JPH02289474A - Granulated blastfurnace slag sintered body and production thereof - Google Patents

Granulated blastfurnace slag sintered body and production thereof

Info

Publication number
JPH02289474A
JPH02289474A JP3159190A JP3159190A JPH02289474A JP H02289474 A JPH02289474 A JP H02289474A JP 3159190 A JP3159190 A JP 3159190A JP 3159190 A JP3159190 A JP 3159190A JP H02289474 A JPH02289474 A JP H02289474A
Authority
JP
Japan
Prior art keywords
sintered body
slag
blast furnace
furnace slag
granulated blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3159190A
Other languages
Japanese (ja)
Inventor
Sanenari Goto
後藤 實成
Motomu Kimura
木村 求
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
Kawatetsu Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Techno Research Corp filed Critical Kawatetsu Techno Research Corp
Priority to JP3159190A priority Critical patent/JPH02289474A/en
Publication of JPH02289474A publication Critical patent/JPH02289474A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered body which has sufficient strength and continuous porosity and exhibits the feather of slag particles by mixing fine slag powder and sodium silicate with granulated blastfurnace slag particles, pressurizing and molding this mixture and thereafter calcining the molded body. CONSTITUTION:The aimed sintered body is obtained by adding 2-10 pts.wt. fine slag powder of granulated blastfurnace slag and 5-20 pts.wt. unhydrated sodium silicate to 100 pts.wt. granulated blastfurnace slag particle and mixing them and thereafter pressurizing and molding this mixture, dehydrating and drying the molded body and calcinating it at 800-1200 deg.C. in this granulated blastfurnace slag sintered body, the granulated blastfurnace slag particles are connected by a connected layer made of both the heated product of granulated blastfurnace slag and sodium silicate and the continuous pores opening on the surface of the sintered body. Further in the production of the above-mentioned sintered body, the design properties of the sintered body are enhanced by applying glaze to the surface of the molded body after dehydrating and drying it and thereafter calcining it or coating noncombustible inorganic coating on the surface of the sintered body.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、製鉄副生物として豊富に発生する高炉スラグ
の高度利用の一つとして、高炉スラグの水砕粒を焼結体
となし、土木・建築構造物の耐火性仕上材等として使用
される焼結体、及びその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is one of the advanced uses of blast furnace slag, which is abundantly generated as a by-product of iron manufacturing, by making granulated particles of blast furnace slag into a sintered body. The present invention relates to a sintered body used as a fire-resistant finishing material for building structures, and a method for manufacturing the same.

[従来の技術] 高炉スラグは、土木用、道路用(地盤・路盤改良)に、
また、コンクリート骨材用、セメント用を主として古く
から使用されてきたが、建材としての利用は極めて少な
い。
[Conventional technology] Blast furnace slag is used for civil engineering and roads (ground and roadbed improvement).
In addition, although it has been used for a long time mainly for concrete aggregate and cement, its use as a building material is extremely rare.

一方、土木・建築用建材としては、従来から窯業系材料
が多用されてきたが、近年になって、そのすぐれた耐火
性、耐久性、独特の意匠性などが再評価され、土木・建
築構造材としてばかりでなく、例えば、道路、公園、キ
ャンパス等の舗装板、自動車道、鉄道、工場等の防音壁
、地下鉄、トンネル等の壁面、建築構造物の壁、床、屋
根、外構等の仕上材として、建材一般にわたって多様な
使い方で増々使用量が増大している。
On the other hand, ceramic materials have traditionally been widely used as building materials for civil engineering and construction, but in recent years, their excellent fire resistance, durability, and unique design have been reevaluated, It can be used not only as a material, but also for paving boards for roads, parks, campuses, etc., soundproof walls for motorways, railways, factories, etc., walls for subways, tunnels, etc., walls, floors, roofs, external structures of architectural structures, etc. As a finishing material, it is being used in a variety of ways across general building materials, and its usage is increasing.

従来、原料が豊富であるにもかかわらず、建材として使
用可能なスラグ焼結体が得られていなかったが、その主
たる理由は十分な焼結強度が得られなかったためと考え
られる。
Conventionally, despite the abundance of raw materials, slag sintered bodies that can be used as building materials have not been obtained, and the main reason for this is thought to be that sufficient sintering strength was not obtained.

[発明が解決しようとする課題] 本発明は、高炉水砕スラグに関する上記従来技術におけ
る欠点を解決し、十分な焼結強度が得られる高炉水砕ス
ラグ焼結体及びその製造方法を提供しようとするもので
ある。
[Problems to be Solved by the Invention] The present invention aims to solve the drawbacks of the above-mentioned conventional techniques regarding granulated blast furnace slag, and to provide a sintered body of granulated blast furnace slag that can obtain sufficient sintering strength and a method for producing the same. It is something to do.

〔課題を解決するための手段] 本発明者は上記課題を解決するために、高炉水砕スラグ
粒が、高炉水砕スラグと珪酸ソーダとの加熱生成物と焼
結体表面に開口する連続気孔とよりなる結合層により結
合されていることを特徴とする高炉水砕スラグ焼結体を
提供するもので、表面に施釉層又は不燃性無機質塗膜を
備えることができ、さらにこの焼結体の製造方法として
、高炉水砕スラグ粒lOo重量部に、2〜10重量部の
該スラグ微粉末と、無水塩として5〜20重量部の珪酸
ソーダとを加λて混合した後、加圧成形、脱水乾燥、8
00℃以上1200℃未満の焼成を行う製造方法を提供
するもので、脱水乾燥後の成形体の表面に釉薬を施して
から焼成するか、焼結体の表面に不燃性無機質塗料を塗
装することにより、焼結体の意匠性を高めることができ
る。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have discovered that granulated blast furnace slag grains have continuous pores that open on the surface of a sintered body and a heated product of granulated blast furnace slag and sodium silicate. The present invention provides a sintered body of granulated blast furnace slag, which is characterized in that it is bonded by a bonding layer consisting of a As a manufacturing method, 2 to 10 parts by weight of the fine slag powder and 5 to 20 parts by weight of sodium silicate as anhydrous salt are added to 100 parts by weight of granulated blast furnace slag grains, and then mixed, followed by pressure molding. Dehydration drying, 8
This provides a manufacturing method that involves firing at temperatures above 00°C and below 1200°C, which involves applying a glaze to the surface of the molded body after dehydration and drying and then firing it, or painting the surface of the sintered body with a nonflammable inorganic paint. As a result, the design of the sintered body can be improved.

〔作用1 本発明者は、高炉水砕スラグ粒に適切なバインダの使用
と焼結処理を行うことによって、七分な強度を有し、且
つスラグ粒の特徴を生かした連続多孔性焼結体を製造し
、特に道路舗装用透水板。
[Effect 1] By using an appropriate binder and sintering the granulated blast furnace slag grains, the present inventor has created a continuous porous sintered body that has seven times the strength and takes advantage of the characteristics of the slag grains. We manufacture water-permeable plates, especially for road paving.

吸音・防音板用として好適な材料を提供しようとした。We attempted to provide a material suitable for use in sound-absorbing and sound-insulating boards.

その場合、成形焼結体に望まれる主特性は以下のようで
ある。
In that case, the main characteristics desired for the shaped sintered body are as follows.

■ 不燃性、耐火性 ■ 用途に応じた強度 ■ 透水性、耐水性 ■ 吸音性 このような特性を満たすスラグ製建材を得るためには、
スラグ粒に適したバインダの使用をはじめ、原料組成、
調合、成形、焼成の全般にわたる製造技術を研究・開発
する必要がある。
■ Nonflammability, fire resistance ■ Strength depending on the application ■ Water permeability, water resistance ■ Sound absorption To obtain a slag building material that satisfies these characteristics,
Including the use of binders suitable for slag grains, raw material composition,
It is necessary to research and develop manufacturing technologies that cover all aspects of compounding, molding, and firing.

連続多孔性根が吸音板や透水板として有効なので、製鉄
副産物として大量に得られるスラグ水砕粒を、成形、焼
結することにより、前記用途に有用で、しかも耐火度の
高い多孔板として活用できると考えた。
Since continuous porous roots are effective as sound-absorbing plates and water-permeable plates, it is believed that by molding and sintering granulated slag grains, which are obtained in large quantities as a by-product of iron manufacturing, it is possible to use them as porous plates that are useful for the above-mentioned purposes and have a high degree of fire resistance. Thought.

多孔板とするにはスラグ粒の形状を大きくは変えずに粒
子間を部分結合し、高耐火度とするには高温焼結すれば
十分と考えられる。
It is considered that it is sufficient to partially bond the slag grains without significantly changing the shape of the slag grains to make a porous plate, and to perform high-temperature sintering to make the slag highly refractory.

また、用途によるが、焼結板には高い強度が求められる
。例えば、歩道用透水平板としては、40 k g /
 c rn’以上の曲げ破壊強度が必要である。(J 
I 5A5304)。
Also, depending on the application, sintered plates are required to have high strength. For example, as a transparent horizontal board for sidewalks, 40 kg/
Bending fracture strength of cr' or higher is required. (J
I5A5304).

このため、高度な吸音性、透水性、不燃・耐火性、強度
を有する焼結体を得るには、バインダその他の添加剤を
含めた焼結成分の組成及び粒度、成形条件、焼結条件の
適正範囲を見い出すことが、必要不可欠である。
Therefore, in order to obtain a sintered body with high sound absorption, water permeability, nonflammability/fire resistance, and strength, it is necessary to carefully adjust the composition and particle size of sintered components including binders and other additives, molding conditions, and sintering conditions. Finding the right range is essential.

高炉水砕スラグは、例えば第1表に化学成分(重量%)
を示すようなCaO・n5i02系を主成分とする不定
形粒状ガラスで、第8図に例示するような約0.1〜5
mmにわたる粒度分布をしている。
For example, the chemical composition (wt%) of granulated blast furnace slag is shown in Table 1.
It is an amorphous granular glass mainly composed of CaO・n5i02 system which shows
It has a particle size distribution over mm.

第   1   表 こめスラグ粒を連続気孔を有する耐火性焼結板とするた
め、プレス成形し、800℃以上で焼成する実験を行っ
た。
1. In order to make a fire-resistant sintered plate having continuous pores from the slag grains, an experiment was conducted in which the slag particles were press-formed and fired at a temperature of 800° C. or higher.

種々検討の末、珪酸ソーダをバインダとして使用するこ
とによって成形を容易にし、焼結を促して、求める焼結
板が得られることがわかった。バインダを使用しないと
プレス成形品が得られず、また、有機系バインダを使用
した場合は成形性はよいが、焼成中の焼結が起こる前に
バインダが分解あるいは燃焼して、十分な焼結強度が得
られない。
After various studies, it was found that the desired sintered plate could be obtained by using sodium silicate as a binder to facilitate molding and promote sintering. If a binder is not used, a press-formed product cannot be obtained, and if an organic binder is used, the moldability is good, but the binder decomposes or burns before sintering occurs during firing, resulting in insufficient sintering. Strength cannot be obtained.

無機バインダとしては、珪酸ソーダのほかに。As an inorganic binder, in addition to sodium silicate.

燐酸塩、ポリ燐酸塩、硼酸塩、およびシリカゾル、アル
ミナゾル、その他の金属酸化物についても検討したが、
それぞれ単独で有効なものはなく、また、珪酸ソーダを
ベースに上言己物質のいずれかを添加した場合でも、添
加による著しい効果の向上を示すものは見られなかった
Phosphates, polyphosphates, borates, and silica sols, alumina sols, and other metal oxides were also considered.
None of these substances is effective alone, and even when any of the above-mentioned substances was added to a sodium silicate base, no significant improvement in effectiveness was observed due to the addition.

珪酸ソーダは、スラグ粒表面をよく濡らし、比較的低温
からスラグ表面と反応して粒間な強固に結合すると考え
られる。珪酸ソーダの添加量はスラグ粒表面を十分に被
覆する程度であればよく、高炉水砕スラグ100重量部
に対して無水塩換算5〜20重量部とし、スラグの粒度
等を勘案してこの範囲で用いる。混合、成バらを容易に
するため、水を適宜量加えて良いが、水ガラスを使用す
る場合は必ずしも必要ではない。珪酸ソーダの添加量が
不足すると焼結強度が低下し、多過ぎると連続気孔が少
なくなったり焼結体の組成わらや密度むらを起こしたり
するため、透水性や吸音性に悪影響を及ぼす。
Sodium silicate is thought to wet the surface of slag grains well and react with the slag surface from a relatively low temperature to form strong intergranular bonds. The amount of sodium silicate added is sufficient as long as it sufficiently coats the surface of the slag grains, and should be 5 to 20 parts by weight in terms of anhydrous salt per 100 parts by weight of granulated blast furnace slag, and should be within this range taking into account the particle size of the slag, etc. used in An appropriate amount of water may be added to facilitate mixing and formation, but this is not necessary if water glass is used. If the amount of sodium silicate added is insufficient, the sintering strength will decrease, and if it is too much, the number of continuous pores will be reduced and the composition of the sintered body will be uneven, resulting in adverse effects on water permeability and sound absorption.

第8図に粒度分布を示した水砕スラグ100重量部と、
無水塩として10重量部の水ガラスを混合したものを、
50kg/cm”の圧力で、300X300X40mm
の板状にプレス成形した後、110℃で乾燥し、800
℃以上1200℃未満で焼成することにより、40 k
 g / c rn’以上の曲げ破壊強度、約0.3 
c m / s e c以上の透水速度(40mm厚の
焼結板上にLoomの水位を保ったときの垂直透水落下
速度)を有する多孔性焼結板を得た。
100 parts by weight of granulated slag whose particle size distribution is shown in FIG.
A mixture of 10 parts by weight of water glass as anhydrous salt,
300X300X40mm at a pressure of 50kg/cm"
After press-molding into a plate shape, it was dried at 110℃ and heated to 800℃.
By firing at a temperature of ℃ or higher and lower than 1200℃,
Bending fracture strength of g/c rn' or more, approximately 0.3
A porous sintered plate having a water permeation rate of cm/sec or more (vertical water permeation falling rate when the water level of the room is maintained on a 40 mm thick sintered plate) was obtained.

この(水砕スラグ、珪酸ソーダ)混合物を基本として、
焼結体の強度、透水性、吸音性に及ぼす、原料粒度、混
合物組成、焼成条件等の影響を調べ、焼結体の製造条件
を求めた結果を以下に示す。
Based on this (granulated slag, sodium silicate) mixture,
The effects of raw material particle size, mixture composition, firing conditions, etc. on the strength, water permeability, and sound absorption properties of the sintered body were investigated, and the manufacturing conditions for the sintered body were determined.The results are shown below.

水砕スラグ、珪酸ソーダに、さらに水砕スラグ微粉末を
添加混合すると、焼結体の曲げ破壊強度が向上し、その
ばらつきが小さくなる。第1図に高炉水砕スラグ微粉末
(商品名リバーメント、粉末度ブレーン値4000)添
加による曲げ破壊強度(J I 5A5304に準拠)
の変化を示した。焼結原料(水砕スラグ(粒径21mm
、粒径≧2mm)100重量部、珪酸ソーダ又は燐酸ソ
ーダ12重量部、スラグ微粉末(ブレーン値4000)
0〜15重量部1、プレス成形圧50k g / c 
rn”、焼成温度1100℃×2h(炉内徐冷)、の条
件で実験した結果である。
When granulated slag powder is further added and mixed with granulated slag and sodium silicate, the bending fracture strength of the sintered body is improved and its variation is reduced. Figure 1 shows the bending fracture strength (according to J I 5A5304) due to the addition of pulverized blast furnace slag powder (trade name: Liberment, Blaine value of fineness 4000).
showed a change in Sintering raw material (granulated slag (particle size 21 mm)
, particle size ≧ 2 mm) 100 parts by weight, 12 parts by weight of sodium silicate or sodium phosphate, fine slag powder (Blaine value 4000)
0-15 parts by weight 1, press molding pressure 50kg/c
This is the result of an experiment conducted under the following conditions: 1,100°C firing temperature x 2 hours (slow cooling in the furnace).

珪酸ソーダは燐酸ソーダに比して強度の発現が極めて大
きい。なお、硼酸塩等の他のパイン、ダによる強度発現
も燐酸ソーダと同様珪酸ソーダに比し極めて低いもので
あった。
Sodium silicate exhibits extremely high strength compared to sodium phosphate. In addition, the strength development by other pine and da, such as borates, was also extremely low compared to sodium silicate, as was the case with sodium phosphate.

スラグ微粉末の添加量を増すにつれて強度が向上し、添
加量5重量部でほぼ飽和(約100kg/ c rn”
 )に達する。この結果から、水砕スラグ粒の粒度分布
によって若干の相違はみられるが、スラグ微粉末添加量
を2〜lO重量部%とした。
As the amount of fine slag powder added increases, the strength improves, and at an amount of 5 parts by weight, it is almost saturated (approximately 100 kg/c rn"
). From this result, although some differences were seen depending on the particle size distribution of the granulated slag particles, the amount of fine slag powder added was set at 2 to 10% by weight.

2重量部未満では添加効果が不十分で、10重量部を越
えてもそれ以上の強度向上が得られないし、焼結体の空
隙率を低下することがある。
If it is less than 2 parts by weight, the effect of addition is insufficient, and if it exceeds 10 parts by weight, no further improvement in strength can be obtained and the porosity of the sintered body may be reduced.

スラグ微粉末による強度向上効果の理由は、微粉末がバ
インダ(珪酸ソーダ)と反応して、バインダの組成が高
炉スラグの組成に近付き高炉スラグとのなじみがよくな
り、バインダのスラグ粒との接触境界付近ではスラグ粒
との成分拡散、局部的反応等により成分の濃度勾配が緩
和され、明瞭な境界が薄れて一体化した強固な結合層を
生じ、さらに結合層には顕!jT19観察により、針状
結晶が認められ結合層を補強しており、水砕スラグ粒間
の結合力を強化しているためと考えられる。
The reason for the strength improvement effect of fine slag powder is that the fine powder reacts with the binder (sodium silicate), and the composition of the binder approaches that of blast furnace slag, which improves its compatibility with blast furnace slag, and the contact between the binder and the slag grains. Near the boundary, the concentration gradient of the components is relaxed due to component diffusion with the slag grains, local reactions, etc., and the clear boundary fades to form an integrated, strong bonding layer. jT19 observation revealed needle-shaped crystals that reinforced the bonding layer, which is thought to be due to strengthening the bonding force between the granulated slag particles.

スラグ微粉末は粉末度(ブレーン+a>too。Fine slag powder has a fineness (Brain+a>too).

〜5000稈度のものが好適に用いられる。Those with a culm degree of ~5000 are preferably used.

一方、スラグ微粉末添加による透水性への影響は第4図
から明らかなように殆ど認められなかった。
On the other hand, as is clear from FIG. 4, almost no effect on water permeability due to the addition of fine slag powder was observed.

第2図は焼結体の曲げ破壊強度に及ぼすバインダ添加量
の影響を示す例で、焼結原料(水砕スラグ(粒径≧1m
m)100重量部、スラグ微粉末5重量部、バインダ0
〜40重量部I、プレス成形圧50 k g / c 
rn’、焼成温度1100℃X2h(炉内徐冷)の条件
で実験した結果である。
Figure 2 shows an example of the effect of the amount of binder added on the bending fracture strength of a sintered body.
m) 100 parts by weight, 5 parts by weight of fine slag powder, 0 parts by weight of binder
~40 parts by weight I, press molding pressure 50 kg/c
This is the result of an experiment conducted under the conditions of rn' and firing temperature of 1100° C. for 2 hours (slow cooling in the furnace).

珪酸ソーダは硼酸ソーダに比して曲げ破壊強度の向上効
果が極めて大きいが、添加量が5重量部未満では効果は
不十分で、20重量部を越えると強度のばらつきが大き
くなる。
Sodium silicate has a much greater effect of improving bending fracture strength than sodium borate, but if the amount added is less than 5 parts by weight, the effect is insufficient, and if it exceeds 20 parts by weight, variations in strength will increase.

次に、第3図は焼結体の曲げ破壊強度に及ぼす焼成温度
の影響を示す例で、焼結原料(水砕スラグ(粒径≧2m
m)100重量部、珪酸ソーダ12重量部、スラグ微粉
末(ブレーン値4000)6重量部)、成形圧50 k
 g/ c、rn’の条件で得た結果である。これによ
って、焼成温度が約1000℃までは高温はど高強度と
なり約1000℃から1200℃未満で最高強度が得ら
れ、1200℃ではガラスの結晶化が進んで体積膨張を
起こし、軟化による形状変化をきたし、強度が急激に低
下することがわかった。このため、焼成温度は800℃
以上1200℃未満とする。
Next, Figure 3 is an example showing the influence of firing temperature on the bending fracture strength of sintered bodies.
m) 100 parts by weight, 12 parts by weight of sodium silicate, 6 parts by weight of fine slag powder (Blaine value 4000), molding pressure 50 k
These are the results obtained under the conditions of g/c, rn'. As a result, the higher the firing temperature, the higher the strength, and the highest strength is obtained from approximately 1000°C to less than 1200°C, and at 1200°C, the crystallization of the glass progresses, causing volumetric expansion, and the shape changes due to softening. It was found that the strength decreased rapidly. Therefore, the firing temperature is 800℃
The temperature should be at least 1200°C.

1000℃以下では焼成時間を増すにつれて強度が上が
る傾向にあるが、省エネルギー、省時間の理由で、10
00℃〜1170℃が最も望ましい焼成温度である。
At temperatures below 1000°C, the strength tends to increase as the firing time increases, but for reasons of energy and time saving,
The most desirable firing temperature is 00°C to 1170°C.

第4図は、焼結体の透水速度と使用スラグ粒径との関係
を例示したものである。スラグ粒度としては、第8図に
示した粒度分布を持つ水砕スラグ(粒径≦5mm);こ
の粒度構成から1mm篩目で分級した網上(粒径≧1m
m);2mm篩目で分級した網上(粒径≧2mm)の3
種について調べた。このときの焼結体製造条件は、焼結
原料(水砕スラグ粒100重量部、珪酸ソーダ12重量
部、水砕スラグ微粉末(ブレーン値4000)6重量部
) 成形圧50 k g / cd、焼成1100℃×
2h(炉内徐冷)であった。
FIG. 4 illustrates the relationship between the water permeation rate of the sintered body and the particle size of the slag used. The slag particle size is granulated slag with the particle size distribution shown in Figure 8 (particle size ≦5 mm);
m); 3 on a screen (particle size ≧ 2 mm) classified with a 2 mm sieve
I researched the seeds. The conditions for producing the sintered body at this time were: sintering raw materials (100 parts by weight of granulated slag grains, 12 parts by weight of sodium silicate, 6 parts by weight of fine granulated slag powder (Blaine value 4000)), molding pressure of 50 kg/cd, Firing 1100℃×
2 hours (slow cooling in the furnace).

微粉末を配合しても水砕スラグ焼結体の透水性は損なわ
れることなく高く保たれ、当然ながら、スラグ粒径が大
きいほど透水速度が高い。成形圧、原料混合比によって
も若干影響されるが、分級しない水砕スラグ(粒径≦5
mm)を使用した場合の透水速度は約0.3 c m 
/ s e c、粒径≧Lmmでは約0.9cm/se
c、粒径≧2mmでは約2 c m / s e cで
あった。また見掛比重も、スラグ粒径、透水速度の増大
につれて低下し、焼結体空隙率の増大を物語っている。
Even when fine powder is blended, the water permeability of the sintered granulated slag remains high without being impaired, and naturally, the larger the slag particle size, the higher the water permeation rate. Although it is slightly affected by the molding pressure and raw material mixing ratio, unclassified granulated slag (particle size ≦5
The water permeability rate is approximately 0.3 cm
/sec, about 0.9cm/sec for particle size ≧Lmm
c, it was about 2 cm/sec when the particle size was ≧2 mm. The apparent specific gravity also decreased as the slag particle size and water permeation rate increased, indicating an increase in the porosity of the sintered body.

この結果から、スラグの粒度構成の調節によって、あら
かじめ焼結体の透水速度を設計することができる。
From this result, the water permeation rate of the sintered body can be designed in advance by adjusting the particle size structure of the slag.

本発明によるスラグ焼結体の吸音性を、垂直入射吸音率
の測定例をもって第5図に示した。
The sound absorption properties of the slag sintered body according to the present invention are shown in FIG. 5 with an example of measurement of normal incidence sound absorption coefficient.

前述の透水速度測定に用いた焼結体と同条件で製造した
40mm厚の焼結板につぃ′て、背面空気層厚をOmm
としたときの垂直入射吸音率の測定結果である。
For a 40 mm thick sintered plate manufactured under the same conditions as the sintered body used for the water permeation rate measurement described above, the back air layer thickness was Omm.
This is the measurement result of normal incidence sound absorption coefficient when

Cflコンクリートブロックと比較して著しい吸音性が
認められる。測定材料の厚さや背面空気層の厚さによっ
て、吸収音域や吸音率などが大きな変動を示すことは周
知のことであるが、各材料について、同傾向の挙動とな
るので、本発明による焼結体が本質的に高い吸音性を持
つことは明白である。水砕スラグ粒径が大きいと、低周
波数(500Hz以下)@で吸音率が低下し、500〜
1000Hzで上昇する傾向も見られる。従って、本発
明による焼結体は、スラグ粒径、焼結体の厚さ、背面空
気層の厚さ等を考慮することによって、目的にあった吸
音・防音構造物の吸音素材として一層有効に使用するこ
とができる。
Significant sound absorption properties are observed compared to Cfl concrete blocks. It is well known that the sound absorption range and sound absorption coefficient vary greatly depending on the thickness of the material to be measured and the thickness of the back air layer. It is clear that the body has an inherently high sound absorption property. When the granulated slag particle size is large, the sound absorption coefficient decreases at low frequencies (below 500Hz),
A tendency to increase at 1000 Hz is also seen. Therefore, the sintered body according to the present invention can be made more effective as a sound-absorbing material for sound-absorbing and sound-insulating structures that meet the purpose by considering the slag particle size, the thickness of the sintered body, the thickness of the back air layer, etc. can be used.

本発明の焼結体と市販品であるA社及びB社の吸音板の
残響室性吸音率を第6図に、曲げ破壊強度を第2表に示
す。
The reverberation room sound absorption coefficients of the sintered body of the present invention and the commercially available sound absorbing plates of Company A and Company B are shown in FIG. 6, and the bending fracture strength is shown in Table 2.

本発明による焼結体は、A社及びB社の吸音板に比し、
格段に高い曲げ破壊強度を用いながら同程度の吸音性能
を示している。
Compared to the sound absorbing plates of companies A and B, the sintered body according to the present invention has
It shows the same level of sound absorption performance while using significantly higher bending fracture strength.

脱水乾燥後の成形体の表面への釉薬の塗布、および焼結
体の表面への不燃性無機質塗料の塗装は、スプレー法、
ロール法等により行うことができ、表面の気孔を封する
ことな(行うことにより、焼結体の透水性・吸音性を損
なうことな(意匠性を高めることができる。
The application of glaze to the surface of the molded body after dehydration and drying and the application of nonflammable inorganic paint to the surface of the sintered body are carried out using the spray method,
This can be done by a roll method, etc., and the pores on the surface are sealed (by doing so, the design can be improved without impairing the water permeability and sound absorption properties of the sintered body).

〔実施例1 実施例1 第3表に化学成分(重量%)を、第8図に粒度分布を示
した高炉水砕スラグ100重量部、これを微粉砕した高
炉スラグ微粉末(ブレーン値400016重量部、水ガ
ラス2号12重量部(無水塩Na20 ・2.5S i
 02として6重量部)、無水珪酸ソーダ3号(Na2
0・3.3SiO2)6重量部をよ(混合し、圧縮成形
機により50kg/crn’の成形圧で300X300
X40mmの根状に成形した。
[Example 1 Example 1 100 parts by weight of granulated blast furnace slag whose chemical components (wt%) are shown in Table 3 and particle size distribution shown in Figure 8, and pulverized blast furnace slag powder (Blaine value: 400,016 parts by weight) 12 parts by weight of water glass No. 2 (anhydrous salt Na20 ・2.5S i
6 parts by weight as 02), anhydrous silicate soda No. 3 (Na2
6 parts by weight of 0.3.3SiO2) were mixed and molded using a compression molding machine at a molding pressure of 50 kg/crn' to form a 300×300
It was molded into a root shape of 40mm x 40mm.

第 3表 この成形体を110°Cで十分に乾燥した後、1100
℃×211にて焼成し、100℃まで徐冷(炉冷)して
焼結体を得た。
Table 3 After thoroughly drying this molded body at 110°C,
It was fired at 211 °C and slowly cooled (furnace cooling) to 100 °C to obtain a sintered body.

この焼結体の見掛り比重は1.7(空隙率約35%)1
曲げ破壊強度は98kg/cm″、透水速度は0.35
 c m / s e cであり、ル直入射吸音率は第
5図中のx印曲線のように、コンクリートブロックに比
べて高い吸音性を示した。
The apparent specific gravity of this sintered body is 1.7 (porosity approximately 35%)1
Bending fracture strength is 98kg/cm'', water permeation rate is 0.35
cm/sec, and the direct incidence sound absorption coefficient showed higher sound absorption than concrete blocks, as shown by the x-marked curve in Figure 5.

実施例2 高炉水砕スラグの粒径1mm以上の粒分を使用し、他は
実施例1と同組成で混合、同条件で成形、乾燥を行った
後、市販釉薬(日本フェロ−社製、窯業用NF)を約3
00g/rn’スプレー塗布し、1150℃X2h焼成
し5100℃まで徐冷(炉冷)して、施釉スラグ焼結板
を得た。焼結板の見掛比重は1.6(空隙率約40%)
1曲げ破壊強度95 k g / c rn’、透水速
度0.35cm/secであり、垂直入射吸音率は第5
図のΔ印曲線とほぼ同様で高い吸音性を示した。
Example 2 Granulated blast furnace slag with a particle size of 1 mm or more was used, and the rest was mixed with the same composition as in Example 1, molded and dried under the same conditions, and a commercially available glaze (manufactured by Nippon Ferro Co., Ltd., Approximately 3 ceramic NF)
00g/rn' spray coating, firing at 1150°C for 2 hours, and slow cooling (furnace cooling) to 5100°C to obtain a glazed sintered sintered plate. The apparent specific gravity of the sintered plate is 1.6 (porosity approximately 40%)
1 bending breaking strength is 95 kg/c rn', water permeation rate is 0.35 cm/sec, and the normal incidence sound absorption coefficient is 5th.
It exhibited high sound absorption properties, almost the same as the curve marked Δ in the figure.

施釉層は、焼結板の気孔を残して表面粒子を被覆してお
り、紬薬特有の意匠性の高い外観を呈した。
The glazed layer covered the surface particles while leaving the pores of the sintered plate, giving it a highly designed appearance unique to pongee medicine.

実施例3 高炉水砕スラグの粒径2mm以上の粒分を使用し、他は
実施例1と同条件で焼結板を製作した後、珪酸系無機塗
料(用鉄テクノリサーチ社製、KO5AC)を110g
/ば、ローラにより塗装し、200℃X 20 m i
 nで焼付けた。
Example 3 A sintered plate was produced using granulated blast furnace slag with a particle size of 2 mm or more, and under the same conditions as in Example 1. 110g
/ Painted with a roller, 200℃ x 20 m i
Baked with n.

得られた化粧焼結板の見掛比重は1.4(空隙率約47
%)1曲げ破壊強度94 k g / c m″、透水
速度は約2cm/secであった7 また、吸音性は第5図のO印曲線とほぼ同様な垂直吸音
率、および第7図に示した残響家法吸音率となり、高い
吸音率であった。
The apparent specific gravity of the obtained decorative sintered board was 1.4 (porosity approximately 47
%) 1 bending breaking strength was 94 kg/cm'', and the water permeation rate was approximately 2 cm/sec. The sound absorption coefficient was as high as that of the reverberant house method.

無機塗装膜は、気孔を埋めることなく表面層スラグ粒子
によく富着しており、耐火性、耐汚染性のよい化粧面が
得られた。
The inorganic coating film was well-adhered to the surface layer slag particles without filling the pores, and a decorative surface with good fire resistance and stain resistance was obtained.

なお、無機塗料の塗覆に際しては、無m塗料の粘度や塗
m厚みなどを適宜調整することで焼結体の気孔を封する
ことなく塗装膜を形成させることができる。
In addition, when coating with the inorganic paint, a coating film can be formed without sealing the pores of the sintered body by appropriately adjusting the viscosity, coating thickness, etc. of the inorganic paint.

[発明の効果1 本発明により、′!A鉄副鉄物産物る高炉水砕スラグを
主原料として得られる有孔焼結体は、少なくとも40 
k g / cゴ以上の曲げ圧壊強度、高い透水性と吸
音性を有しており、これ等のftQは、高炉水砕スラグ
粒の粒度分布、該スラグ微粉末の添加量、珪酸ソーダの
添加量および焼成温度を選1尺することにより調節する
ことができ、さらに施釉あるいは無機塗料の焼付塗装に
よって、素材の特性を損なわずに自由度の高い意匠性を
備えたml・1火竹材料が(1られ、土木・構築構造物
に、特にその表面材、仕上材として、広範囲の用途が考
えられる。
[Effect of the invention 1 According to the present invention, '! A perforated sintered body obtained using granulated blast furnace slag, which is a secondary iron product of iron, has at least 40
It has a bending crushing strength of more than kg/c, high water permeability and sound absorption, and its ftQ is determined by the particle size distribution of the granulated blast furnace slag, the amount of pulverized slag added, and the addition of sodium silicate. The amount and firing temperature can be adjusted by selecting one size, and by glazing or baking with inorganic paint, ml.1 fire bamboo material with a high degree of freedom in design without impairing the characteristics of the material can be produced. (1) It can be used in a wide range of civil engineering and construction structures, especially as surface materials and finishing materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉水砕スラグ微粉末添加量と焼結体の曲げ破
壊強度との関係を示す図、第2図はバインダ添加量と焼
結体の曲げ破壊強度との関係を示す図、第3図は焼成温
度と焼結体の曲げ破壊強度との関係を示す図、第4図は
高炉水砕スラグの粒径と焼結体の透水速度との関係を示
す図、第5図は音の周波数と焼結体の重置入射吸音率と
の関係を示す図、第6図は本発明の焼結体と従来の吸音
板における音の周波数と残響室法吸音率との関係を示す
図、第7図は音の周波数と焼結体の残響室法吸音率との
関係を示す図、第8図は高炉水砕スラグの粒度分布の1
例を示す図である。 出 顆 人  川鉄テクノリサーチ株式会社代 理 人
   弁理士  小 杉 佳 男○珪酸ソータ゛ △万明酸ソーデ バインク′5悉7IOv(重量部) 第2図 狂11吏ソ 高炉水砕スラグ微粉禾添加量  〔重量部〕第1図 賦成温度  (”C) 第3図 3≦ ≧1 ≧2 粒径(mm) 約1.7 約1.5 約1.4 縣往重 ζ→=本発明 b−ム:A社 x−X:Bit、 5001α℃ 戸し皮彎丈 Hz 2α( 4α℃ 第6図 淑叡 (Hz ) 周波貫 (Hz ) 第7図
Figure 1 is a diagram showing the relationship between the amount of granulated blast furnace slag powder added and the bending fracture strength of the sintered body, Figure 2 is a diagram showing the relationship between the amount of binder added and the bending fracture strength of the sintered body, Figure 3 shows the relationship between the firing temperature and the bending fracture strength of the sintered body, Figure 4 shows the relationship between the particle size of granulated blast furnace slag and the water permeation rate of the sintered body, and Figure 5 shows the relationship between the FIG. 6 is a diagram showing the relationship between the frequency of sound and the superimposed incident sound absorption coefficient of the sintered body, and FIG. , Figure 7 is a diagram showing the relationship between the sound frequency and the reverberation room method sound absorption coefficient of the sintered body, and Figure 8 is a diagram showing the particle size distribution of granulated blast furnace slag.
It is a figure which shows an example. Representative of Kawatetsu Techno Research Co., Ltd. Patent attorney Yoshi Kosugi ○ Silicic acid sorter △ Panmic acid sodebin ink '5 7 IOv (parts by weight) Figure 2 11 Amount of granulated blast furnace slag fine powder added [Weight Figure 1 Formation temperature ("C) Figure 3 3≦ ≧1 ≧2 Particle size (mm) Approximately 1.7 Approximately 1.5 Approximately 1.4 Grain weight ζ → = Invention b-me: Company A x-X: Bit, 5001α℃ Door skin curve length Hz 2α (4α℃ Fig. 6) Frequency penetration (Hz) Fig. 7

Claims (1)

【特許請求の範囲】 1 高炉水砕スラグ粒が、高炉水砕スラグと珪酸ソーダ
との加熱生成物及び焼結体表面に開口する連続気孔とよ
りなる結合層により結合されていることを特徴とする高
炉水砕スラグ焼結体。 2 表面に施釉層を有する請求項1記載の高炉水砕スラ
グ焼結体。 3 表面に不燃性無機質塗膜を有する請求項1記載の高
炉水砕スラグ焼結体。 4 高炉水砕スラグ粒100重量部に、2〜10重量部
の該スラグ微粉末と、無水塩として5〜20重量部の珪
酸ソーダとを加えて混合した後、加圧成形、脱水乾燥、
800℃以上1200℃未満の焼成を行うことを特徴と
する高炉水砕スラグ焼結体の製造方法。 5 脱水乾燥後の成形体の表面に釉薬を施してから焼成
する請求項4記載の高炉水砕スラグ焼結体の製造方法。 6 焼結体の表面に、不燃性無機質塗料を塗装する請求
項4記載の高炉水砕スラグ焼結体の製造方法。
[Claims] 1. Granulated blast furnace slag grains are bonded by a bonding layer consisting of a heating product of granulated blast furnace slag and sodium silicate and continuous pores opening on the surface of the sintered body. sintered granulated blast furnace slag. 2. The granulated blast furnace slag sintered body according to claim 1, which has a glazed layer on the surface. 3. The granulated blast furnace slag sintered body according to claim 1, which has a nonflammable inorganic coating film on its surface. 4. To 100 parts by weight of granulated blast furnace slag, 2 to 10 parts by weight of the slag fine powder and 5 to 20 parts by weight of sodium silicate as anhydrous salt are added and mixed, followed by pressure molding, dehydration drying,
A method for producing a sintered granulated blast furnace slag, characterized by performing firing at a temperature of 800°C or higher and lower than 1200°C. 5. The method for producing a sintered granulated blast furnace slag according to claim 4, wherein the surface of the molded body after dehydration and drying is glazed and then fired. 6. The method for producing a sintered granulated blast furnace slag according to claim 4, wherein the surface of the sintered body is coated with a nonflammable inorganic paint.
JP3159190A 1989-02-17 1990-02-14 Granulated blastfurnace slag sintered body and production thereof Pending JPH02289474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159190A JPH02289474A (en) 1989-02-17 1990-02-14 Granulated blastfurnace slag sintered body and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-36280 1989-02-17
JP3628089 1989-02-17
JP3159190A JPH02289474A (en) 1989-02-17 1990-02-14 Granulated blastfurnace slag sintered body and production thereof

Publications (1)

Publication Number Publication Date
JPH02289474A true JPH02289474A (en) 1990-11-29

Family

ID=26370089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159190A Pending JPH02289474A (en) 1989-02-17 1990-02-14 Granulated blastfurnace slag sintered body and production thereof

Country Status (1)

Country Link
JP (1) JPH02289474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016536A (en) * 2014-06-23 2014-09-03 济南安纳环保工程有限公司 Method for preparing microelectrolysis reductive water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016536A (en) * 2014-06-23 2014-09-03 济南安纳环保工程有限公司 Method for preparing microelectrolysis reductive water

Similar Documents

Publication Publication Date Title
US7736429B2 (en) Composition comprising a phosphate binder and its preparation
CN109982987A (en) The cement base sprayed fire proofing of fireproof coating and the cold fusion concrete high-intensitive, density is controllable
EP1333014A1 (en) Porous, sound absorbing ceramic moldings and method for production thereof
US6406535B1 (en) Material for constructional finished wallboard
KR101970507B1 (en) Lightweight panel and manufacturing method of the same
CN106167388B (en) A kind of sound absorption mortar and sound-absorbing material
US2378927A (en) Silicate cement, particularly useful as a coating
KR0144583B1 (en) Coating composition for refractory and sound-absorbing and manufacturing method thereof
JP2003146775A (en) Decorative building material
JPH08217561A (en) Light-weight calcium silicate formed body and its production
JP2002193684A (en) Porous sound absorbing ceramic compact and its manufacturing method
KR20040100202A (en) Concrete Composition for Lightweight and Sound Absorber and Method of Making The Same
US20090318577A1 (en) Composition comprising a phosphate binder and its preparation
JPH02289474A (en) Granulated blastfurnace slag sintered body and production thereof
CA1333525C (en) Skin-surfaced foam glass tile and method for production thereof
JPH03122060A (en) Refractory coating composition having excellent adhesive force to iron
KR101229107B1 (en) Sandwich Panel using a neutralized industrial by-product and expansive stone
JP2756934B2 (en) Sinter from coal ash as raw material and method for producing the same
JPH07206539A (en) Production of low-temperature hardening type ceramic molded article having lightweight and high strength
CN104310940B (en) A kind of olivet rock and swelling product and preparation method thereof
KR102070809B1 (en) Composite Panel for Insulation and Nonflammable Using Waste Fiber Scrap
US2014065A (en) Insulating building and sound absorbing material
CN208545911U (en) A kind of Novel fireproof sound-absorbing pearlite slab
KR101815649B1 (en) Manufacture method of building interior decoration materials
JP3158086B2 (en) Coarse particle sintered body and method for producing the same