JPH02290228A - Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount - Google Patents

Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount

Info

Publication number
JPH02290228A
JPH02290228A JP32213188A JP32213188A JPH02290228A JP H02290228 A JPH02290228 A JP H02290228A JP 32213188 A JP32213188 A JP 32213188A JP 32213188 A JP32213188 A JP 32213188A JP H02290228 A JPH02290228 A JP H02290228A
Authority
JP
Japan
Prior art keywords
membrane
module
cylindrical body
fiber membrane
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32213188A
Other languages
Japanese (ja)
Inventor
Naoki Osawa
直樹 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP32213188A priority Critical patent/JPH02290228A/en
Publication of JPH02290228A publication Critical patent/JPH02290228A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate viruses, etc., from protein contg. substances by placing into a cylindrical body a few pieces of regenerated cuprammonium hollow cellulose fiber membranes having an average hole diameter within a specific range, exposing one end of the cylindrical body to atmospheric pressure and sealing said membranes completely in the cylindrical body. CONSTITUTION:A module 5 is formed by placing into a cylindrical body 3 one piece to a few pieces of regenerated cuprammonium hollow cellulose fiber membrane 1 having an average hole diameter within the range of 0.02-0.2mum. The cylindrical body 3 is exposed to atmospheric pressure at one end of the module 5 but with the membranes 1 completely sealed therein, while, at the other end of the module 5, one touch-fit fluid coupling (plug) 4 is firmly fitted over the membrane 1 and the cylindrical body 3 with a filling agent 2 interposed between the coupling and the membrane and with the membrane 1 left open to the outside. As a result, by inspecting the hollow fiber membrane for precise performance and the possible disadvantage, microorganisms and viruses can be separated and concentrated from a very small amt. of a valuable substance contg. protein.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、精密濾過に用いられる中空糸膜を用いた濾過
用モジエールに関する。更に詳しくは、医I,微生物、
生化学分野等でのウイルス分離・除去・濃縮試験等に利
用することができ、特に生物化学的に有用な蛋白質を含
む微量かつ貴重な分離対象、例えば微生物及びウイルス
培養液、ウイルス含有血漿、未知の病原物質を含む液等
から微生物、ウイルス、未知の病原物質を分離・除去・
濃縮するのに好適な再生セルロース中空糸膜微量’il
l過用モジュールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a filtration module using a hollow fiber membrane used in precision filtration. For more details, see Medicine I, Microorganisms,
It can be used for virus isolation, removal, concentration tests, etc. in the biochemistry field, etc., and is particularly useful for separating trace amounts of valuable separation targets that contain biochemically useful proteins, such as microorganisms and virus culture fluids, virus-containing plasma, and unknowns. Isolates, removes, and removes microorganisms, viruses, and unknown pathogenic substances from liquids containing pathogenic substances.
Regenerated cellulose hollow fiber membrane suitable for concentrating trace amounts of 'il
This relates to overload modules.

(従来技術) 上記の用途に用いられる中空系膜を分離膜七する分雌器
は、膜分離技術の進歩に伴い、最近著しく発達しつつあ
る。すなわち中空糸膜は、平面膜に比べて単位体積当り
の膜面積が大きく、成型品として組み立てられる為、補
強用の支持体が不要で、操作が容易である等多くの優れ
た特徴を有している。公知の工業用或いは医療用の中空
系膜分離器は、プラスチックもしくは金属製の外筒内に
多数(たとえば約ioooo本)の中空系膜が密に充填
され、中空糸膜の両末端を接着剤に埋め込んだ型式のも
のが一般的であった。
(Prior Art) The separation device for separating hollow membranes used in the above-mentioned applications has recently been significantly developed with the progress of membrane separation technology. In other words, hollow fiber membranes have many excellent features such as a larger membrane area per unit volume than flat membranes, no need for reinforcing supports because they can be assembled as molded products, and ease of operation. ing. A known hollow membrane separator for industrial or medical use has a large number (for example, about iooooo membranes) of hollow membranes packed tightly in a plastic or metal outer cylinder, and both ends of the hollow fiber membranes are connected with an adhesive. The most common type was embedded in the

しかし、工業用、医療用以外の分離、即ち実験室用の用
途、例えば生化学分野における微生物、ウイルスの分離
の場合、分離対象の容積はl mQ以下の微量かつ貴重
なことが多い。この様な微量な分離対象を濾過すること
は、前述の型式の分離器では中空糸膜内外のデンドスペ
ースにより、分離対象が損失するため、分離実験が不可
能であった。
However, in the case of separation for purposes other than industrial or medical use, that is, for laboratory use, such as separation of microorganisms and viruses in the biochemical field, the volume to be separated is often small and valuable, less than 1 mQ. In the above-mentioned type of separator, it has been impossible to filter such a small amount of separation target because the separation target is lost due to the dendritic space inside and outside the hollow fiber membrane.

従って、この様な微量濾過の実験を行う場合、従来は中
空糸膜を注射針の先に挿入固定し、該中空糸末端を閉鎖
した後、該注射針を分離対象を入れた注射筒に装填し、
加圧濾過操作を行っていた。
Therefore, when conducting such microfiltration experiments, conventionally a hollow fiber membrane is inserted and fixed at the tip of a syringe needle, the end of the hollow fiber is closed, and then the syringe needle is loaded into a syringe barrel containing the target to be separated. death,
A pressure filtration operation was performed.

しかしながら操作中に針先による或いは圧力のかけ過ぎ
による中空糸膜の破損などのトラブルが頻発する、予め
中空糸膜の性能及び欠点検査ができない、分離対象・濾
過液を接触汚染しやすい、特に感染性ウイルス濃縮液等
危険性の高い分離対象の濾過が難しいという種々の問題
点が生じていた。
However, problems such as breakage of the hollow fiber membrane due to the needle tip or excessive pressure often occur during operation; the performance and defects of the hollow fiber membrane cannot be inspected in advance; the target of separation/filtrate is susceptible to contact contamination; particularly, infection Various problems have arisen in that it is difficult to filter highly dangerous substances such as virus concentrates.

また、一般に前述の分離実験に用いる中空糸膜の素材に
は、酢酸セルロース(CDA) 、ポリアクリロニトリ
ル(PAN) 、ポリメタクリル酸メチル(PMMA)
 、ポリプロピレン(PP)、ボリエチレン(PE)、
ポリビニルアルコール(PVA) 、エチレン/ビニル
アルコール共重合体(EVAL)等があるが、それらの
素材は蛋白質の吸着性が大きいという欠点がある。この
欠点のため、蛋白質の水溶液をそれらの中空糸で濾過す
ると濾過速度が急激に低下するという問題が生した。
In addition, the materials for the hollow fiber membranes generally used in the above-mentioned separation experiments include cellulose acetate (CDA), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA).
, polypropylene (PP), polyethylene (PE),
There are polyvinyl alcohol (PVA), ethylene/vinyl alcohol copolymer (EVAL), etc., but these materials have the drawback of high protein adsorption. Due to this drawback, when an aqueous protein solution is filtered through these hollow fibers, a problem arises in that the filtration rate rapidly decreases.

(発明が解決しようとする課題) 本発明の目的は中空系膜の正確な性能及び欠点検査を行
った上、蛋白質を含む微量かつ貴重な分離対象から微生
物及びウイルス等の分甜・濃縮を行うことのできる微量
濾過用モジュールを提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to perform accurate performance and defect inspection of hollow membrane membranes, and then separate and concentrate microorganisms, viruses, etc. from trace amounts of valuable separation targets including proteins. The purpose of the present invention is to provide a module for microfiltration that can be used for microfiltration.

(課題を解決するための手段) 本発明は平均孔径が0.02μm〜0.2μmの範囲に
ある銅アンモニア法再生セルロース中空糸膜(1)1本
〜数本が筒体(3)内に収納されているモジュールであ
って、上記モジュールの端部では、上記筒体(3)が大
気圧下に解放されか・つ上記膜(1)が完全に密閉され
ており、他方上記モジュールの他の端部では、充填剤(
2)を介して上記膜(1)と上記筒体(3)にワンタッ
チ式迅速流体継手(プラグ)(4)が固定されかつ上記
膜(1)が外系へ解放されていることを特徴とする粒子
分離微量濾過用モジュールである。
(Means for Solving the Problems) The present invention provides a cuprammonium-method regenerated cellulose hollow fiber membrane (1) having an average pore size in the range of 0.02 μm to 0.2 μm, and one to several fibers in a cylinder (3). At the end of the module, the cylinder (3) is open to atmospheric pressure and the membrane (1) is completely sealed, while the other end of the module is At the end of the filler (
A one-touch quick fluid coupling (plug) (4) is fixed to the membrane (1) and the cylindrical body (3) via 2), and the membrane (1) is released to the outside system. This is a module for particle separation microfiltration.

本発明では銅アンモニア法再生セルロース中空糸を用い
ることが必要である。
In the present invention, it is necessary to use cuprammonium regenerated cellulose hollow fibers.

再生セルロースには、ビスコース法、セルロスエステル
のけん化法、銅アンモニア法等、種々のものがあるが、
各々製造条件の相違により、物理的、化学的性質におい
て決して「再生セルロース」として一律に論じられるも
のではない.銅アンモニア法では、不可欠な酸処理によ
り銅の除去に伴う微細な孔の発生と特異な分子鎖の凝集
構造の発生が認められるため、銅アンモニア法再生セル
ロースは特異な性質を持つ。本発明者らは、銅アンモニ
ア法再生セルロースからなる中空糸膜が既存の中空糸膜
の中で最も蛋白質の吸着性が少ない中空糸膜の1つであ
ることを発見した。
There are various methods for producing regenerated cellulose, such as the viscose method, the cellulose ester saponification method, and the copper ammonia method.
Due to differences in manufacturing conditions, they cannot be uniformly discussed as ``regenerated cellulose'' in terms of physical and chemical properties. In the copper ammonia method, the essential acid treatment produces fine pores and a unique molecular chain aggregate structure due to the removal of copper, so regenerated cellulose produced by the cuprammonia method has unique properties. The present inventors have discovered that a hollow fiber membrane made of cellulose regenerated by the cuprammonium method is one of the hollow fiber membranes with the lowest protein adsorption properties among existing hollow fiber membranes.

本発明では、銅アンモニア法再生セルロースの粘度平均
分子量は7X10’以上が好ましく、また0.I N 
Na011水溶液中での溶解成分が少なければ少ないほ
ど望ましい。40゜C、48時間、0.1N Nail
  水溶液中に浸漬した際、この溶解成分が10ppm
以下であれば、この中空糸は本発明の分離器用濾材とし
て適している。
In the present invention, the viscosity average molecular weight of the cuprammonium regenerated cellulose is preferably 7X10' or more, and 0. IN
It is desirable that the amount of dissolved components in the Na011 aqueous solution is as small as possible. 40°C, 48 hours, 0.1N Nail
When immersed in an aqueous solution, this dissolved component is 10 ppm.
The hollow fiber is suitable as a filter medium for a separator of the present invention if the following conditions are met.

上述のようなセルロースからなる中空糸を作製するには
、高純度セルロース原料を用いて銅アンモニア法再生セ
ルロースを作製するか、或は中空系を作製後に0.I 
NaOl1水溶液で72時間以上洗浄処理すれば良い。
In order to produce hollow fibers made of cellulose as described above, regenerated cellulose is produced using a cuprammonium method using a high-purity cellulose raw material, or 0.0% is produced after producing the hollow system. I
It is sufficient to perform cleaning treatment with an aqueous NaOl solution for 72 hours or more.

高綽度セルロース原料を用いれば、上記溶解成分が著し
く減少するので、より好ましい。ここで、「高純度セル
ロース原料」とは、α−セルロース含有率が90−t%
以上で、重合度が500以上の木綿リンター及び木材バ
ルブを指す。これらの原料について、ブリーチング、洗
浄工程中での分解及び酸化を防止しつつ、不純物の混入
を避けるために、常に精製された水を用いると良い。
It is more preferable to use a high purity cellulose raw material because the above-mentioned dissolved components are significantly reduced. Here, "high purity cellulose raw material" means that the α-cellulose content is 90-t%.
The above refers to cotton linters and wood valves with a degree of polymerization of 500 or more. For these raw materials, it is preferable to always use purified water in order to prevent decomposition and oxidation during bleaching and washing steps and to avoid contamination with impurities.

上述の高純度セルロース原料を用いて銅アンモニア法再
生セルロースを作製するには例えば以下の方法で作製す
ることができる。
To produce regenerated cellulose using the cuprammonium method using the above-mentioned high-purity cellulose raw material, for example, it can be produced by the following method.

セルロースリンク−(α−セルロース含有N 96%以
上、平均分子ffi 2.6X 1 0S)を公知の方
法で調製した銅アンモニア?容冫夜中に8wt%の濃度
で溶解したものを紡糸原液として用い。この紡糸原液に
対して、アセトン/アンモニア/水系混合溶液を凝固剤
及び中空剤として用いてミクロ相分離を生起させ、その
後、凝固・再生することにより得られる。ここで、ミク
ロ相分離とは、溶液中に高分子の濃厚層あるいは希薄層
が直径0.02〜数μmの粒子として分散し、安定化し
ている状態を意味する。ミクロ相分離の生起は、紡糸中
の糸の失透現象によって直接肉眼観察するか、あるいは
紡糸後の糸の走査型及び透過型電子顕微鏡観察により、
直径1μm以下、0.02μm以上の粒子の存在で確認
される。
Cellulose link - (α-cellulose containing N 96% or more, average molecular ffi 2.6X 10S) prepared by a known method. A solution dissolved at a concentration of 8 wt% during the night was used as a spinning stock solution. This spinning stock solution is obtained by causing microphase separation using an acetone/ammonia/aqueous mixed solution as a coagulating agent and a hollowing agent, and then coagulating and regenerating it. Here, microphase separation means a state in which a concentrated layer or a diluted layer of polymer is dispersed and stabilized as particles having a diameter of 0.02 to several μm in a solution. The occurrence of microphase separation can be observed directly with the naked eye by the devitrification phenomenon of the yarn during spinning, or by scanning and transmission electron microscopy of the yarn after spinning.
It is confirmed by the presence of particles with a diameter of 1 μm or less and 0.02 μm or more.

本発明では、平均孔径が0.02〜0.2μmの範囲に
あり中空糸膜1本〜数本を濾材とすることが必要である
In the present invention, it is necessary that the average pore diameter is in the range of 0.02 to 0.2 μm and one to several hollow fiber membranes are used as the filter medium.

ia量かつ貴重な分離対象から微生物及びウイルス等の
分離・濃縮するには、中空系膜の充t,3”lを極限的
に少なくする必要がある。すなわち中空系内外のデッド
スペースによる分だ対象の損失を極小にするために中空
糸膜1本〜数本を濾材とする超小型モジュールが必要で
ある。微生物及びウィルス等粒子径25nm以上の粒子
の分離・濃縮が可能で、かつ十分な濾過速度を得るには
、平均孔径が0.02〜0.2μmの範囲にあることが
必要であり、また中空系膜の内径及び有効長は各々30
0μm、20cm以下が望ましい。平均孔径が0.02
μm以下になると該中空糸膜の強度が著しく低下してし
まう。
In order to separate and concentrate microorganisms, viruses, etc. from valuable separation targets with large amounts of ia, it is necessary to minimize the filling capacity of the hollow system membrane (3"L). In other words, the amount of dead space inside and outside the hollow system must be minimized. In order to minimize the loss of target material, an ultra-small module using one to several hollow fiber membranes as a filter medium is required.It is possible to separate and concentrate particles with a particle size of 25 nm or more, such as microorganisms and viruses, and has sufficient In order to obtain a filtration rate, it is necessary that the average pore diameter is in the range of 0.02 to 0.2 μm, and the inner diameter and effective length of the hollow membrane are each 30 μm.
Desirably 0 μm and 20 cm or less. Average pore size is 0.02
When the thickness is less than μm, the strength of the hollow fiber membrane is significantly reduced.

また濃縮され中空糸膜内部に捕捉された微生物及びウィ
ルスを回収する方法として、濾過後の中空糸膜をセルロ
ース分解酵素セルラーゼにより分解した後、回収するこ
とができる。
Further, as a method for recovering the concentrated microorganisms and viruses trapped inside the hollow fiber membrane, the hollow fiber membrane after filtration can be decomposed by cellulose degrading enzyme cellulase and then recovered.

本発明のモジュールは上記のように中空系膜1本〜数本
を濾材としているため、そのままでは取扱の際、該膜を
損傷するおそれが高い。すなわち筒体内に該膜を収納す
ることにより、損傷がら保護されている。さらに惑染性
ウイルス濃縮液等危険性の高い分離対象に触れること無
く安全に濾過操作ができる。
Since the module of the present invention uses one to several hollow membranes as filter media as described above, there is a high risk that the membranes will be damaged when handled as is. That is, by housing the membrane within the cylinder, it is protected from damage. Furthermore, filtration operations can be performed safely without touching highly dangerous separation targets such as contagious virus concentrates.

本発明では、中空糸膜が筒体内に収容され、か・つ咳筒
体の端部では該筒体が大気圧下に解放されかつ該膜は完
全に宝閉されていることが必要である。
In the present invention, it is necessary that the hollow fiber membrane is housed in a cylinder, that the cylinder is opened to atmospheric pressure at the end of the cough cylinder, and that the membrane is completely closed. .

また、筒休を透明ないし半透明することにより実際の濾
過の状態を観察することが可能となり好ましい。さらに
、筒体に目盛を入れれば濾過遣の正確な把握ができ、よ
り好ましい。
Furthermore, it is preferable to make the tube transparent or semi-transparent, as this makes it possible to observe the actual state of filtration. Furthermore, it is more preferable to include a scale on the cylindrical body, as this allows accurate grasping of the filtration rate.

該筒体の一端で該筒体が大気圧下に解放されていること
により、濾過時に筒体内の内圧が上昇することなく濾過
でき、濾過効率が良くなると共に、濾}夜の回収も容易
となる。
Since the cylinder body is open to atmospheric pressure at one end of the cylinder body, filtration can be performed without increasing the internal pressure inside the cylinder body during filtration, improving the filtration efficiency and making it easier to collect the filter at night. Become.

該筒体の素材として好ましくはガラス、透明性合成樹脂
、透明性ゴム等が挙げられる。又、取扱いのし易さ、破
膿の危険性を考えると、緩和弾性率が107〜l 0 
9dyne/ cAの範囲にある柔軟性のあるものが好
ましい。
Preferable materials for the cylinder include glass, transparent synthetic resin, transparent rubber, and the like. Also, considering the ease of handling and the risk of rupture, the relaxation modulus is 107~l0
A flexible material in the range of 9 dyne/cA is preferred.

本発明では、該筒体の他の端部では、充填剤を介して該
膜と該筒体に結合されたワンタッチ式迅速流体継手(プ
ラグ)が固定され、かっ該膜が外系へ開口されているこ
とが必嬰である。
In the present invention, a one-touch quick fluid coupling (plug) coupled to the membrane and the cylinder through a filler is fixed at the other end of the cylinder, and the membrane is opened to the outside system. It is necessary that the child is pregnant.

詳しくは、本発明の実施例として示した第1図のように
、銅アンモニア法再生セルロース中空糸膜(1)、充填
剤(2)、筒体(3)、ワンタッチ式迅速流体継手(プ
ラグ)(4)、から構成されている。中空糸膜(1)の
一端(八)部は充填剤で固定されワンタッチ式迅速流体
継手(プラグ)と一体化している。また該端部(A)の
中空糸膜は外系へ開口されている。
In detail, as shown in FIG. 1 as an example of the present invention, a cuprammonium regenerated cellulose hollow fiber membrane (1), a filler (2), a cylindrical body (3), and a one-touch quick fluid coupling (plug) are shown. (4). One end (8) of the hollow fiber membrane (1) is fixed with a filler and integrated with a one-touch quick fluid coupling (plug). Further, the hollow fiber membrane at the end (A) is opened to the outside system.

中空糸膜の他の一端(B) は完全に密閉されているが
、濾液回収のために、該端部(B)は筒体とは接合して
いない事が望ましい。
The other end (B) of the hollow fiber membrane is completely sealed, but in order to collect the filtrate, it is desirable that this end (B) not be joined to the cylinder.

実施例として示した第2図のような装置のワンタッチ式
迅速流体継手(ソケット)に本分離器のワンタッチ弐迅
速流体継手(プラグ)を接続することにより、中空糸膜
に約10kg/cfflの圧力をかけることが可能七な
る。即ちモジュールの濾材である中空糸膜1本〜数本毎
に非破壊性能検査(例えば、気体透過流星測定、ハブル
ボイント測定等)及び欠点(ピンホール)検査が実施で
きる。
By connecting the one-touch quick fluid coupling (plug) of this separator to the one-touch quick fluid coupling (socket) of the device shown in FIG. 2 as an example, a pressure of about 10 kg/cffl is applied to the hollow fiber membrane. It is possible to multiply by seven. That is, non-destructive performance tests (for example, gas permeation meteor measurements, hubble-boind measurements, etc.) and defect (pinhole) tests can be performed for every one to several hollow fiber membranes that are the filter media of the module.

本発明モジュールによる実施例を説明するに先立ち、本
明細書中に用いられる主な技術用語(物性値)の定義と
その測定方法を以下に示す。
Prior to describing embodiments of the module of the present invention, definitions of main technical terms (physical property values) used in this specification and methods for measuring them are shown below.

(平均孔径〕 銅アンモニア法再生セルロース中空糸の平均孔径測定用
モジュ〜ルを作製し、そのモジュール状態で、中空糸膜
の水の流出乎を測定し、(1)式から平均孔径(D)を
求めた。
(Average pore diameter) A module for measuring the average pore diameter of regenerated cellulose hollow fibers using the cuprammonium method was prepared, and in the module state, the outflow of water from the hollow fiber membrane was measured, and the average pore diameter (D) was calculated from equation (1). I asked for

■  : T  : △P : A  : Pr : μ   : 空孔率Prは、 流出量(m1/min) 膜厚(μm) 圧力差(mmHg) 膜面積(nf) 空孔率 水の粘性率(cp) 水膨潤時の見掛け密度ρaw、ボ リマーの密度ρρより(2)弐で求めた。セルロースの
場合ρp=1.56を用いた。
■: T: △P: A: Pr: μ: Porosity Pr is: Outflow rate (m1/min) Membrane thickness (μm) Pressure difference (mmHg) Membrane area (nf) Porosity Water viscosity (cp) ) It was determined in (2) 2 from the apparent density ρaw when swollen with water and the density ρρ of the polymer. In the case of cellulose, ρp=1.56 was used.

Pr(χ)一( 1  1)aw/ ρp ) XIO
O   (2)〔平均分子量) 銅アンモニア溶液中(20“C)で測定された極限粘度
[η](mf/g)を(3)式に代入することにより平
均分子量(粘度平均分子l)Mvを算出する。
Pr(χ)-(1 1)aw/ρp) XIO
O (2) [Average molecular weight] By substituting the intrinsic viscosity [η] (mf/g) measured in a cupric ammonia solution (20"C) into equation (3), the average molecular weight (viscosity average molecular l) Mv Calculate.

Mv 一E η] X3.2 X I O 3(3)〔
ウイルス阻止係数〕 本モジュールでウィルス含有液を濾過した際のウイルス
の対数減少率(J2ogreduction vol+
ie又はLRV)で表わされた阻止係数(以下LRVで
表す)は(4)式で算出する。
Mv 1E η] X3.2 X I O 3(3) [
Virus inhibition coefficient] Logarithmic reduction rate of virus when virus-containing liquid is filtered with this module (J2ogreduction vol+
The blocking coefficient (hereinafter referred to as LRV) expressed in ie or LRV is calculated using equation (4).

LRV−−log (濾液ウイルス濃度/元液ウイルス
濃度)(4) 〔発明の効果〕 本発明の微量濾過用モジュールを用いることによって、
従来の中空糸膜モジュールでは測定不可能であった微量
かつ貴重な微生物ウィルス等25nII1以上の粒子を
高精度で分離・除去・濃縮することが可能となった。
LRV--log (Filtrate virus concentration/Original liquid virus concentration) (4) [Effects of the invention] By using the microfiltration module of the present invention,
It has become possible to separate, remove, and concentrate with high precision particles of 25nII1 or more, such as trace amounts of valuable microbial viruses, which were impossible to measure with conventional hollow fiber membrane modules.

(実施例1) セルロースリンク−(α−セルロース含有量96%以上
、平均分子m 2.6x 10s )を公知の方法で調
製した銅アンモニア?容液中に8wt%の濃度で溶解し
′a7過脱泡を行い、紡糸原液とした。その紡糸原液を
環状紡出口の外側紡出口(外径2 mmφ)より2.4
m17minで、一方中空剤として、アセトン50圓t
%/アンモニア0.65wt%/水49.35wt%の
混合溶液を中央紡出口(外径0。6mmφ)より1.8
 if/minでそκぞれアセトン40wt%/アンモ
ニア0.65imt%/水59.35wt%の混合溶液
(凝固剤)中に直接吐出し、1 0 m/minの速度
で巻き取った。なお、吐出直後の透明青色の繊維状物は
次第に白色化し、ミクロ相分離を生起し、引き続いて凝
固が起こり、繊維としての形状が維持されていた。その
後2wt%の硫酸水溶液で再生し、その後水洗した。湿
潤状態にある中空糸を溶媒置換・真空乾燥して得ちれた
泪アンモニア法再生セルロース中空糸の内径は253.
5μm、膜厚は25,7μm、平均孔径は32. On
II1であった。その中空糸を第1図のようなモジュー
ル(有効長8cm)に成型した。
(Example 1) Copper ammonia prepared from cellulose link (α-cellulose content 96% or more, average molecular weight m 2.6 x 10s) by a known method? It was dissolved in a solution at a concentration of 8 wt % and subjected to excessive defoaming to obtain a spinning stock solution. The spinning stock solution was passed through the outer spinning spout (outer diameter 2 mmφ) of the annular spinning spout.
m17 min, while as a hollow agent, 50 ml of acetone
% / 0.65 wt % ammonia / 49.35 wt % water was added to the central spinning spout (outer diameter 0.6 mmφ).
If/min, each sample was directly discharged into a mixed solution (coagulant) of 40 wt% acetone/0.65 imt% ammonia/59.35 wt% water (coagulant), and wound up at a speed of 10 m/min. In addition, the transparent blue fibrous material immediately after discharge gradually turned white, microphase separation occurred, and coagulation subsequently occurred, maintaining the shape of the fiber. Thereafter, it was regenerated with a 2 wt % sulfuric acid aqueous solution, and then washed with water. The inner diameter of the regenerated cellulose hollow fibers obtained by the ammonia method, which was obtained by solvent replacement and vacuum drying of the hollow fibers in a wet state, was 253.
5μm, film thickness 25.7μm, average pore diameter 32. On
It was II1. The hollow fiber was molded into a module (effective length: 8 cm) as shown in FIG.

上記モジュールを第2図に示す装置に接続し、モジュー
ル内にエタノールを満たし、徐々に加圧したところ、9
.7kg/c++Tの時点で気泡が発生した。
When the above module was connected to the device shown in Figure 2, the module was filled with ethanol, and the pressure was gradually increased, the result was 9.
.. Bubbles were generated at 7 kg/c++T.

(バブルポイント9.7kg/aft)のモジュールを
下記に示すa過実験に用いた。
(bubble point: 9.7 kg/aft) was used in the a-passage experiment shown below.

大腸菌ファージファイエックスl74(以下φX174
と称す) (25r+m)が濾過膜面積1 c!当たり
105個になるように培養液(ペプトンーイースト培地
)元液濃度を調製した。第3図に示す装置を組み立てた
後、該培養液5戚を元液タンクに入れ、圧力200mm
Hgで定圧濾過を行ない3 mlの濾液を採取した。採
取した濾液にはφX174は検出されなかった。
Escherichia coli phage Phyex l74 (hereinafter referred to as φX174)
) (25r+m) is the filtration membrane area 1 c! The concentration of the original culture solution (peptone-yeast medium) was adjusted so that the number of cells per culture was 105. After assembling the apparatus shown in Fig. 3, put the culture solution 5 into the source solution tank and apply a pressure of 200 mm.
Constant pressure filtration was performed using Hg and 3 ml of filtrate was collected. φX174 was not detected in the collected filtrate.

元液量がさらに少ない場合(lI!11以下)には、元
液タンクを使用しないで、直接モジュールの手前の配管
チューブに元液を入れて濾過することも可能である。
If the amount of the source liquid is even smaller (lI!11 or less), it is also possible to directly pour the source liquid into the piping tube in front of the module and filter it without using the source liquid tank.

(実施例2) 実施例1と同様に作製した平均孔径を異にするモジュー
ルを用い、第3図の方式でφX 174を含む培養液の
上澄液を濾過した。濾液中のφX 174の数を測定し
、濾過によるφX174の阻止率(Ll?V)を求めた
。その結果を表1に示す。
(Example 2) Using modules having different average pore diameters prepared in the same manner as in Example 1, a supernatant of a culture solution containing φX 174 was filtered using the method shown in FIG. The number of φX174 in the filtrate was measured, and the rejection rate (Ll?V) of φX174 by filtration was determined. The results are shown in Table 1.

表1 モジュールの平均孔径とφx174の阻止率面図
である。ただし中空系膜の本数を数本に増す場合もある
Table 1 is a cross-sectional view of the average pore diameter of the module and the rejection ratio of φx174. However, the number of hollow membranes may be increased to several.

第2図は本発明モジュールの非破壊性能検査装置の模式
図である。第3図(a)は本発明モジュルによる濾過操
作の一例でる。また濾液が微量の場合は本発明モジュー
ルを逆に配置することにより筒体内に濾液を溜めること
ができる。
FIG. 2 is a schematic diagram of a non-destructive performance testing device for modules of the present invention. FIG. 3(a) shows an example of a filtration operation using the module of the present invention. If the amount of filtrate is small, the filtrate can be stored in the cylinder by arranging the module of the present invention in reverse.

1:再生セルロース中空糸膜、2:充填剤、3:筒体、
4:ワンタッチ式迅速流体継手(プラグ)、i二本発明
モジュール、6:空気或いは窒素ボンベ、7:元弁、8
:圧力調整弁、9:圧力計、10:気体流量計、11:
ワンタッチ式迅速流体継手(ソケッl−)、12:定圧
ポンプ、137元液タンク、l4:分離対象液、15:
濾液採取管、工6:濾液
1: regenerated cellulose hollow fiber membrane, 2: filler, 3: cylinder,
4: One-touch quick fluid coupling (plug), i2 module of the present invention, 6: Air or nitrogen cylinder, 7: Main valve, 8
: Pressure adjustment valve, 9: Pressure gauge, 10: Gas flow meter, 11:
One-touch quick fluid coupling (socket l-), 12: constant pressure pump, 137 source liquid tank, l4: liquid to be separated, 15:
Filtrate collection tube, step 6: Filtrate

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の微量濾過用モジュールの中空糸
長手方向の断面図である。 第1図(b) 、(c)は各々 A^線断面図、BB線
断特許出願人 旭化成工業株式会社 手続補正書(方式) 平成 2年 6月ユ7日 特許庁長官  吉 田 文 毅  殿 I.事件の表示 昭和63年特許願第322131号 2,発明の名称 再生セルロース中空糸膜微量濾過用 モジュール 3.補正をする者 事件との関係 特許出願人 大阪府大阪市北区堂島浜1丁目2番6号平成2年5月1
4日(発送日2.  5.  29)5.補正の対象 原書及び明細書の「図面の簡単な説明」の欄 6.補正の内容 願書の出願人(捺印)の欄を別紙の通り補正する。 明細書の第16頁第4行の「第3図(a)」を「第3図
」に補正する。
FIG. 1(a) is a sectional view of the hollow fiber longitudinal direction of the microfiltration module of the present invention. Figures 1 (b) and (c) are cross-sectional views along line A^ and line BB, respectively Patent applicant: Asahi Kasei Industries, Ltd. Procedural amendment (method) June 7, 1990 Director General of the Japan Patent Office Mr. Takeshi Yoshida I. Display of incident Patent Application No. 322131 of 1988 2. Name of invention Regenerated cellulose hollow fiber membrane microfiltration module 3. Relationship with the case of the person making the amendment Patent applicant 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka May 1, 1990
4th (shipment date 2.5.29) 5. 6. “Brief explanation of drawings” column of the original document and specification to be amended. Contents of amendment The applicant (seal) column of the application form will be amended as shown in the attached sheet. "Figure 3 (a)" on page 16, line 4 of the specification is corrected to "Figure 3."

Claims (1)

【特許請求の範囲】[Claims] (1)平均孔径が0.02〜0.2μmの範囲にある銅
アンモニア法再生セルロース中空糸膜(1)1本〜数本
が筒体(3)内に収納されているモジュールであって、
上記モジュールの端部では、その筒体(3)が大気圧下
に解放されかつ上記膜(1)が完全に密閉されており、
他方、上記モジュールの他の端部では、充填剤(2)を
介して上記膜(1)と上記筒体(3)にワンタッチ式迅
速流体継手(プラグ)(4)が固定されかつ該膜(1)
が外系へ開口されていることを特徴とする粒子分離微量
濾過用モジュール
(1) A cuprammonium regenerated cellulose hollow fiber membrane having an average pore diameter in the range of 0.02 to 0.2 μm (1) A module in which one to several membranes are housed in a cylinder (3),
At the end of the module, its cylinder (3) is open to atmospheric pressure and the membrane (1) is completely sealed;
On the other hand, at the other end of the module, a one-touch quick fluid coupling (plug) (4) is fixed to the membrane (1) and the cylinder (3) via a filler (2), and the membrane ( 1)
A module for particle separation microfiltration characterized by having an opening to the outside system.
JP32213188A 1988-12-22 1988-12-22 Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount Pending JPH02290228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32213188A JPH02290228A (en) 1988-12-22 1988-12-22 Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32213188A JPH02290228A (en) 1988-12-22 1988-12-22 Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount

Publications (1)

Publication Number Publication Date
JPH02290228A true JPH02290228A (en) 1990-11-30

Family

ID=18140278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32213188A Pending JPH02290228A (en) 1988-12-22 1988-12-22 Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount

Country Status (1)

Country Link
JP (1) JPH02290228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504674A (en) * 2016-01-22 2019-02-21 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Sterile solution product bag
US11021275B2 (en) 2016-01-22 2021-06-01 Baxter International Inc. Method and machine for producing sterile solution product bags

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504674A (en) * 2016-01-22 2019-02-21 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Sterile solution product bag
JP2019213952A (en) * 2016-01-22 2019-12-19 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Sterile solutions product bag
EP3616676A1 (en) * 2016-01-22 2020-03-04 Baxter International Inc Sterile solution product bag
US10617603B2 (en) 2016-01-22 2020-04-14 Baxter International Inc. Sterile solutions product bag
US11021275B2 (en) 2016-01-22 2021-06-01 Baxter International Inc. Method and machine for producing sterile solution product bags
US11564867B2 (en) 2016-01-22 2023-01-31 Baxter International Inc. Sterile solutions product bag
US11623773B2 (en) 2016-01-22 2023-04-11 Baxter International Inc. Method and machine for producing sterile solution product bags

Similar Documents

Publication Publication Date Title
US8623210B2 (en) Pore diffusion type flat membrane separating apparatus
RU2389513C2 (en) Blood purification apparatus such as highly porous hollow-fibre membranes and method for manufacturing thereof
KR870001735B1 (en) Purification method of water
US20010044615A1 (en) Plasma collecting device
RU2663747C2 (en) Hollow fiber membrane module and method for producing thereof
EP1206961B1 (en) Filter membranes for physiologically active substances
JP2022068142A (en) Filter membrane and device
WO2006080211A1 (en) Method for measuring number of fine particles in ultrapure water, filtration device for measuring number of fine particles, method for manufacture thereof and hollow fiber film unit for use in the device
US20230026019A1 (en) Virus removal membrane and method for manufacturing virus removal membrane
EP3130393A1 (en) Virus removal membrane
WO2022118943A1 (en) Porous hollow-fiber membrane and method for testing integrity
JPS6388007A (en) Virus free module
JPH02290228A (en) Module composed of regenerated hollow cellulose fiber membrane for filtration in very small amount
Walsh et al. Filtration sterilization
JPS63104615A (en) Virus-free module
EP3520883B1 (en) Module for concentrating incubated platelets and method for producing platelet preparation using same
US6368509B1 (en) Device for dialysis/purification of proteins
Denyer et al. Sterilization: filtration sterilization
JPH01254205A (en) Virus removing unit
JPS5827685A (en) Sterilized water-making unit
JPS61254202A (en) Hollow fiber for separating bacteria particles
JPS6388006A (en) Virus free steam sterilization of hollow fiber module
JPH01254204A (en) Method for removing virus
JPH0323177B2 (en)
JPS5875555A (en) Blood treating apparatus