること
により、細孔径や綱孔容積等の担体物性のより精密なコ
ントロールが可能となる。
In addition, although the shape of the particles constituting powder and granules is usually amorphous, by controlling the particle shape such as spherical, flaky, and strip-like shapes, it is possible to more precisely control the physical properties of the carrier, such as pore diameter and pore volume. control is possible.

これらの粉粒体の平均粒径は0.05〜1200μm、
好ましくは0.1〜500μmである。
The average particle size of these powders is 0.05 to 1200 μm,
Preferably it is 0.1 to 500 μm.

該粉粒体をついで核粒子に}旦持せしめるが、扮粒体が
核粒子に担持しにくくて担持歩留りが悪い場合や担持さ
れた粉粒体の担持強度が弱い場合には、担持助剤として
ウィスカーを使用することが望ましい。ウィスカー以外
にも担持強度を向上する材料としてガラス繊維等の無機
質繊維類もあるが、後述の本発明の担体製造方法におい
てはウィスカーの形状が最も望ましいものであった。担
持歩留り、担持強度の向上にはウィスカー使用の効果が
大なるものがあるが、ウィスカーは耐火性であるゆえ担
体構成成分ともなり担体物性を調節する効果を発揮する
The granular material is then supported on the core particles, but if the granular material is difficult to be supported on the core particles and the supporting yield is poor, or if the supporting strength of the supported granular material is weak, a supporting aid may be used. It is preferable to use whiskers as In addition to whiskers, there are also inorganic fibers such as glass fibers as materials that improve the support strength, but the shape of whiskers was the most desirable in the carrier manufacturing method of the present invention, which will be described later. The use of whiskers is highly effective in improving the loading yield and loading strength, and since whiskers are fire resistant, they also serve as a component of the carrier and exert the effect of adjusting the physical properties of the carrier.

本発明で使用されるウィスカーは公知の方法で製造され
るものであり、その材質としてはタングステン、鉄、ニ
ッケル等の金属ウィスカー、あるいは炭化珪素、窒化珪
素、酸化アルミニウム、酸化チタン、酸化へリリウム、
ボロンカーバイド、チタンカーバイド、チタン酸化カリ
、リン酸カルシウム等が挙げられる。
The whiskers used in the present invention are manufactured by a known method, and their materials include metal whiskers such as tungsten, iron, and nickel, silicon carbide, silicon nitride, aluminum oxide, titanium oxide, helium oxide,
Examples include boron carbide, titanium carbide, potassium titanium oxide, and calcium phosphate.

本発明で使用されるウィスカ一の形状は平均直径が望ま
しくは0. 1〜5μm、更に好ましくは0. 3 〜
1 u m、長さは好ましくは5〜1000μm、更に
好ましくは70〜500μm、そのアスベクト比が好ま
しくはlO〜500、更に好ましくは20〜30のもの
である。
The shape of the whiskers used in the present invention preferably has an average diameter of 0. 1 to 5 μm, more preferably 0. 3 ~
1 μm, the length is preferably 5 to 1000 μm, more preferably 70 to 500 μm, and the aspect ratio is preferably 10 to 500, more preferably 20 to 30.

使用されるウィスカ一の量は骨材物質の量に対して1〜
50の重量%、好ましくは1〜20重量%の範囲の量で
骨材物質の担持歩留りおよび担持強度向上の効果が発揮
される。
The amount of whiskers used is 1 to 1 relative to the amount of aggregate material.
An amount of 50% by weight, preferably in the range from 1 to 20% by weight, is effective in improving the retention and strength of the aggregate material.

さらに、前記耐火性無機粉粒体、該耐火性無機粉粒体と
ウィスカーとの混合物に無機酸化物ゾルを配合すること
もできる。すなわち、ウィスカ一の使用により実用上充
分な強度を有する担体を容易に製造することができるが
、該担体を使用して触媒を調製する場合、例えば担体を
激しく攪拌しながら、触媒を調製する必要がある場合等
で、担体からもたらされる担体構成物質が触媒活性成分
中に混入する量をなるべく少量にする必要がある場合が
ある。このような場合には、ウィスカ一に加えあるいは
ウィスカーなしにさらに無機酸化物ゾルを併用すること
により良好な結果が得られる。
Furthermore, an inorganic oxide sol can also be blended into the refractory inorganic powder and the mixture of the refractory inorganic powder and whiskers. That is, a carrier having sufficient strength for practical use can be easily produced by using whiskers, but when preparing a catalyst using the carrier, it is necessary to prepare the catalyst while stirring the carrier vigorously, for example. In some cases, it may be necessary to minimize the amount of carrier constituent substances brought from the carrier mixed into the catalytically active component. In such cases, good results can be obtained by using an inorganic oxide sol in addition to or without whiskers.

その使用量は骨材物質の量に対して酸化物換算で0.5
〜20重量%、好ましくは1〜10重量%である 無機酸化物ゾルは、粉粒体とウィスカ一とのスラリー中
に添加し使用しても、あるいは、担持形成後に使用して
もよい。ただし、無機酸化物ゾルは他の#jIJ質を混
合したり、あるいは加熱することにより増粘ゲル化する
場合が多く、本発明においては安定性の高い無機酸化物
ゾルを使用することが望ましい。
The amount used is 0.5 in terms of oxide based on the amount of aggregate material.
The inorganic oxide sol in an amount of up to 20% by weight, preferably 1 to 10% by weight, may be added to the slurry of the powder and whiskers, or may be used after forming a support. However, the inorganic oxide sol often becomes thickened and gelled by mixing with other #jIJ substances or by heating, so it is desirable to use a highly stable inorganic oxide sol in the present invention.

本発明者らは、ゾルの調製方法についても鋭意検討した
結果、以下に述べるジルコニアゾルが安定性が高く、本
発明の担体製造に好適に使用できることが判明した。
The present inventors also conducted intensive studies on the method for preparing the sol, and as a result, it was found that the zirconia sol described below has high stability and can be suitably used for producing the carrier of the present invention.

本発明で使用されるジルコニアゾルは、例えば炭酸ジル
コニルアンモニウム水溶液とキレート化剤とを混合し、
炭酸ジルコニルアンモニウムを一旦ジルコニウムキレー
ト化合物となし、次いで該キレート化合物を加熱加水分
解し、次いで必要により限外I過膜を使用し枦過および
洗滌することにより調製される。
The zirconia sol used in the present invention is prepared by mixing an aqueous zirconyl ammonium carbonate solution and a chelating agent, for example,
It is prepared by first converting zirconyl ammonium carbonate into a zirconium chelate compound, then heating and hydrolyzing the chelate compound, and then, if necessary, filtering and washing using an ultra-I membrane.

本調製法においては市販の炭酸ジルコニルアンモニウム
水溶液が使用されるが、この炭酸ジルコニルアンモニウ
ムは、アンモニアおよび二酸化炭素等のガスの発生を伴
いながら、加水分解され含水ジルコニアとなり、この反
応液はpHがアルカリ性で、ゾルとしての性質を示すよ
うになる。しかしながら該反応を継続すると比較的短時
間で反応液の粘度上昇・ゲル化が起り、炭酸ジルコニル
アンモニウムを少量しか加水分解できない。炭酸ジルコ
ニルアンモニウムの加水分解反応を安定に継続するため
、炭酸ジルコニルアンモニウム水溶液とキレート化剤と
を混合し、あらかじめ炭酸ジルコニルアンモニウムとキ
レート化剤との反応生成物を形成せしめ、次いで、該生
成物を含む水溶液を60゜C以上に加熱し加水分解反応
を行ないジルコニアゾルを得る方法を本発明者らは見い
だした。
In this preparation method, a commercially available zirconyl ammonium carbonate aqueous solution is used, but this zirconyl ammonium carbonate is hydrolyzed into hydrous zirconia with the generation of gases such as ammonia and carbon dioxide, and this reaction solution has an alkaline pH. Then, it began to exhibit properties as a sol. However, if the reaction is continued, the viscosity of the reaction solution increases and gelation occurs in a relatively short period of time, and only a small amount of zirconyl ammonium carbonate can be hydrolyzed. In order to stably continue the hydrolysis reaction of zirconylammonium carbonate, an aqueous zirconylammonium carbonate solution and a chelating agent are mixed to form a reaction product between the zirconylammonium carbonate and the chelating agent, and then the product is The present inventors have discovered a method for obtaining a zirconia sol by heating an aqueous solution containing zirconia to 60°C or higher to carry out a hydrolysis reaction.

具体的には、攪拌槽型反応器に炭酸ジルコニルアンモニ
ウム水溶液を入れついで攪拌下キレート化剤を添加する
と、室温で迅速に炭酸ジルコニルアンモニウムとキレー
ト化剤が反応する。
Specifically, when an aqueous solution of zirconyl ammonium carbonate is placed in a stirred tank reactor and then a chelating agent is added under stirring, the zirconyl ammonium carbonate and the chelating agent react rapidly at room temperature.

反応後、反応液を60゜C以上に加熱すると二酸化炭素
とアンモニアを主体とするガスを発生しながら炭酸ジル
コニルアンモニウムとキレート化剤との反応物の加水分
解反応が進行する.,該反応中には反応液が増粘するこ
ともなく、反応液の透明性を保持したまま該反応を完了
することができる。
After the reaction, when the reaction solution is heated to 60°C or higher, the hydrolysis reaction of the reactants between zirconyl ammonium carbonate and the chelating agent proceeds while generating gases mainly consisting of carbon dioxide and ammonia. During the reaction, the reaction solution does not increase in viscosity, and the reaction can be completed while maintaining the transparency of the reaction solution.

該反応液は、p}Iがほぼ中性であり、上記反応中に、
ゾルとしては不純物イオン類であるアンモニウムイオン
や炭酸イオンがアンモニアや二酸化炭素とる。
The reaction solution has almost neutral p}I, and during the above reaction,
As a sol, impurity ions such as ammonium ions and carbonate ions take up ammonia and carbon dioxide.

なお、上記反応液中に残存する微少量の未反応物や炭酸
イオン、アンモニウムイオン等は限外炉過膜の使用によ
り効率よく短時間に炉過および洗滌することができ、さ
らに加熱や限外決過膜による濃縮により高純度で高濃度
のジルコニアゾルを得るこどができる。
In addition, minute amounts of unreacted substances, carbonate ions, ammonium ions, etc. remaining in the above reaction solution can be efficiently filtered and washed in a short time by using an ultrafilter membrane, and can be further removed by heating or ultrafiltration. High purity and high concentration zirconia sol can be obtained by concentration using a filtration membrane.

本発明で使用されるキレート化剤としては、カT ≠コール、ピロガロールなとのオキシフェノール類;ジ
エタノールアミン、トリエタノールアミンなどのアミノ
アルコール類;グリコール酸、クエン酸、酒石酸、乳酸
、マンデル酸、リンゴ酸、ヒドロキシアクリル酸などの
オキシ酸およびそれらのメチル、エチル、ヒドロキシエ
チルなどのエステル類、グリコールアルデヒドなどのオ
キシアルデヒド類;シュウ酸、マロン酸等のポリカルボ
ン酸類;グリシン、アラニンなどのアミノ酸類;アセチ
ルアセトン、ペンゾイルアセトン、ステアロイルアセト
ン、ステアロイルベンゾイルメタン、ジベンゾイルメタ
ンなどのβ−ジケトン類、ならびにアセト酢酸、プロピ
オニル酢酸、ベンゾイル酢酸などのβ−ケトン酸および
それらのメチル、エチル、n−プロビル、イソプロビル
、n−ブチル、L−ブチルなどのエステル類の工種また
は2種以上を組み合せて使用することができる。これら
のうち、グリコール酸、クエン酸、酒石酸、乳酸、マン
デル酸、リンゴ酸、ヒドロキシアクリル酸なとのオキシ
酸類およびアセチルアセトンなどのβ−ジケトン類が好
ましく使用される。さらに好ましくは、α.β、および
γ−オキシ酸頚でそれぞれα,β,γの炭素上の酸素原
子を有する官能基をもつα−.β−,γ−ケトン酸類あ
るいはそれらのエステル類である。
The chelating agents used in the present invention include oxyphenols such as CaT≠cole and pyrogallol; amino alcohols such as diethanolamine and triethanolamine; glycolic acid, citric acid, tartaric acid, lactic acid, mandelic acid, and apple. acids, oxyacids such as hydroxyacrylic acid and their esters such as methyl, ethyl, hydroxyethyl, oxyaldehydes such as glycolaldehyde; polycarboxylic acids such as oxalic acid and malonic acid; amino acids such as glycine and alanine; β-diketones such as acetylacetone, penzoylacetone, stearoylacetone, stearoylbenzoylmethane, dibenzoylmethane, and β-ketonic acids such as acetoacetic acid, propionylacetic acid, benzoylacetic acid, and their methyl, ethyl, n-probyl, and isoprovil , n-butyl, L-butyl, or a combination of two or more esters can be used. Among these, oxyacids such as glycolic acid, citric acid, tartaric acid, lactic acid, mandelic acid, malic acid, and hydroxyacrylic acid, and β-diketones such as acetylacetone are preferably used. More preferably α. β, and γ-oxyacid necks with functional groups having oxygen atoms on α, β, and γ carbons, respectively. β-, γ-ketonic acids or their esters.

キレート化剤の使用量は使用するキレート化剤の種類に
より異ってくるが、キレート化剤(モル故)/ジルコニ
ア(モル敗)が0.02/1〜4/1、好ましくは0.
 1 / 1〜3/1さらに好まし《は0. 5 / 
1〜2/1の範囲になるように選択するのが良い。
The amount of the chelating agent used varies depending on the type of chelating agent used, but the ratio of chelating agent (molar ratio)/zirconia (molar ratio) is 0.02/1 to 4/1, preferably 0.02/zirconia (molar ratio).
1/1 to 3/1, more preferably 0. 5 /
It is preferable to select a value in the range of 1 to 2/1.

キレート化剤の使用量が少なすぎると、キレート化剤と
炭酸ジルコニルアンモニウムとの反応で生成するある種
の有機ジルコニウム塩は、本発明の方法により加水分解
を行うと、炭酸ジルコニルアンモニウム単独の場合と同
様な挙動を示し、加水分解反応をm続することができず
キレート化剤の使用の効果がなく、一方4/1を越える
割合で使用しても、特別な効果が得られず経済的ではな
い。
If the amount of chelating agent used is too small, certain organic zirconium salts formed by the reaction between the chelating agent and zirconyl ammonium carbonate will be degraded when hydrolyzed by the method of the present invention compared to when zirconyl ammonium carbonate alone is used. The same behavior was observed, and the use of chelating agents was ineffective as the hydrolysis reaction could not be continued; on the other hand, even if used at a ratio exceeding 4/1, no special effects could be obtained and it was not economical. do not have.

?発明における加水分解反応は60℃以上であればよく
反応を促進するため加圧雰囲気下での反応も望ましい。
? The hydrolysis reaction in the invention may be carried out at a temperature of 60° C. or higher, and the reaction is preferably carried out under a pressurized atmosphere in order to promote the reaction.

実際的な反応温度は60〜300゜Cであり、炭酸ジル
コニルアンモニウムの濃度には特に制限はな《高濃度の
方が経済的に有利に製造できるが、炭酸ジルコニルアン
モニウム水溶液の経済的安定性を考慮しZrO■として
10〜25重量%が望ましい。
Practical reaction temperature is 60 to 300°C, and there is no particular limit to the concentration of zirconyl ammonium carbonate (higher concentrations can be economically advantageous, but the economic stability of the aqueous zirconyl ammonium carbonate solution is Considering this, 10 to 25% by weight of ZrO is desirable.

かくして得られるジルコニアゾルは、キレート化剤で安
定化されているため、安定性が高く、広いp}I範囲で
安定であり、特にアルカリ物質を添加しても安定であり
、低粘度でZrO■として45重1%濃度まで調製でき
、さらに外観が透明性でゾル粒子径が微少であり、本発
明のごとき無機ハインダーとして使用した場合高強度を
発揮する。
The zirconia sol obtained in this way is stabilized with a chelating agent, so it is highly stable and stable over a wide p}I range, especially stable even when alkaline substances are added, and has a low viscosity. It can be prepared up to a concentration of 45% by weight and has a transparent appearance and a minute sol particle size, and exhibits high strength when used as an inorganic binder as in the present invention.

核粒子に骨材粉粒体を担持されるには、次のような方法
が採用される。
The following method is employed to support the aggregate powder on the core particles.

粒度の調節された粉粒体単独または粉粒体とウィスカー
および/または無機酸化物ゾルを溶媒に添加し、ホモジ
ナイザー等で均一に撹拌混合する。
The granular material alone or the granular material and the whiskers and/or the inorganic oxide sol with adjusted particle size are added to a solvent, and the mixture is stirred and mixed uniformly using a homogenizer or the like.

無機酸化物ゾルの分散性を向上させるためには分散剤や
界面活性剤を少量添加すると効果的である。
In order to improve the dispersibility of the inorganic oxide sol, it is effective to add a small amount of a dispersant or surfactant.

かくして得られるスラリーを次いで50〜500゜C、
望ましくは100〜400″Cに加熱・撹拌流動化され
た核粒子に噴霧し溶媒を蒸発せしめつつ担持する。ある
いは無機粒子を該スラリー中に浸漬したのち、加熱乾燥
する。スラリー濃度は3〜60重量%、好ましくは10
〜40重量%に調節される。スラリー濃度は低く過ぎる
と担持に時間がかかり経済的に不利であり、濃度が高す
ぎるとスラリー粘度が上昇し噴霧が不可能となる。
The slurry thus obtained was then heated at 50 to 500°C.
Preferably, it is sprayed onto core particles that have been fluidized by heating and stirring at 100 to 400"C to evaporate the solvent and support them. Alternatively, inorganic particles are immersed in the slurry and then heated and dried. The slurry concentration is 3 to 60"C. % by weight, preferably 10
It is adjusted to ~40% by weight. If the slurry concentration is too low, it will take a long time to support the slurry, which is economically disadvantageous; if the slurry concentration is too high, the viscosity of the slurry will increase, making spraying impossible.

又、別法として遠心流動コーティング装置を使用しても
簡便に担持することができる。すなわち、遠心流動コー
ティング装置内で流動している核粒子にコーティング液
(水等の結合剤)を定量的に噴霧し、一方、必要により
ウィスカ一が均一に混合された骨材粉粒体を定量的に散
布することによって造粒せしめて粒度の調整された球状
担体を得る方法である。装置内に空気等を導入し、乾燥
を助長しなから担持を行い、必要により加熱空気等を使
用することにより比較的短時間に担持することができる
。コーティング液中に必要により無機酸化物ゾルを添加
し、さらにまたアクリル系等の有機系バインダーをあら
かじめ溶解しておくことにより担持強度を高めることも
有効である。このような適用法およびそれに続く乾燥は
、必要により数回繰り返される。
Alternatively, a centrifugal fluid coating device may be used to easily support the particles. That is, a coating liquid (binder such as water) is quantitatively sprayed onto core particles flowing in a centrifugal fluid coating device, and at the same time, if necessary, aggregate powder with whiskers uniformly mixed therein is quantitatively sprayed. This is a method of obtaining spherical carriers with controlled particle size by granulating the particles by dispersing the particles. By introducing air or the like into the apparatus to carry out the support without accelerating drying, and by using heated air or the like if necessary, the support can be carried out in a relatively short time. It is also effective to increase the supporting strength by adding an inorganic oxide sol to the coating liquid if necessary and further dissolving an organic binder such as an acrylic binder in advance. This method of application and subsequent drying is repeated several times if necessary.

担持量はいずれの製法によっても核粒子100mlに対
して骨材粒粒体が1〜500g、好ましくは20〜20
0gの範囲で担持され、担体として必要とされる細孔容
積、比表面積等によって主に担持量は決定される。
Regardless of the manufacturing method, the supported amount of aggregate particles is 1 to 500 g, preferably 20 to 20 g, per 100 ml of core particles.
The supported amount is determined mainly by the pore volume, specific surface area, etc. required for the carrier.

かくして得られる担持型担体はこのままでも充分に担持
強度があり、担体としての使用に供することができるが
、さらに強度を向上させるためあるいは混入している有
機物を分解除去するために熱処理を行うことが望ましい
。熱処理は200〜1600“C、好ましくは400〜
l200゜Cの範囲で0. 5〜5時間行われる。かく
して得られる担体は実用上充分な強度を有するものであ
り、本発明の方法によって、接触気相部分酸化反応に主
に用いられる低表面積型の担体ないし接触気相完全酸化
反応等に用いられる高表面積型の担体まで種々の物性値
がコントロールされた担体を容易に製造することができ
る。
The supported type carrier thus obtained has sufficient supporting strength as it is and can be used as a carrier, but it may be heat-treated to further improve the strength or to decompose and remove mixed organic matter. desirable. Heat treatment at 200~1600"C, preferably 400~
l0. within the range of 200°C. It takes place for 5-5 hours. The support obtained in this manner has sufficient strength for practical use, and the method of the present invention can be applied to a low surface area type support mainly used in catalytic gas phase partial oxidation reactions or a high surface area type support used in catalytic gas phase complete oxidation reactions. Supports with various physical properties controlled, including surface area type supports, can be easily produced.

本発明の担体を使用しての触媒調製は通常の担体を使用
する場合と同様の方法を採用することができるが、その
なかでも含浸法と称される方法で触媒を調製することが
望ましい。触媒活性成分を含む溶媒に担体を浸漬し、乾
燥後塩の熱分解、活性化により触媒化する。なお、担体
と触媒成分液との親和力が弱かったり、吸着量が少ない
場合には触媒成分液に担体を浸漬後、攪拌しながら溶媒
を蒸発させ、触媒成分を担体に担持したり、あるいは担
体をたえず乾燥状態に保ちながら触媒成分液を噴霧する
方法を採用することができる。
Although the catalyst can be prepared using the carrier of the present invention in the same manner as when using a conventional carrier, it is preferable to prepare the catalyst by a method called an impregnation method. The carrier is immersed in a solvent containing a catalytically active component, dried, and then catalyzed by thermal decomposition and activation of the salt. In addition, if the affinity between the carrier and the catalyst component liquid is weak or the adsorption amount is small, the catalyst component may be supported on the carrier by immersing the carrier in the catalyst component liquid and then evaporating the solvent while stirring. A method of spraying the catalyst component liquid while constantly maintaining the dry state can be adopted.

以上のようにして得られた本発明の担体は種々の気相接
触反応において使用される金属および/または金属酸化
物を分散担持せしめた触媒に好適に使用される多孔性無
機質担体である。使用対象反応は特に制限されないが、
例示すれば主触媒物質に銀を使用するエチレン気相酸化
反応によるエチレンオキシド製造用触媒あるいは鉄、ニ
ッケル、亜鉛、銅等の一種以上を主に使用するアンモニ
ア合成反応、水性ガス反応、メタノール合成反応等の気
相還元反応用触媒、さらに白金、パラジウム、金等高価
な貴金属を使用する触媒、クロム、マンガン等を主触媒
物質として使用する安息香酸の水素によるベンズアルデ
ヒド製造用触媒等が挙げられる。
The support of the present invention obtained as described above is a porous inorganic support suitable for use in catalysts on which metals and/or metal oxides are dispersedly supported and used in various gas phase catalytic reactions. The reaction to be used is not particularly limited, but
Examples include catalysts for producing ethylene oxide through ethylene gas-phase oxidation reactions that use silver as the main catalyst, ammonia synthesis reactions that mainly use one or more of iron, nickel, zinc, copper, etc., water gas reactions, methanol synthesis reactions, etc. Catalysts for gas-phase reduction reactions, catalysts using expensive noble metals such as platinum, palladium, and gold, catalysts for producing benzaldehyde from benzoic acid hydrogen and using chromium, manganese, etc. as the main catalyst material, and the like.

以下、実施例に基づいて本発明をさらに詳細に説明する
Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 オキシ塩化ジルコニウムを純水に溶解し濃度0.2モル
/lの水溶液を調製した。オーバーフロー管付攪拌型反
応器に純水1.2lを入れさらにアンモニア水を入れp
Hを8。0とした。これに上記水溶液を液速毎分190
mfの割合で、またアンモニア水(28重量%水溶液)
を毎時200+cj2の割合で定晴ポンプを用いそれぞ
れ撹拌下注加した。
Example 1 Zirconium oxychloride was dissolved in pure water to prepare an aqueous solution having a concentration of 0.2 mol/l. Pour 1.2 liters of pure water into a stirred reactor with an overflow tube, and then add ammonia water.
H was set to 8.0. Add the above aqueous solution to this at a liquid rate of 190 per minute.
mf, and aqueous ammonia (28% by weight aqueous solution)
were injected with stirring at a rate of 200+cj2 per hour using a constant-air pump.

反応液はオーバーフロー管から流出し、反応器内の液量
がほぼ一定の条件下で中和反応を連続的に行った。反応
中pllが8±0.2となるようにアンモニア水の液速
を微調整しながら中和反応を行った。
The reaction solution flowed out from the overflow tube, and the neutralization reaction was continuously carried out under conditions where the amount of solution in the reactor was kept almost constant. The neutralization reaction was carried out while finely adjusting the liquid speed of ammonia water so that pll was 8±0.2 during the reaction.

流出液中の水酸化物を炉過により母液より分離し、次い
で水洗することにより塩化アンモニウムを除去した。え
られた水酸化物を1〜プロパノール中に分散し、加熱す
ることにより糸内の水を1−プロパノールとの混合物と
して系外に除去することにより水酸化物中の水分の脱水
を行った。脱水後乾燥して得られる扮体を700゜Cで
1時間焼成することにより比表面積32rff/gのジ
ルコニア微粉末を得た。
Hydroxide in the effluent was separated from the mother liquor by filtration, and then ammonium chloride was removed by washing with water. The water in the hydroxide was dehydrated by dispersing the obtained hydroxide in 1-propanol and heating it to remove the water in the yarn as a mixture with 1-propanol from the system. After dehydration and drying, the resulting body was calcined at 700°C for 1 hour to obtain fine zirconia powder with a specific surface area of 32 rff/g.

かくして得られたジルコニア微粉末500gと純水80
0mfよりボールミルの使用により均質なスラリーを得
た。
500 g of the thus obtained zirconia fine powder and 80 g of pure water
A homogeneous slurry was obtained using a ball mill from 0 mf.

外部加熱式の回転炉中に平均粒子径カ月. 5 mmφ
のSiC自焼結多孔性球状粒子を核粒子として300l
Tlβ入れ、250〜3 0 0 ’Cに加熱しながら
上記スラリーを噴霧し骨材物質としてジルコニアを25
0g担持した。担持後得られた担体を900゜Cで焼成
することにより、平均綱孔径0.1μm、比表面積3r
イ/g、細孔容積0.15mffi/gの高強度の担持
型ジルコニア担体を得た。
The average particle size is maintained in an externally heated rotary furnace. 5mmφ
300L of SiC self-sintered porous spherical particles as core particles
Add Tlβ, spray the above slurry while heating to 250-300'C, and add 25% of zirconia as an aggregate material.
0g was supported. By calcining the obtained carrier at 900°C, the carrier has an average pore diameter of 0.1 μm and a specific surface area of 3r.
A supported zirconia carrier with high strength and a pore volume of 0.15 mffi/g and a pore volume of 0.15 mffi/g was obtained.

実施例2 粒子径の異なるα−アルミナを混合し、比表面積8rd
/gのα−アルミナ粉体を調合した。このアルミナ粉体
の粒径分布は0.5μm以下が50重■%、0.5〜2
μmが35重1%、2μm以上が15重量%であった。
Example 2 Mixing α-alumina with different particle sizes, specific surface area 8rd
/g of α-alumina powder was prepared. The particle size distribution of this alumina powder is 50% by weight of 0.5μm or less, 0.5~2%
The size of 35 μm was 1% by weight, and the size of 2 μm or more was 15% by weight.

該粉体1kgにSiCウィスカ−50gおよび純水60
0mfを加えホモジナイザーで均一に攪拌混合した。該
ウィスカーは平均直径 0.6μm、平均長さ15μm
の寸法であった。
50 g of SiC whiskers and 60 g of pure water are added to 1 kg of the powder.
0 mf was added, and the mixture was stirred and mixed uniformly using a homogenizer. The whiskers have an average diameter of 0.6 μm and an average length of 15 μm.
The dimensions were

外部加熱弐の回転炉中に平均粒子径カ月. 5 mmφ
のSiC自焼結多孔性球状粒子を核粒子として300l
II!入れ、250〜300゜Cに加熱しながら上記ス
ラリーを噴霧し骨材物質としてアルミナを350g担持
した。担持後得られた担体を1400゜Cで焼成するこ
とにより平均細孔径0.15μm、比表面積2ボ/g、
細孔容積0.25mff/gの高強度の担持型アルミナ
担体を得た。
The average particle size is 2 months in a rotary furnace with external heating. 5mmφ
300L of SiC self-sintered porous spherical particles as core particles
II! The above slurry was sprayed while heating to 250-300°C to support 350g of alumina as an aggregate material. By calcining the obtained carrier at 1400°C, the carrier has an average pore diameter of 0.15 μm, a specific surface area of 2 pores/g,
A high-strength supported alumina carrier with a pore volume of 0.25 mff/g was obtained.

実施例3 ■5βのn−オクタノールにソルビタン脂肪酸エステル
からなるH ’L B約6の界面活性剤180gを溶解
した溶液に、濃度10容量%のジルコニアゾル10lを
ホモジナイザーで攪拌しながら加えた。この予備混合さ
れた溶液をコロイドミルに送太し、更に1時間攪拌する
ことによりW/O型ヅルエマルジョンを調製した。次い
でこのW/0型ゾルエマルジョンに撹拌下100%アン
モニアガスを流速250mj2/分で約2時間吹き込み
ゾルエマルジョンをゲル化させた。該ゲルエマルジョン
を次いで真空乾燥装置で攪拌混合下、蒸発乾固すること
により水分およびn−オクタノールを系外に除去した。
Example 3 (1) 10 liters of zirconia sol having a concentration of 10% by volume was added to a solution prepared by dissolving 180 g of a surfactant having an H'L B of approximately 6 and consisting of a sorbitan fatty acid ester in 5β n-octanol while stirring with a homogenizer. This premixed solution was sent to a colloid mill and further stirred for 1 hour to prepare a W/O type slurry emulsion. Next, 100% ammonia gas was blown into this W/0 type sol emulsion with stirring at a flow rate of 250 mj2/min for about 2 hours to gel the sol emulsion. The gel emulsion was then evaporated to dryness while stirring and mixing in a vacuum dryer to remove water and n-octanol from the system.

かくして得られた球状微粒子を600゜Cで2時間焼成
することにより高分散性の平均粒径0,・1μmの球状
ジルコニア微粒子を得た。
The thus obtained spherical fine particles were calcined at 600° C. for 2 hours to obtain highly dispersible spherical zirconia fine particles having an average particle diameter of 0.1 μm.

かくして得られた球状ジルコニア微粒子粉末800gと
SiCウィスカ−25gをメタノール中で攪拌し均一に
混合した。乾燥後次いでジュットミルにより解砕し骨材
物質粉末とした。
800 g of the thus obtained spherical zirconia fine particles and 25 g of SiC whiskers were stirred in methanol and mixed uniformly. After drying, it was then crushed using a jut mill to obtain aggregate material powder.

コーティング造粒装置に平均粒子径カ月.5岨φのSi
Cの自焼結多孔性球状粒子を核粒子として400皿入れ
流動混合させながらコーティング液として純水と、上記
骨材物質粉末とを同時にそれぞれ定量的に散布し、しか
もコーティング槽に熱風を送り乾燥させながら連続的に
担持を行った。
Coating granulation equipment with average particle size. 5 φ Si
400 self-sintered porous spherical particles of C were placed as core particles in a plate, and while fluidly mixed, pure water as a coating liquid and the above-mentioned aggregate substance powder were simultaneously quantitatively sprinkled, and hot air was sent to the coating tank to dry them. The loading was carried out continuously while

その結果、核粒子100mf当り100gの骨材物質と
しての球状ジルコニア微粉末が担持されていた。次いで
1000゜Cで焼成することにより平均綱孔径0. 2
 a m、比表面積1 rrf / g、細孔容積0.
 1…l/g高強度の担持型ジルコニア担体が得られた
As a result, 100 g of spherical zirconia fine powder as an aggregate material was supported per 100 mf of core particles. Then, by firing at 1000°C, the average wire pore diameter was reduced to 0. 2
a m, specific surface area 1 rrf/g, pore volume 0.
A supported zirconia carrier with a high strength of 1...l/g was obtained.

実施例4 22のフラスコにZrO.とじて13重量%含有する市
販の炭酸ジルコニルアンモニウム水溶液1300g入れ
た。これに攪拌下グリコール酸1 0. 4 gを徐々
に添加した。この際無臭性のガスが発生した。
Example 4 ZrO. 1300 g of a commercially available aqueous zirconyl ammonium carbonate solution containing 13% by weight was added. Add 10% glycolic acid to this while stirring. 4 g was added gradually. At this time, odorless gas was generated.

?いで、マントルヒーターにより該フラスコを加熱し加
水分解反応を行った。昇温するにつれ激しく発泡し、ア
ンモニアや炭酸ガスのごとき、ゾル中の不要イオン類か
ら生成するガスを系外に甘排出しながら反応が進行した
。反応液温度約100゜Cで約3時間反応することによ
り発泡が鎮静し、フラスコ中に適宜純水を追加しながら
さらに12時間加熱を継続し、ZrO■として濃度25
重量%で、pHが7のジルコニアゾルが得られた。
? Then, the flask was heated with a mantle heater to carry out a hydrolysis reaction. As the temperature rose, it bubbled violently, and the reaction proceeded while slowly exhausting gases generated from unnecessary ions in the sol, such as ammonia and carbon dioxide, out of the system. By reacting for about 3 hours at a reaction solution temperature of about 100°C, the foaming subsided, and heating was continued for an additional 12 hours while adding pure water to the flask as needed to reach a concentration of 25% as ZrO■.
A zirconia sol with a pH of 7 in weight percent was obtained.

該ヅル500mffに、実施例3で得られた焼成後の世
体200gを入れ1時間加熱沸騰した。沸騰することに
より担体中の空気がゾルと置換され、ゾルが担体内部に
まで浸透した。次いで担体をゾル中から取り出し担体に
付着した過剰のゾルを除去後、800゜C1時間焼成し
た。
200 g of the fired body obtained in Example 3 was placed in 500 mff of the clay and heated to boil for 1 hour. By boiling, the air in the carrier was replaced with the sol, and the sol penetrated into the interior of the carrier. Next, the carrier was taken out from the sol, excess sol adhering to the carrier was removed, and then calcined at 800°C for 1 hour.

得られた担体は、骨材物質層がジルコニアにより接着・
強化され、担体の耐摩耗性が著しく改善された。
In the obtained carrier, the aggregate material layer is bonded and bonded with zirconia.
The wear resistance of the carrier was significantly improved.

実施例5 実施例1で得られた比表面積32m/gのジルコニア微
粉末をさらに800゜Cで1時間焼成することにより比
表面積2 3 nf / gのジルコニア微粉末を得た
。このジルコニア微粉末500gに純水600gを加え
、さらに実施例4で得られたジルコニアゾル100gを
添加し、ボールミルにより均質なスラリーを得た。
Example 5 The zirconia fine powder having a specific surface area of 32 m/g obtained in Example 1 was further calcined at 800°C for 1 hour to obtain a zirconia fine powder having a specific surface area of 23 nf/g. 600 g of pure water was added to 500 g of this fine zirconia powder, and 100 g of the zirconia sol obtained in Example 4 was added to obtain a homogeneous slurry using a ball mill.

外部加熱式の回転炉中に平均粒子径が1. 5 nun
φのSiC自焼結多孔性球状粒子を核粒子として300
mβ入れ、150〜200゜Cに加熱しながら上記スラ
リーを噴霧し骨材物質としてジルコニアを300g担持
した。
The average particle size is 1.5 mm in an externally heated rotary furnace. 5 nun
SiC self-sintered porous spherical particles with a diameter of 300 mm are used as core particles.
The above slurry was sprayed while heating at 150 to 200° C. to support 300 g of zirconia as an aggregate material.

担持後得られた担体を600゜Cで焼成することにより
、平均細孔径0.15μm、比表面積4rrf/g、細
孔容積0.2mf/gの高強度の担持型ジルコニア担体
を得た。
The support obtained after the support was calcined at 600°C to obtain a supported zirconia support with high strength having an average pore diameter of 0.15 μm, a specific surface area of 4rrf/g, and a pore volume of 0.2mf/g.

実施例6 実施例5で得たジルコニア担体1 0 0ccト硝酸ク
ロムおよび硝酸マンガンの混合溶液200ccをナス型
フラスコに入れ、ロータリーエバポレーターに装着した
。フラスコ内を排気しながら70〜80゜Cに加熱して
ジルコニア担体に硝酸クロムおよび硝酸マンガンを含浸
乾燥せしめ、次いで該I旦体を管状型電気炉で窒素ガス
流直下600゜CIO時間熱処理してクロムとして5 
g/l、マンガンとして2g/β担持された組成物を得
た。
Example 6 100 cc of the zirconia carrier obtained in Example 5 and 200 cc of a mixed solution of chromium nitrate and manganese nitrate were placed in an eggplant-shaped flask, and the flask was placed in a rotary evaporator. While evacuating the inside of the flask, the zirconia carrier was impregnated with chromium nitrate and manganese nitrate and dried at 70 to 80°C, and then the carrier was heat-treated in a tubular electric furnace for 600°C for 600°C directly under a nitrogen gas flow. 5 as chromium
A composition was obtained in which 2 g/β of manganese was loaded.

これを常圧気相流通反応装置に充填し、安息香酸を水素
化してベンズアルデヒドを合成する触媒として用いた。
This was filled into an atmospheric pressure gas phase flow reactor and used as a catalyst for hydrogenating benzoic acid to synthesize benzaldehyde.

反応条件は触媒温度320゜C圧力常圧水素の空間速度
150011r”安息香酸の濃度を2%とした。反応は
、安息香酸の溶融物の中へ水素を吹き込んで安息香酸を
同性させて反応器へ導入して行なった。その結果は、ベ
ンズアルデヒドの収率は98%であった。
The reaction conditions were as follows: catalyst temperature: 320°C, pressure: normal pressure, hydrogen space velocity: 150011r'' and benzoic acid concentration: 2%.The reaction was carried out by blowing hydrogen into the benzoic acid melt to make the benzoic acid isotropic. The yield of benzaldehyde was 98%.

実施例7 実施例2で得たアミナ担体100ccと塩化白金酸水溶
液200ccをナス型フラスコに入れ実施例6と同様に
して白金として1 g/l坦持された組成物を得た。た
だし熱処理は空気流通下600゜C3時間焼成した。
Example 7 100 cc of the amine carrier obtained in Example 2 and 200 cc of the chloroplatinic acid aqueous solution were placed in an eggplant-shaped flask, and the same procedure as in Example 6 was carried out to obtain a composition in which 1 g/l of platinum was supported. However, the heat treatment was performed by firing at 600°C for 3 hours under air circulation.

これを気相流通式反応装置に充填し、一酸化炭素500
ppm(空気バランス)のガスを反応ガス(空気速度1
0000+1,” ’)として触媒入口のガス温度30
0゜CでのCO燃焼性能を評価した。
This was charged into a gas phase flow reactor, and 500% of carbon monoxide was added.
ppm (air balance) gas to reactant gas (air velocity 1
The gas temperature at the catalyst inlet is 30 as 0000+1,'')
CO combustion performance at 0°C was evaluated.

さらに該触媒を空気流通下900゜Cで24時間エージ
ングし同様の性能評価をした。その結果、フレンシュ触
媒のCO転化率が97%かつエージング後のCO転化率
が88%と良好な結果であった。
Further, the catalyst was aged for 24 hours at 900° C. under air circulation, and the performance was evaluated in the same manner. As a result, the CO conversion rate of the Frensch catalyst was 97%, and the CO conversion rate after aging was 88%, which were good results.

Claims (1)

【特許請求の範囲】 1、耐火性無機粒子を核とし、該核上に耐火性無機粉粒
体が担持されてなる触媒用担体。 2、該耐火性無機粒子100ml当りの耐火性無機粉粒
体の割合が1〜500gである請求項1に記載の担体。 3、該耐火性無機粒子の粒径が0.3〜12mmであり
、かつ該耐火性無機粉粒体の平均粒径が0.05〜12
00μmである請求項2に記載の担体。 4、耐火性無機粒子および粉粒体が金属酸化物、金属複
合酸化物および非酸化物よりなる群から選ばれた少なく
とも1種のセラミックスである請求項3に記載の担体。 5、耐火性無機粒子を核とし、該核上に耐火性無機粉粒
体およびウィスカーが担持されてなる触媒用担体。 6、該耐火性無機粒子100ml、当りの耐火性無機粉
粒体の割合が1〜500gであり、かつ該耐火性無機粉
粒体に対するウィスカーの量が1〜50重量%である請
求項5に記載の触媒用担体。 7、該耐火性無機粒子の粒径が0.3〜12mmであり
、該耐火性無機粉粒体の平均粒径が0.05〜1200
μmであり、かつ該ウィスカーの平均直径が0.1〜5
μmで長さが5〜1000μmである請求項6に記載の
担体。 8、耐火性無機粒子および粉粒体が金属酸化物、金属複
合酸化物および非酸化物よりなる群から選ばれた少なく
とも1種のセラミックスである請求項7に記載の担体。 9、耐火性無機粒子を核とし、該核上に耐火性無機粉粒
体および無機酸化物ゾルが担持されてなる触媒用担体。 10、該耐火性無機粒子100ml当りの耐火性粉粒体
の割合が1〜500gであり、かつ該耐火性無機粉粒体
に対する無機酸化物ゾルの量が酸化物換算で0.5〜2
0重量%である請求項9に記載の担体。 11、該耐火性無機粒子の粒径が0.3〜12mmであ
り、かつ該耐火性無機粉粒体の平均粒径が0.05〜1
200μmである請求項10に記載の担体。 12、耐火性無機粒子および粉粒体が金属酸化物、金属
複合酸化物および非酸化物よりなる群から選ばれた少な
くとも1種のセラミックスである請求項11に記載の担
体。 13、無機酸化物ゾルがジルコニアゾルである請求項1
0に記載の担体。 14、耐火性無機粒子を核とし、該核上に耐火性無機粉
粒体、ウィスカーおよび無機酸化物ゾルが担持されてな
る触媒用担体。 15、該耐火性無機粒子100ml当りの耐火性無機粉
粒体の割合が1〜500gであり、かつ該耐火性無機粉
粒体に対するウィスカーの量が1〜50重量%かつ無機
酸化物ゾルの量が酸化物換算で0.5〜20重量%であ
る請求項14に記載の担体。 16、該耐火性無機粒子の粒径が0.3〜12mmであ
り、該耐火性無機粉粒体の平均粒径が0.05〜120
0μmであり、かつ該ウィスカーの平均直径が0.1〜
5μmで長さが5〜1000μmである請求項15に記
載の担体。 17、耐火性無機粒子および粉粒体が金属酸化物、金属
複合酸化物および非酸化物よりなる群から選ばれた少な
くとも1種のセラミックスである請求項16に記載の担
体。 18、無機酸化物ゾルがジルコニアである請求項15に
記載の担体。 19、耐火性無機粒子に耐火性無機粉粒体のスラリーを
適用し、かつ乾燥することよりなる耐火性無機粒子を核
とし、該核に耐火性無機粉粒体が担持されてなる触媒用
担体の製造方法。 20、該耐火性無機粒子100ml当りの耐火性無機粉
粒体の割合が1〜500gである請求項19に記載の方
法。 21、該耐火性無機粒子の粒径が0.3〜12mmであ
り、かつ該耐火性無機粉粒体の平均粒径が0.05〜1
200μmである請求項20に記載の方法。 22、さらに無機酸化物ゾルが該担体に塗布されてなる
請求項19に記載の方法。 23、さらに焼成されてなる請求項19に記載の方法。 24、耐火性無機粒子に耐火性無機粉粒体とウィスカー
との混合スラリーを適用し、かつ乾燥することよりなる
耐火性無機粒子を核とし、該核上に耐火性粉粒体および
ウィスカーが担持されてなる触媒用担体の製造方法。 25、該耐火性無機粒子100ml当りの耐火性無機粉
粒体の割合が1〜500gであり、かつ該耐火性無機粉
粒体に対するウィスカーの量が1〜50重量%である請
求項24に記載の方法。 26、該耐火性無機粒子の粒径が0.3〜12mmであ
り、該耐火性無機粉粒体の平均粒径が0.05〜120
0μmであり、かつ該ウィスカーの平均直径が0.1〜
5μmで長さが5〜1000μmである請求項25に記
載の方法。 27、さらに無機酸化物ゾルが該担体に塗布されてなる
請求項24に記載の方法。 28、さらに焼成されてなる請求項24に記載の方法。 29、耐火性無機粒子に耐火性無機粉粒体と無機酸化物
ゾルとの混合スラリーを適用し、かつ乾燥することより
なる耐火性無機粒子を核とし、該核上に耐火性無機粉粒
体および無機酸化物ゾルが担持されてなる触媒用担体の
製造方法。 30、該耐火性無機粒子100ml当りに耐火性無機粉
粒体の割合が1〜500gであり、かつ該耐火性無機粉
粒体に対する無機酸化物ゾルの量が酸化物換算で0.5
〜20重量%である請求項29に記載の方法。 31、該耐火性無機粒子の粒径が0.3〜12mmであ
り、該耐火性無機粉粒体の平均粒径が0.05〜120
0μmである請求項30に記載の方法。 32、さらに焼成されてなる請求項29に記載の方法。 33、耐火性無機粒子に耐火性無機粉粒体とウィスカー
と無機酸化物ゾルとの混合スラリーを適用し、かつ乾燥
することよりなる耐火性無機粒子を核とし、該核上に耐
火性無機粉粒体、ウィスカーおよび無機酸化物ゾルが担
持されてなる触媒用担体の製造方法。 34、該耐火性無機粒子100ml当りの耐火性無機粉
粒体の割合が1〜500gであり、かつ該耐火性無機粉
粒体に対するウィスカーの量が1〜50重量%かつ無機
酸化物ゾルの量が酸化物換算で0.5〜20重量%であ
る請求項33に記載の方法。 35、該耐火性無機粒子の粒径が0.3〜12mmであ
り、該耐火無機粉粒体の平均粒径が0.05〜1200
μmでありかつ該ウィスカーの平均直径が0.1〜5μ
mで長さが5〜1000μmである請求項34に記載の
方法。 36、さらに焼成されてなる請求項33に記載の方法。 37、遠心流動コーティング装置を使用して請求項1、
5、9または14に記載の触媒用担体を製造する方法。
[Scope of Claims] 1. A catalyst carrier comprising a core of refractory inorganic particles and a refractory inorganic powder supported on the core. 2. The carrier according to claim 1, wherein the proportion of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g. 3. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 12 mm.
The carrier according to claim 2, which has a diameter of 00 μm. 4. The carrier according to claim 3, wherein the refractory inorganic particles and the powder are at least one ceramic selected from the group consisting of metal oxides, metal composite oxides, and non-oxides. 5. A catalyst carrier comprising refractory inorganic particles as a core, and refractory inorganic powder and whiskers supported on the core. 6. The ratio of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g, and the amount of whiskers to the refractory inorganic powder is 1 to 50% by weight. The catalyst carrier described above. 7. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 1200 mm.
μm, and the average diameter of the whiskers is 0.1 to 5 μm.
The carrier according to claim 6, having a length in μm of 5 to 1000 μm. 8. The carrier according to claim 7, wherein the refractory inorganic particles and the powder are at least one ceramic selected from the group consisting of metal oxides, metal composite oxides, and non-oxides. 9. A catalyst carrier comprising a core of refractory inorganic particles and a refractory inorganic powder and an inorganic oxide sol supported on the core. 10. The ratio of the refractory powder per 100 ml of the refractory inorganic particles is 1 to 500 g, and the amount of the inorganic oxide sol to the refractory inorganic powder is 0.5 to 2 in terms of oxide.
The carrier according to claim 9, which is 0% by weight. 11. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 1.
The carrier according to claim 10, which has a diameter of 200 μm. 12. The carrier according to claim 11, wherein the refractory inorganic particles and the powder are at least one ceramic selected from the group consisting of metal oxides, metal composite oxides, and non-oxides. 13.Claim 1, wherein the inorganic oxide sol is a zirconia sol.
0. 14. A catalyst carrier comprising a core of refractory inorganic particles and a refractory inorganic powder, whiskers, and inorganic oxide sol supported on the core. 15. The proportion of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g, and the amount of whiskers to the refractory inorganic powder is 1 to 50% by weight, and the amount of the inorganic oxide sol. The carrier according to claim 14, wherein the amount is 0.5 to 20% by weight in terms of oxide. 16. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 120 mm.
0 μm, and the average diameter of the whiskers is 0.1 to 0.1 μm.
The carrier according to claim 15, which has a length of 5 μm and a length of 5 to 1000 μm. 17. The carrier according to claim 16, wherein the refractory inorganic particles and powder are at least one ceramic selected from the group consisting of metal oxides, metal composite oxides, and non-oxides. 18. The carrier according to claim 15, wherein the inorganic oxide sol is zirconia. 19. A catalyst carrier comprising a core of refractory inorganic particles obtained by applying a slurry of refractory inorganic powder to refractory inorganic particles and drying the same, and a refractory inorganic powder supported on the core. manufacturing method. 20. The method according to claim 19, wherein the proportion of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g. 21. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 1.
21. The method according to claim 20, wherein the thickness is 200 μm. 22. The method according to claim 19, further comprising applying an inorganic oxide sol to the carrier. 23. The method according to claim 19, further comprising firing. 24. A mixed slurry of a fire-resistant inorganic powder and whiskers is applied to fire-resistant inorganic particles, and then dried to form a core of the fire-resistant inorganic particles, and the fire-resistant powder and whiskers are supported on the core. A method for producing a catalyst carrier. 25. According to claim 24, the proportion of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g, and the amount of whiskers to the refractory inorganic powder is 1 to 50% by weight. the method of. 26. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 120 mm.
0 μm, and the average diameter of the whiskers is 0.1 to 0.1 μm.
26. The method according to claim 25, wherein the length is 5-1000 [mu]m. 27. The method according to claim 24, further comprising applying an inorganic oxide sol to the carrier. 28. The method according to claim 24, further comprising firing. 29. A mixed slurry of a refractory inorganic powder and an inorganic oxide sol is applied to refractory inorganic particles, and then dried. The refractory inorganic particles are used as a core, and the refractory inorganic powder is placed on the core. and a method for producing a catalyst carrier on which an inorganic oxide sol is supported. 30. The ratio of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g, and the amount of the inorganic oxide sol to the refractory inorganic powder is 0.5 in terms of oxide.
30. The method of claim 29, wherein the amount is ~20% by weight. 31. The refractory inorganic particles have a particle size of 0.3 to 12 mm, and the refractory inorganic powder has an average particle size of 0.05 to 120 mm.
31. The method according to claim 30, wherein the thickness is 0 μm. 32. The method according to claim 29, further comprising firing. 33. A mixed slurry of a fire-resistant inorganic powder, a whisker, and an inorganic oxide sol is applied to fire-resistant inorganic particles, and then dried to form a core of fire-resistant inorganic particles, and a fire-resistant inorganic powder is placed on the core. A method for producing a catalyst carrier on which particles, whiskers and inorganic oxide sol are supported. 34. The proportion of the refractory inorganic powder per 100 ml of the refractory inorganic particles is 1 to 500 g, and the amount of whiskers to the refractory inorganic powder is 1 to 50% by weight, and the amount of the inorganic oxide sol 34. The method according to claim 33, wherein the amount is 0.5 to 20% by weight in terms of oxide. 35. The particle size of the refractory inorganic particles is 0.3 to 12 mm, and the average particle size of the refractory inorganic powder is 0.05 to 1200 mm.
μm and the average diameter of the whiskers is 0.1 to 5 μm
35. The method according to claim 34, wherein m is 5 to 1000 [mu]m in length. 36. The method according to claim 33, further comprising firing. 37. Claim 1 using a centrifugal fluid coating device.
15. A method for producing a catalyst carrier according to 5, 9 or 14.
JP2032483A 1989-02-17 1990-02-15 Catalyst support and method for producing the same Expired - Fee Related JP2905535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032483A JP2905535B2 (en) 1989-02-17 1990-02-15 Catalyst support and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-36243 1989-02-17
JP3624389 1989-02-17
JP2032483A JP2905535B2 (en) 1989-02-17 1990-02-15 Catalyst support and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02290257A true JPH02290257A (en) 1990-11-30
JP2905535B2 JP2905535B2 (en) 1999-06-14

Family

ID=26371069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032483A Expired - Fee Related JP2905535B2 (en) 1989-02-17 1990-02-15 Catalyst support and method for producing the same

Country Status (1)

Country Link
JP (1) JP2905535B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787656B2 (en) 2001-11-06 2004-09-07 Nippon Shokubai Co., Ltd. Catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide by the use of the catalyst
JP2006231321A (en) * 2005-01-28 2006-09-07 Toyota Central Res & Dev Lab Inc Catalyst carrier and its production method
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method
JP2008542468A (en) * 2005-05-25 2008-11-27 セラニーズ・インターナショナル・コーポレーション Layered composition and method for preparing and using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868487A (en) * 1971-12-21 1973-09-18
JPS53129189A (en) * 1977-04-19 1978-11-10 Suzuki Motor Co Method of manufacturing oxidation catalyst
JPS5830333A (en) * 1981-07-24 1983-02-22 Toyota Motor Corp Coating method for catalyst carrier with high-temperature calcined alumina film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868487A (en) * 1971-12-21 1973-09-18
JPS53129189A (en) * 1977-04-19 1978-11-10 Suzuki Motor Co Method of manufacturing oxidation catalyst
JPS5830333A (en) * 1981-07-24 1983-02-22 Toyota Motor Corp Coating method for catalyst carrier with high-temperature calcined alumina film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787656B2 (en) 2001-11-06 2004-09-07 Nippon Shokubai Co., Ltd. Catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide by the use of the catalyst
JP2006231321A (en) * 2005-01-28 2006-09-07 Toyota Central Res & Dev Lab Inc Catalyst carrier and its production method
JP4665770B2 (en) * 2005-01-28 2011-04-06 株式会社豊田中央研究所 Catalyst carrier and method for producing the same
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method
JP2008542468A (en) * 2005-05-25 2008-11-27 セラニーズ・インターナショナル・コーポレーション Layered composition and method for preparing and using the same

Also Published As

Publication number Publication date
JP2905535B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US5055442A (en) Carrier for catalyst and method for production thereof
KR100424502B1 (en) Process for producing chlorine
CN108348909B (en) Gold-based catalyst for the oxidative esterification of aldehydes to carboxylic acid esters
US5134109A (en) Catalyst for reforming hydrocarbon with steam
US5395812A (en) Silver catalyst for production of ethylene oxide and method for production of the catalyst
JP4249257B2 (en) Caprolactam production method
US5155085A (en) Heat resistant transition alumina and process for producing the same
US6030914A (en) Zirconia fine powder and method for its production
US6051529A (en) Ceric oxide washcoat
JP2012166200A (en) Unsaturated acid or ester thereof, and catalyst for the same
JP3553066B2 (en) Process for the catalytic decomposition of nitrous oxide contained in pure or gaseous mixtures
CN102939155A (en) Eggshell catalyst consisting of a hollow cylindrical support body and a catalytically active oxide material applied to the outer surface of the support body
AU764178B2 (en) Supported metal catalyst, preparation and applications for directly making hydrogen peroxide
US5919727A (en) Ceric oxide washcoat
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
JPH051058B2 (en)
US7217679B2 (en) Catalytic coating for the hydrogenation of maleic anhydride and related compounds to give γ-butyrolactone, tetrahydrofuran and derivatives thereof
KR101579776B1 (en) Manufacturing method of perovskite-type nickel based catalysts
CN1009828B (en) Process for preparation of silver-contg. catalyst
US3332887A (en) Catalyst for the production of olefinic oxides
JP2905535B2 (en) Catalyst support and method for producing the same
CN113713824A (en) Catalyst for preparing methylacrolein by selective oxidation and preparation method and application thereof
JPH06254414A (en) Preparation of catalyst
JP3582088B2 (en) Hydrogenation method of carbon dioxide
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees