JPH02289333A - Porous structure - Google Patents

Porous structure

Info

Publication number
JPH02289333A
JPH02289333A JP1110996A JP11099689A JPH02289333A JP H02289333 A JPH02289333 A JP H02289333A JP 1110996 A JP1110996 A JP 1110996A JP 11099689 A JP11099689 A JP 11099689A JP H02289333 A JPH02289333 A JP H02289333A
Authority
JP
Japan
Prior art keywords
layer
porous
mold
temp
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1110996A
Other languages
Japanese (ja)
Other versions
JPH0818376B2 (en
Inventor
Yoshihiro Noguchi
善弘 野口
Yutaka Takahashi
豊 高橋
Tomohisa Imai
今井 智久
Hideharu Tanaka
英晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP1110996A priority Critical patent/JPH0818376B2/en
Priority to DE1989621548 priority patent/DE68921548T2/en
Priority to DE1989627806 priority patent/DE68927806T2/en
Priority to EP19890119990 priority patent/EP0368098B1/en
Priority to SG1996000311A priority patent/SG44423A1/en
Priority to EP19930112446 priority patent/EP0578272B1/en
Priority to CA 2001757 priority patent/CA2001757C/en
Priority to KR1019890015614A priority patent/KR920003976B1/en
Priority to US07/429,496 priority patent/US5108833A/en
Publication of JPH02289333A publication Critical patent/JPH02289333A/en
Priority to US07/721,243 priority patent/US5143664A/en
Publication of JPH0818376B2 publication Critical patent/JPH0818376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To improve sound absorbing characteristics and heat insulating characteristics and to correspond to complicated material quality by continuously changing specific gravity in the thickness or surface direction of a layer. CONSTITUTION:The temp. of the wall part of a recessed mold 7 is set to a temp. range from the softening temp. of the granular material being the raw material received in the closed space formed by the recessed mold 7 and a protruding mold 8 to the pyrolysis temp. thereof, usually, to a temp. range of 150 - 240 deg.C and the temp. of the wall part 13 of the protruding mold 8 is set to temp. lower than that of the wall part 11 of the recessed mold 7, for example, about the softening temp. of the granular material being the raw material, usually, 70 - 180 deg.C. The granular material brought into contact with the high temp. wall part 11 of the recessed mold 7 is melted to become a high specific gravity layer, in other words, a fused layer 2 at last and this layer 2 changes from air permeability to air impermeability according to a degree of fusion. Since the temp. of the wall part 13 of the protruding mold 8 is lower than that of the high temp. wall part 11, the granular material from the wall part 13 to the fused layer 12 does not reach a perfect flowable state but welded at contact parts in a semi-flowable state and a porous layer 3 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 本発明は、@音材や断熱材などに用いる多孔質構造体に
関し、%に1層の1gさ方向もしくは層の面方向に比重
を連続的に変化させた多孔質N!4を有する多孔質構造
体に関するものである。
[Detailed description of the invention] [Industrial usage] The present invention relates to porous structures used for sound materials, heat insulation materials, etc. Continuously changing porous N! The present invention relates to a porous structure having 4.

〔従来の技術〕[Conventional technology]

従来より吸音材、断熱材としては、グラスウール、ロッ
クウール、ウレタンフオームなどの多孔質材が用いられ
ているつ又ウレタンフオーム、スチールウール々どの多
孔質材は、空気浄化用フィルタとしても用いられている
。これらの多孔質材は、?!気掃除機、冷暖房空調器、
空気清浄ri々どの消音、断熱、空気浄化処理用に多・
陽に使用されるようになり、多孔質材を低コストで高性
能且つ使用に際して形状等の制約条件の少ないものにす
ることが1機器製造者’i19から強く望まれているう
一般に、吸音材や断熱材は非通気材である構造体に内張
すして用いられろうこの構造体はMfllとしであるい
は空気流の流路の一部を形成する機能を有する。又フィ
ルタは非通気材の伜に多孔質材’d(II込んで、フィ
ルタユニットを形成している。
Porous materials such as glass wool, rock wool, and urethane foam have traditionally been used as sound-absorbing and heat-insulating materials.Porous materials such as urethane foam and steel wool are also used as filters for air purification. There is. These porous materials? ! Vacuum cleaners, heating and cooling air conditioners,
For air purification, noise reduction, insulation, and air purification processing.
In general, sound-absorbing materials have come to be widely used, and it is strongly desired by equipment manufacturers to make porous materials low-cost, high-performance, and with fewer restrictions on shape, etc. The heat insulating material is used as a lining for a non-ventilated structure, and this structure has the function of forming a part of the flow path for air flow. In addition, the filter includes a porous material (II) on the left side of the non-ventilated material to form a filter unit.

フィルタユニットの多孔質材の周囲から流れが漏れない
よう、上記の枠が流れのシール効果を果している。
The frame acts as a flow seal to prevent flow from leaking around the porous material of the filter unit.

このような多孔質材と非通気材とが絹合わされた多孔質
構造体は、それぞれ別部材が組合わされて1喫され九り
1発泡性素材を利用して多孔質材が成形された後に一部
の而を非通気性+710工する等して製作されている。
Such a porous structure in which a porous material and a non-porous material are combined is made by combining separate members, molding the porous material using a foaming material, and then molding the porous material. It is manufactured by adding 710 degrees of non-breathability to the inner part.

これらの多孔質構造体、及びその製法に関しては1例え
ば、特開昭53−113112号公報「′it気掃除機
」、!#公昭58−52132号公報「空気調和機の室
内ユニット」、特開昭46−1045号公報「多胞質熱
可塑性材料及びこれに融着された熱可塑性シート材層か
ら成る複合物品並びにその製造法」、特開昭48−19
654号公報「軟質積層外皮の成形方法」などに示され
ている。
Regarding these porous structures and their manufacturing method, see, for example, Japanese Patent Application Laid-Open No. 53-113112, ``'it Vacuum Cleaner''! # Publication No. 58-52132 ``Indoor unit of air conditioner'', JP 46-1045 Publication ``Composite article consisting of a porous thermoplastic material and a thermoplastic sheet material layer fused thereto, and its manufacture Law”, Japanese Patent Publication No. 48-19
This method is disclosed in Publication No. 654, ``Method for forming soft laminated outer skin.''

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の多孔質構造体では、比重が均一な多
孔質rf4キこれより比重の大きい層(列えば、非通気
層)が組合わされた単純形状のものであるので、より性
能を向上させるべく、/4適な比重分配や形状のものけ
、できに<<、@音特性や断熱特性などの良いものけ得
られにくいという課題があったっ 本発明は、上記のような課題をVf4消するためになさ
れたもので、比重変化を持たせた多孔質層を有すること
により、吸音特性や断熱特性などを良好なものきすると
ともに複雑な材質にも対応できる多孔質構造体を得るこ
とを目的とする。
Conventional porous structures such as those described above have a simple shape that combines porous RF4 with uniform specific gravity and layers with higher specific gravity (for example, non-porous layers), which further improves performance. In order to achieve Vf4, there was a problem that it was difficult to obtain suitable specific gravity distribution and shape, and it was difficult to obtain good characteristics such as sound characteristics and heat insulation characteristics.The present invention solves the above problems by By having a porous layer with varying specific gravity, it is possible to obtain a porous structure that has good sound absorption and heat insulation properties and can be used with complex materials. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る多孔質構造体は、比重を1層の厚さ方向も
しくけ層の面方向に連続的に変化させ乏多孔質I−を有
するものである。
The porous structure according to the present invention continuously changes the specific gravity in the thickness direction of one layer or in the plane direction of the mesh layer, and has poor porosity I-.

また9本発明に係る多孔質〔碕造本は、比重を変化させ
た多孔質層を塾成する粒状素材を1球体もしくけ清円体
としたものであり、さらには、その長径を0.2〜l 
O(q@ )にしたものである。
In addition, the porous book according to the present invention has a granular material forming a porous layer with a varying specific gravity in the shape of a sphere or a round shape, and further has a major axis of 0. 2~l
O(q@).

撞た0本発明に係る多孔質構造体は、比重を変化させた
多孔質層と、この多孔質層よりも空孔率が小さい中実層
とを層状にしたものであり、さらVCは、中実層が虫合
判で多孔質層乏;砿簀しているものであり、さらには、
この礪合層を非通気性としたものである。
The porous structure according to the present invention has a porous layer with a different specific gravity and a solid layer with a smaller porosity than the porous layer, and the VC is The solid layer is mochiai-like and the porous layer is sparse;
This collapsible layer is made non-air permeable.

また0本発明に係る多孔′何輩造体は、復数の。Furthermore, the porous structure according to the present invention has a plurality of pores.

比重を変化させた多孔質鳴き中実層とを組合せたり、中
実層の厚さを100ミクロン以下のスキン層としたりし
たものである。
It is combined with a porous squeaking solid layer of varying specific gravity, or the solid layer is made into a skin layer with a thickness of 100 microns or less.

また1本発明に係る多孔質構造体は、比重を変化させた
多孔質層の一側IYUvC,この多孔質層よりも空孔率
が小さい中実層を、他側面に摩さ100ミクロン以下の
スキン層を設けたものであるっさらに9本発明に係る多
孔質構造体は、比重を変化させた多孔質層を構成する粒
状素材を複数のWなる形状や材質にしたものである。
In addition, the porous structure according to the present invention has a porous layer with a varying specific gravity of IYUvC on one side, a solid layer with a smaller porosity than this porous layer, and a solid layer with a porosity of 100 microns or less on the other side. Furthermore, the porous structure according to the present invention, which is provided with a skin layer, has a plurality of W shapes and materials as particulate materials constituting the porous layer with varying specific gravity.

〔作用〕[Effect]

本発明においては、比重すなわち空孔率を変化させた多
孔質層が、各PB詩性を向上させる。3例えば、厚み等
に応じて空孔率の変化度合を変えて吸音特性の周波数特
性を制飼した妙、輻射や熱伝導による断熱機能の側倒を
両立させたりする。
In the present invention, a porous layer with varying specific gravity or porosity improves each PB's poetry. 3. For example, it is possible to control the frequency characteristics of sound absorption characteristics by changing the degree of change in porosity depending on the thickness, etc., and also to balance the insulation function by radiation and heat conduction.

さらに1球体状素材を用いると成形時の層状態が安定す
る。尚、音波の侵入深度や音響エネルギーの壁間粘性効
果より吸音特性を最適にする粒状形状が存在する。
Furthermore, if a spherical material is used, the layer state during molding will be stabilized. Note that there is a granular shape that optimizes the sound absorption properties based on the penetration depth of sound waves and the wall-to-wall viscosity effect of acoustic energy.

オた。多孔質1−き中実層やスキン1傷きけ融着°され
、特に非通気性の中実層とを層状にすると遮音特性が向
上し、さらに融着されたスキン層によりイ氏@彼攻で多
孔質体の音響インピーダンスが極小になり低周波域の吸
音特性を向上させる。
Ota. Sound insulation properties can be improved by layering a porous solid layer or a skin that is fused together with a non-breathable solid layer. This minimizes the acoustic impedance of the porous material and improves its sound absorption properties in the low frequency range.

任意j−の多層材では、相乗的に機能が発揮されるとと
もに構造体としての機能も付和されるうさらに、明脂粒
以外に遮音やシールドあるいけ強度向上などに寄与する
粒状素材を含ませると該機能が付加されろう 〔実施列〕 以下1本発明に係る多孔質構造体(以下、多孔質体ちる
いけメ―状のものけ多層材きもいう。)の実施列を説明
する。
The optional multi-layer material not only functions synergistically but also functions as a structure, and also contains granular materials other than clear resin particles that contribute to sound insulation, shielding, and improving the strength of the structure. [Implementation Arrangement] An implementation arrangement of the porous structure according to the present invention (hereinafter referred to as a porous multi-layered material in the form of a porous material) will be described below.

第11図(イ)、(ロ)はそれぞれ本発明に係る一実楕
例の多層材(1)の嘩さ方向に切断した断面を模式的に
示す1辺である。(2)は比重の大きい層、 I+IJ
えば融合層で1通気性又は非通気性のいずれでもよい。
FIGS. 11(a) and 11(b) each schematically show one side of a cross section cut in the longitudinal direction of a multilayer material (1) of a solid ellipse according to the present invention. (2) is a layer with high specific gravity, I+IJ
For example, the fused layer may be either breathable or non-breathable.

(3)は比重の小さい多孔質層で1通常は通気性であり
(3) is a porous layer with low specific gravity; 1 is usually breathable;

空孔率は、厚さ方向に連続的に変化している。14)は
通常比重が層(2)と層(3)の中間にあるスキン層で
The porosity changes continuously in the thickness direction. 14) is a skin layer whose specific gravity is usually between layer (2) and layer (3).

向えば厚さ100ミクロン以下の融合層である。In other words, it is a fused layer with a thickness of 100 microns or less.

多層材il+は、融合@(2)と多孔質層(3)とが−
本化しているつ同様VC@今層r2)き多孔質層(3)
とスキン層(4(け−本化しているう 多層材イ1)を吸音材として使用するききは、多孔質1
m +3)を騒音源1nll K対面させて、音のエネ
ルギーを吸収減衰させかつ、融合層(2)で音波が透過
するのを防ぐっ 第219は多層材(1)すなわち吸音材を框気掃除機に
利用した列fi−示す安部断面図である。同図において
。(5)は外枠、 +61Fi騒音源の一つであるブロ
ワ−モー’J−で$6)O音材(1)はブロワ−モータ
ー(6)の排気’Illを包むような形状に形成され、
多孔質層(3)がブロワ−モーター(6)側に、融合層
(2)が外1111になっているう矢印は電気掃除機運
転中の風の流れを示す。
The multilayer material il+ has a fusion @ (2) and a porous layer (3) -
Porous layer (3) with VC @ current layer r2)
When using the skin layer (4) as a sound absorbing material, the porous layer (1) is used as a sound absorbing material.
m + 3) facing the noise source 1nll K to absorb and attenuate the sound energy and prevent the sound waves from passing through the fusion layer (2).The 219th step is to clean the multilayer material (1), that is, the sound absorbing material. It is a sectional view of the lower part showing the row fi used in the machine. In the same figure. (5) is the outer frame, +61Fi is the blower motor 'J- which is one of the noise sources. ,
The porous layer (3) is on the blower motor (6) side and the fusion layer (2) is on the outside 1111. The arrow indicates the flow of air during operation of the vacuum cleaner.

以上の!1&成においては、ブロワ−モーa −+61
から発生する掻音は吸音材11)Kよって吸音、遮音さ
れる。
More than! For 1 & 2, blower motor a - +61
The scratching sound generated by the sound absorbing material 11) is absorbed and insulated by the sound absorbing material 11)K.

次に、上記のような多層材(多孔質構造体)(1)5−
構成する。417)厚さ方向もしくは層の面方向に比重
を連続的に変化させた多孔質層の製造方法及びヒ侍性に
ついて説明する。
Next, the multilayer material (porous structure) (1) 5-
Configure. 417) The manufacturing method and stability of a porous layer in which the specific gravity is continuously changed in the thickness direction or in the plane direction of the layer will be explained.

オず、製造方法について説明する。尚、#遣方法に関し
ては、同−出頚人より別途特許出頭されているので、こ
こでは、その代表列を説明するヮ第3図は第2囮に示す
多層材の鯛造方法を説明する金型構成断面図である。1
7)は凹側金型で1列えばアルミニウム等の熱伝導性の
良い材質で構成されているつ+8)は凸l1lI金型で
、同様にアルミニウムで1成されている−、 +91i
1は各々金型の温度を上げるヒーターで、凹側金型(7
)の方が凸側金型(8)よりも高温にされろう @法■ 原料として、熱可塑性・封脂の粒状素材を用いて。
First, the manufacturing method will be explained. As for the # method, a separate patent has been filed by the same author, so here we will explain the representative rows. Fig. 3 will explain the method for making sea bream using multi-layered material as shown in the second decoy. It is a sectional view of a mold configuration. 1
7) is a concave mold with one row made of a material with good thermal conductivity such as aluminum; +8) is a convex mold with one row made of aluminum -, +91i
1 is a heater that raises the temperature of the mold, and the concave mold (7
) will be heated to a higher temperature than the convex mold (8)@method■ Use thermoplastic/sealing granular material as the raw material.

多孔質構造体を成形する場合について説明するつ凹側金
型(7)の゛lI部lIDの7a度は、凹側金型(7)
と凸側金型(8)によって形成される閉空間t13内に
入れられる原料である粒状素材の軟化するq度以上で熱
分1’n度以下1通常150〜240℃にセットされ、
凸叫金@(8)の涜部口3の温度は、凹all金型(7
)の壁部fiυの温度よりも低い襟度1列えば原料とな
る粒状素材の軟化する温度付近1通常10〜180℃に
セットされる。ここにおいて金型(71+8)内に列え
ばA B S (acrylonitrile −bu
tgdiene−atyrene resin) @脂
(軟化する温度80〜90℃)等の熱可塑性’It指の
粒状素材(直径0.2〜3朋徨度)を投入し、金型を加
圧しながら閉じ、数10秒〜数時間+JO鳩する。この
ilO熱は一ヒ述した金型f7118)のセット殖産で
行なわれ、加圧力はノ10熱状態で1ゆ/−〜数ton
/(−7dであるっするき、凹側金型(7)の高温壁部
00に接触した粒状素材は溶融し、前終的には比重の大
きい層、換言すれば融合層(2)にな怜、融合の程度に
よ吟通気性から非通気性に変化する。凸側金型(8)の
壁部13は高福引翻りより低温のため、壁部口jから上
記融合層(2)までの粒状素材は、完全流動までには到
らないが、半流動状態で9粒状素材各々が妾1’l’l
!部分で溶青し、@終的には上記融合層(2)K溶着し
た多孔質層(3)が形成される。この多孔質層(3)は
通常は通気性であるが、バインダーなどの素材の混合材
によっては非通気性になる。
To explain the case of molding a porous structure, the 7a degree of the I part I ID of the concave mold (7) is the same as the concave mold (7).
The granular material, which is the raw material, placed in the closed space t13 formed by the convex mold (8) is softened at a temperature of q degrees or more and a heat content of 1'n degrees or less.
The temperature of the sacrificial part mouth 3 of the convex shouting metal @ (8) is the same as that of the concave all mold (7
) If the temperature is lower than the temperature of the wall part fiυ of 1 row, it is usually set at 10 to 180°C near the temperature at which the granular material used as the raw material softens. Here, if lined up in the mold (71+8), A B S (acrylonitrile -bu
A thermoplastic finger granular material (diameter 0.2 to 3 mm) such as resin (softening temperature 80 to 90 degrees Celsius) is introduced, the mold is closed under pressure, and several 10 seconds to several hours + JO pigeon. This ilO heating is carried out by producing a set of the mold F7118) mentioned above, and the pressure is 1 Y/- to several tons in the heated state.
/(-7d, the granular material in contact with the high-temperature wall 00 of the concave mold (7) melts and eventually becomes a layer with high specific gravity, in other words, a fusion layer (2). However, it changes from breathable to non-breathable depending on the degree of fusion.The wall part 13 of the convex side mold (8) has a lower temperature than that of the fusion layer (2) from the wall opening j. ) The granular materials up to ) do not reach complete fluidity, but each of the 9 granular materials is in a semi-fluid state.
! Some parts are melted blue, and finally a porous layer (3) in which the above fused layer (2) and K are welded is formed. This porous layer (3) is normally breathable, but depending on the mixture of materials such as binder, it becomes non-breathable.

このようにして比重の大きい層と比重の小さい多孔質層
を一体的に同時に成形することができる。
In this way, a layer with a high specific gravity and a porous layer with a low specific gravity can be integrally molded at the same time.

以上のように凹側金型(7)の“引1υと凸側金型(8
)の滑部tJ3の1度を一定温度にセットして、完全溶
融、半流動状態を得るには、実験によれば。(0℃以上
の温度差が望ましかったつ 凹側金型(7)の置部l′111の温度が150℃以下
になると1粒状素材が融合しにくくなり、240℃以上
になるき、完全溶融が進み過ぎて多層化が困難となる。
As mentioned above, the “pull 1υ” of the concave side mold (7) and the convex side mold (8
According to experiments, it is possible to obtain a completely melted, semi-fluid state by setting the temperature of the sliding part tJ3 of 1 degree to a constant temperature. (It is desirable to have a temperature difference of 0°C or more.) If the temperature of the placing part l'111 of the concave mold (7) becomes 150°C or less, it becomes difficult for one granular material to fuse, and when it reaches 240°C or more, it melts completely. becomes too advanced, making multi-layering difficult.

凸側金型18)の壁部(13の温度が10℃以下になる
き0粒状素材各々が接触部分で溶融が起らず接着しにく
くなり。(80’C以上になる6粒状素材の溶融が進ん
で、4孔質層にすることが困難になろう 粒状素材の直径が0.21以下になると、空孔径が小さ
く壺って、多層材の機能9例えば吸音特性。
When the temperature of the wall (13 of the convex side mold 18) becomes 10°C or lower, each of the 0 granular materials does not melt at the contact area and becomes difficult to adhere. (When the temperature of the 6 granular materials exceeds 80°C When the diameter of the granular material becomes less than 0.21, it becomes difficult to form a four-porous layer as the pore size progresses, the pore diameter becomes smaller and the function of the multilayer material is improved, such as sound absorption properties.

断熱特性が低下するつまた。空孔径を大きくしようとす
ると1粒子間の@着度合が少々くなり0機械的強度が低
下する。直径が31以上になると。
Tiles that reduce insulation properties. If an attempt is made to increase the pore size, the degree of adhesion between particles will be slightly reduced, resulting in a decrease in mechanical strength. When the diameter is 31 or more.

断熱特性は良いが1音特性が低下する。The heat insulation properties are good, but the single-tone properties are degraded.

金型による圧力が1kl?/iは下になると1粒状素材
各々の融着が不安定になり、圧力が6 ton /−以
上になるき、@度制御の積度が厳しくなって生産性が低
下するっ 金型による加・熱時間は、数10秒以下になると溶着が
不充分になり、p1時間以上になるき、@融が進み過ぎ
て、融合層と多孔質層の境界が不明瞭きなり、特性が悪
(なるっ 金型の高@叫に形成される比重の大きい融合層は、 7
J[]熱温度、加熱時間々どを変えると、形成される融
合層の厚さ1通気性の度合(通気性から非通気性まで)
が変化するので1種々変化さqて。
Is the pressure from the mold 1kl? When /i is lower, the fusion of each granular material becomes unstable, and when the pressure exceeds 6 ton /-, the degree of accumulation becomes stricter and productivity decreases.・If the heating time is less than several tens of seconds, welding will be insufficient; if it is more than 1 hour, the melting will progress too much, the boundary between the fused layer and the porous layer will become unclear, and the properties will deteriorate. The fusion layer with high specific gravity formed in the high part of the mold is 7
J [] By changing the heat temperature, heating time, etc., the thickness of the fused layer formed1 the degree of breathability (from breathable to non-breathable)
changes, so let's change it in various ways.

希望特性の多孔質構造体を得るこきができる。Porous structures with desired characteristics can be obtained.

なお熱OT塑性明脂の粒状素材原料としては0代表的な
ものとして、pp(ポリプロピレン)。
The typical raw material for the granular material of thermo-OT plastic clear resin is pp (polypropylene).

As(アクリルスチロール)、スチロールなトラ用いる
ことができるっ又熱可塑性ial脂の粒状素材にバイン
ダーきして、メチルエチルケトン(MKK)セルロース
、ワニス、アセト/ヲ吹付けたり、混ぜたりすると、多
層材の粒状素材各々の固着力が増し1機械的強度が向上
して、取扱い性が良くなる。
As (acrylic styrene), styrene, etc. can be used as a binder, and methyl ethyl ketone (MKK), cellulose, varnish, acetate, etc. can be sprayed or mixed with a granular material of thermoplastic resin to form a multilayer material. The adhesion strength of each particulate material is increased, 1 mechanical strength is improved, and handling properties are improved.

嬰法例■−1 製法のにおいて、凹側金型(7)の9.部nt+の楊度
を150℃にセットし、凸1則金型(8)の壁部圓の温
度をtaa”cにセットし、AB8樹脂として、′R気
化学工業株式会社製GTR−4()(グレード)。
Example ■-1 In the manufacturing method, 9. of the concave mold (7). The temperature of the part nt+ was set to 150°C, the temperature of the wall circle of the convex one-rule mold (8) was set to taa''c, and AB8 resin was used as 'GTR-4 (manufactured by Kikagaku Kogyo Co., Ltd.). )(grade).

軟化する1度86℃の熱可塑性相互の粒状素材。Thermoplastic reciprocal granular material that softens once at 86°C.

直径11の球状粒子7i−金型に入れ、金型f71 +
81を閉じた。清面(11103+81′lの手雉は1
0朋であったっこの状態で10分間弱経過(つまりQO
熱状聾を持続)させて金型17) !8) 7i−開数
したうなおQC1熱状態のときの7JO圧力は50に9
/−であった。このようにして成形した多層材C1)は
1享さが10鰭で、その中の融合層(2)け91きんど
なく、$孔質層(3)のみであった。
Spherical particles 7i with a diameter of 11 are placed in a mold, and molded into a mold f71 +
81 closed. Qingmen (11103+81′l hand pheasant is 1
A little less than 10 minutes passed in this state where it was 0 (that is, QO
Continued fever-like deafness) and mold 17)! 8) The 7JO pressure in the 7i-numerical QC1 thermal state is 50 to 9
It was /-. The multilayer material C1) formed in this manner had 10 fins per fin, in which there was no fusion layer (2) or 91 fins, and only a porous layer (3).

製法■ 原料として、熱硬化性11脂の粒状素材を用いて多層材
を成形する場合について説明する。
Manufacturing method (2) The case of molding a multilayer material using thermosetting 11 fat granular material as a raw material will be explained.

製法■と同様にして、凹10I7金型+71の゛環部U
の温度は0粒状素材の軟化する温度以上で熱分解以下に
セクトされ、凸側金型18)の壁部03の温度は、凹側
金型(7)の壁部(111の温度よりも低い粒状素材の
軟化する温度付近にセットされるっここにおいて金型1
71 +81内に熱硬化性明哲1列えばフェノール。
In the same manner as manufacturing method ■, make a concave 10 I7 mold + 71 ring part U.
The temperature is higher than the softening temperature of the granular material and lower than thermal decomposition, and the temperature of the wall 03 of the convex mold 18 is lower than the temperature of the wall 111 of the concave mold 7. Mold 1 is set near the temperature at which the granular material softens.
If there is one row of thermosetting Meitetsu in 71 +81, it is phenol.

PBT (ポリブチレンテレフタレート)、PELT(
ポリエチレンテレフタレート)などの粒状素材でI直径
0.2〜3H程度の粒子を、バインダーとをるalえば
セルロース、フェス、各種接着剤などと混合して投入し
、金型f71 +81を加圧しながら閉じ。
PBT (polybutylene terephthalate), PELT (
Particles of a granular material such as polyethylene terephthalate (I) with a diameter of about 0.2 to 3H are mixed with a binder, cellulose, adhesives, etc., and then the mold F71 +81 is closed under pressure. .

数分〜数時間加熱する。この加熱は上述した金型fil
 +81のセット温度で行なわれ、加圧力は加熱状態で
1ゆ/−〜数ton /−である。
Heat for several minutes to several hours. This heating is performed using the mold fil mentioned above.
It is carried out at a set temperature of +81, and the pressing force is 1 Y/- to several tons/- in the heated state.

このようにするき、凹側金型(7)の高温壁部α9に接
触した粒状素材は、軟化し、バインダーで接着されて比
重の大きい層となり、軟化の程度により。
When doing this, the granular material that has come into contact with the high-temperature wall part α9 of the concave mold (7) is softened and adhered with a binder to form a layer with a high specific gravity, depending on the degree of softening.

通気性から非通気性に変化する。凸側金型(8)の壁部
(I3は高温壁部α0より低温のため、壁部f13から
上記の比重の大きい層12+までの粒状素材は、完全流
#hまでには到らないが、半流動状態で9粒状素材各々
が接触部分でバインダーで接着されて、最終的には、上
記の比重の大きい層(2)に接着した多孔質層13)が
一体内に形成されるうこの多孔質層13)は通常は通気
性であるが、バインダーの混合量が多くなると、非通気
性になる。
Changes from breathable to non-breathable. Since the wall part (I3) of the convex side mold (8) is lower in temperature than the high temperature wall part α0, the granular material from the wall part f13 to the above-mentioned layer 12+ with high specific gravity does not reach the complete flow #h. In a semi-fluid state, each of the nine granular materials is bonded with a binder at the contact portion, and finally, the porous layer 13 bonded to the layer (2) with a high specific gravity is formed inside the porosity. The porous layer 13) is normally breathable, but becomes non-breathable when the amount of binder mixed is increased.

製法列■−1 製法■において、凹側金型(7)のll[Iflのは度
を200℃にセットし、凸側金型(8)の壁部T13の
温度を150℃にセットし、熱硬化性樹脂として、フェ
ノール樹脂(明和化成株式会社製、  MY−152(
グレード)、軟化する温度190℃)で直径1龍の粒状
素材を、バインダーとなる粉末状セルロース15重号%
と共に金型に入れ、金型+71 +81を閉じた。壁面
[111113間の距離は101であった。この状態で
10分間徨経過(つまり加熱状態を持続)させて金型(
7)(8)を開放した。なお加熱状態のときの加圧力は
sobg/crIであったうこのように成形した多層材
f11は厚さが10mで、その中の比重の大きい層(2
)は嫌きんどなく、多孔質層(3)のみであった。
Manufacturing method column ■-1 In manufacturing method ■, the temperature of the concave mold (7) is set to 200°C, the temperature of the wall T13 of the convex mold (8) is set to 150°C, As a thermosetting resin, phenolic resin (manufactured by Meiwa Kasei Co., Ltd., MY-152 (
grade), granular material with a diameter of 1 dragon at a softening temperature of 190℃), and powdered cellulose 15% as a binder.
Then, the molds +71 and +81 were closed. The distance between the wall surfaces [111113 was 101]. In this state, the mold is allowed to wander for 10 minutes (that is, the heating state is maintained) and then the mold (
7) (8) was released. The pressing force in the heated state was sobg/crI. The multilayer material f11, which was molded like a scallop, had a thickness of 10 m, and the layer with a high specific gravity (2
) had no defects, only the porous layer (3).

尚、前述の製法■、■においては、高温側、低@側金型
!7) (s)の壁部lll1II3の温度を一定に保
った上で、原料を投入する列であるが1例えば1両金型
が常温の状態で、原料を投入し、その後金型温度を所定
の温度に向って昇温させる過程で成形体をなり出す方法
でも、同様の多層材を形成させ得る。
In addition, in the above-mentioned manufacturing methods ■ and ■, the high temperature side and low @ side molds! 7) (s) This is a line in which raw materials are introduced while keeping the temperature of the wall section lll1II3 constant.For example, when both molds are at room temperature, the raw materials are introduced, and then the mold temperature is maintained at a predetermined level. A similar multilayer material can also be formed by a method in which a molded body is formed during the process of raising the temperature to .

この場合の成形ををり出すときの高温側、低温側金型の
温度差は、実験の結果、rfiめでわずかな温度差例え
ば2℃でも可能であった。この〆品度差は素材の材質、
大きさ、形状などの性状、金型の昇温速度、加圧力など
によって変わるものである。
In this case, the temperature difference between the high-temperature side mold and the low-temperature side mold when ejecting the molding was found to be possible even with a slight temperature difference of, for example, 2° C. using RFI. This difference in finish quality is due to the material of the material,
It changes depending on the properties such as size and shape, the heating rate of the mold, the pressing force, etc.

その池、凹側金型(7)の壁部anと凸側金型(8)の
壁部(+3とに1度差を投ける方法きして、第4図に示
すように凸側金型(8)の置部(+1を1例えばPBT
(ポリブチレンテレフタレート) 樹脂、  P RP
 (rtbθrr6inforced pl!Icti
cs )+aj脂等の熱伝導性の悪い材質Q4で構成し
てもよい、又金型(7)(8)を同材質で大きさを変え
てもよい、要は材質と大きさに基因する熱容量及びヒー
ターの発Mtの大きさの組合せにより金型171 !8
)に所望の温度差を、過渡的に又定温的に設定すればよ
い。
As shown in Fig. 4, there is a difference of 1 degree between the wall an of the concave mold (7) and the wall (+3) of the convex mold (8). Place part of type (8) (+1 to 1 e.g. PBT
(Polybutylene terephthalate) resin, P RP
(rtbθrr6inforced pl!Icti
cs ) + aj It may be made of a material Q4 with poor thermal conductivity such as fat, or the molds (7) and (8) may be made of the same material but have different sizes.The key point is that it depends on the material and size. Depending on the combination of the heat capacity and the size of the heat generation Mt of the heater, the mold 171! 8
) may be set transiently or at constant temperature.

さらに、多層材の多孔質層の比重を、多孔質層の層面方
向に変化させようとするには、低@側の金型の温度を上
記層面方向に沿って変化さればよい、すると低温側の金
型の中でも、より高温部に対向する多孔質層部分け、比
重が太き(なり、より低温部に対向する多孔質層部分は
比重が小さくなる。
Furthermore, in order to change the specific gravity of the porous layer of a multilayer material in the direction of the layer surface of the porous layer, it is only necessary to change the temperature of the mold on the low @ side along the layer surface direction. Among these molds, the porous layer portion facing the higher temperature area has a higher specific gravity, and the porous layer portion facing the lower temperature area has a smaller specific gravity.

一方、上述の製法においては、多層材が一体的に成形で
きるので、金型を変えることにより1種々の形状1%に
4雉な形状の多層材にも容易に対応できる。
On the other hand, in the above-mentioned manufacturing method, since the multilayer material can be integrally molded, by changing the mold, it is possible to easily handle the multilayer material having a shape of 1% in 4 pheasants in various shapes.

次に、このようにして製造された0層の厚さ方向もしく
は層の面方向に比重を連続的に変化させた多孔質層の各
種特性及ん応用等について説明する。
Next, various characteristics and applications of the porous layer manufactured in this way, in which the specific gravity is continuously changed in the thickness direction of the layer or in the plane direction of the layer, will be explained.

(1)吸音特性 第5図は、製法列■−1で成形された厚さ10顛の多孔
質構造体(曖きんど全域多孔質層)における厚さ方向の
空孔率(比重)分布列を示す図であるつ 図中1曲線A、  Oは、空孔率が厚さ方向にほぼ−様
な特性を示し、それぞれ約25(%)、約10(%)の
ものである1曲線Bは、空孔率が厚さ方向に分布を有し
。(0〜25(%)の範囲で連続的に変化しているもの
である。
(1) Sound absorption characteristics Figure 5 shows the porosity (specific gravity) distribution row in the thickness direction of a 10-thickness porous structure (porous layer throughout the entire area) formed by manufacturing method ■-1. In the figure, curves A and O exhibit approximately -like characteristics in which the porosity is about 25 (%) and about 10 (%), respectively, in the thickness direction. has a porosity distribution in the thickness direction. (It changes continuously in the range of 0 to 25 (%).

この種の多孔質構造体を吸音材として利用する場合には
、その吸音特性が問題になる。第61gは第5図に示す
三種類の空孔率分布を有するサンプルにおける垂直入射
吸音率をJ工s  A14osr管内法による暉築材料
の垂直入射吸音率の測定法」により測定した結果を示す
。尚1曲線Bの厚さ方向に空孔率分布を有するサンプル
では、7F!孔率が10(%)の方を音波を入射する而
きした。図から判るように、空孔率分布を有するサンプ
ル(曲#B)が借も吸音率特性が良いことを確認した。
When using this type of porous structure as a sound absorbing material, its sound absorbing properties become an issue. No. 61g shows the results of measuring the normal incidence sound absorption coefficients of samples having the three types of porosity distributions shown in FIG. In addition, in a sample having a porosity distribution in the thickness direction of curve B, 7F! The sound wave was incident on the side with a porosity of 10%. As can be seen from the figure, it was confirmed that the sample with the porosity distribution (track #B) had good sound absorption characteristics.

この理由は1次のように考えられろう上記の、TI8に
規定されている測定においては、その構成を第1図に示
すように被測定体(多孔質体)(1)の背面は剛壁1で
ある。従って、音波Gυが多孔質体fil内に入射され
た場合、その音波0υの粒子速度は剛壁面rBで零々な
るっ粒子速度は、剛壁面(7)から離れ入射面に近づ(
程太き(なり、入射面位置G3が骨太である。音波が吸
収される原即け、音波が多孔質体(1)内の細い隙間の
中を伝曜する行桿において、その清面との粘性効果によ
って音響エネルギーが熱エネルギーに変換され消散され
ることによる。一方、粘性効果は1粒子速度が大きくな
るほど顕著となるので、多孔質体の入射面の空孔率が全
体の吸音特性に大きく影響するつ以−Fより、空孔率が
小さい41ど、多孔質体(1)の隙間が細くなり粘性効
果が太き(なるが、空孔率が小さくなり1嶋ぎるとかえ
って音波が多孔質体ill内に侵入しにく(なり吸音率
は低下してくる。第5図及び第6図において1曲線Aの
サンプルは空孔率が犬き堝ぎ、また曲@Cのものは空孔
率が小さ過ぎて珊適な粘性効果が得られていないと言え
る。曲@BのものVi、多孔質体(1)の音波入射面(
粒子速度最大位1)が最適な空孔率であり、かつ剛壁側
へ行くほど空孔率が大きくなっているので音波が多孔質
体(1)の深部にまで容易に入射でき。
The reason for this can be considered to be as follows.In the above-mentioned measurement specified in TI8, the structure is shown in Figure 1, where the back surface of the object to be measured (porous object) (1) is a rigid wall. It is 1. Therefore, when a sound wave Gυ is incident into a porous body fil, the particle velocity of the sound wave 0υ is zero at the rigid wall surface rB.The particle velocity moves away from the rigid wall surface (7) and approaches the incident surface (
The incidence surface position G3 is relatively thick (the entrance surface position G3 is thick).As the sound wave is absorbed, the sound wave propagates through the narrow gap in the porous body (1). This is because acoustic energy is converted into thermal energy and dissipated due to the viscous effect of 41, which has a large porosity, has a small porosity, and the gap in the porous body (1) becomes narrower, resulting in a thicker viscous effect (However, as the porosity becomes smaller and the porosity increases, the sound waves become more resistant to the pores) It becomes difficult for the sound to penetrate into the solid body ill (and the sound absorption coefficient decreases. In Figures 5 and 6, the sample of curve 1 A has a very low porosity, and the sample of curve @C has a low porosity. It can be said that the porosity is too small to obtain a suitable viscous effect.Song @ B's Vi, the sound wave incidence surface of the porous body (1) (
The optimum porosity is at the maximum particle velocity 1), and the porosity increases toward the rigid wall, so that sound waves can easily enter deep into the porous body (1).

その結果吸音特性が優れているこさを示している5次に
、多孔質体の面方向に空孔率(比重)を変化させること
による吸音特性の改善効果について説明するう第81g
は、三種類のサンプルの空孔率の変化を示し1曲線A→
B−eQの順で空孔率が小さくなっている。このききの
吸音特性を第9図に示す。この図より、特に、音波入射
面側の空孔率を小さくすれば(曲y6cK相当)、低周
波域の吸音率が向上する。従って、多孔質体の面方向の
空孔率に分布を持たせるこきにより、広い周波数帯域で
良好な吸音特性を得ることができるっ上記多孔質体は嘩
さが10(朋)の場合であったが、[暖さを10010
0(にした場合の吸音特性について説明する。
As a result, the sound absorption properties are excellent.5 Next, the effect of improving the sound absorption properties by changing the porosity (specific gravity) in the planar direction of the porous body is explained in Section 81.
shows the change in porosity of three types of samples.1 Curve A→
The porosity decreases in the order of B-eQ. The sound absorption characteristics of this type of sound are shown in Figure 9. From this figure, especially if the porosity on the sound wave incident surface side is made smaller (corresponding to the curve y6cK), the sound absorption coefficient in the low frequency range is improved. Therefore, by creating a distribution in the porosity in the plane direction of the porous body, it is possible to obtain good sound absorption characteristics in a wide frequency band. However, [warmth 10010]
The sound absorption characteristics when set to 0 will be explained.

第10図に三種類のサンプルの空孔率分布を示し、第1
1図にそれらの垂直入射吸音率を示すっこれらの図より
、 1iiJさが100C芦i+)の場合は。
Figure 10 shows the porosity distribution of three types of samples.
Figure 1 shows their normal incidence sound absorption coefficients. From these figures, if 1iiJ is 100C 覦i+).

厚さが10(w嘗)の場合とは逆の特性となっているこ
とが判る。即ち、厚さが100(+u+)の場合は、空
孔率が剛壁側に向って小さ(なる方(曲線C)が吸音特
性が良くなっている。この叩出は。
It can be seen that the characteristics are opposite to those when the thickness is 10 (w). That is, when the thickness is 100 (+u+), the sound absorption characteristics are better as the porosity decreases toward the rigid wall side (curve C).

次のように考えられるっ 順さが厚くなるき音波が多孔質体内を伝播する距離が長
くなるので、伝播途中で音波が反射される借が多(なる
っ吸iW性は反射量が少ない方が良くなるので、このた
めには、音波が入射する空気側の固有音1インピーダン
ス(空気の密度き音速の積)と多孔質体の音響インピー
ダンスとの不連続を無くすと効果的であ7−、、すなわ
ち、空気1mに面する多孔質体の空孔率を大きめにして
その音嘴インピーダンスを空気の固有音響インピーダン
スに整合させ、剤層側に向って徐々に空孔率を小さくさ
せてい(方が、多孔質体の1ワさが1享い場合には吸音
特性が良好に々る。
It can be thought of as follows: When the order becomes thicker, the distance that the sound waves propagate within the porous body becomes longer, so the sound waves are more likely to be reflected during the propagation (the less the amount of reflection is, the more the sound waves are reflected). To this end, it is effective to eliminate the discontinuity between the characteristic sound impedance (product of air density multiplied by sound speed) on the air side where the sound waves are incident and the acoustic impedance of the porous body7- In other words, the porosity of the porous body facing 1 m of air is made larger to match its acoustic beak impedance to the specific acoustic impedance of the air, and the porosity is gradually decreased toward the agent layer ( On the other hand, if each porous body has one strength, the sound absorption properties will be better.

以上のように、多孔質体の最適な空孔率分布は。As mentioned above, what is the optimal porosity distribution for porous materials?

そのIQさによって異なってくるが、いずれにせよ連続
的な変化を与えることにより、良好な吸音特性を得るこ
とができることを確認した。
Although it depends on the IQ, it has been confirmed that good sound absorption characteristics can be obtained by continuously changing the IQ.

多孔質体は、従来より断熱材や保@財としても用いられ
ている。多孔質体が断熱作用や保温作用をするのは、多
孔質体の細い隙間の中に含捷れた気体の対流による熱伝
達が小さ(、また、多孔質体を構成する周体の接触伝熱
面積が小さいことからその熱伝導も低いことに基因する
のは衆知のことであろう しかし、多孔質体は、輻射伝熱の影響が強く。
Porous materials have traditionally been used as heat insulators and protective goods. The reason why a porous body has an insulating and heat-retaining effect is that the heat transfer due to the convection of the gas contained in the narrow gaps of the porous body is small (and also due to the contact transfer of the surrounding bodies that make up the porous body). It is common knowledge that this is due to the fact that the thermal conductivity is low due to the small thermal area, but porous materials are strongly influenced by radiation heat transfer.

このことが断熱・保l雁特性を大きく左右しているうこ
の輻射伝熱を低減するため、従来は例えば断熱・保温材
の表面にアルミ@、′5−帖りつけるなどして多孔質内
部に輻射線が入射しないようにされているが、生産性が
悪く、また、貼り付は部の剥離など耐久性の問題点があ
った。一方、多孔質体の空孔率を小さ(して輻射伝熱を
改善するこきも図られている。しかし、?!孔率を小プ
くすると熱伝導が太き(なることから、全体的には断熱
・保温特性の改善には有効となっていないっ 本発明に係る多孔質構造体は、空孔率(比重)を変化さ
せたものであり、その変化具合も用途によって適宜変え
られるものである。従って0表面近傍の入空孔率を小さ
(シ、内部では空孔率を大きくすることによゆ9表面で
輻射線を遮断でき。
In order to reduce the radiant heat transfer of the cage, which has a large effect on the insulation and heat retention characteristics, conventional methods have been used, for example, to coat the surface of the insulation and heat insulation material with aluminum@'5-. Although it is designed to prevent radiation from entering, productivity is poor and there are problems with durability such as peeling of parts when pasting. On the other hand, efforts are also being made to reduce the porosity of porous materials to improve radiation heat transfer. The porous structure according to the present invention has a varied porosity (specific gravity), and the degree of change can be changed as appropriate depending on the use. Therefore, by reducing the incoming porosity near the 0 surface, and increasing the porosity inside, the radiation can be blocked at the 9 surface.

かつ、鳩伝導も太き(ならないようにすることができす
ので、断熱・保温特性の優れた多孔質体を得ることがで
きる。
In addition, since the conduction can be prevented from becoming thick, a porous body with excellent heat insulation and heat retention properties can be obtained.

含油軸受は1通常多孔質体に潤滑油を含浸させ。Oil-impregnated bearings are usually made by impregnating a porous body with lubricating oil.

外部から給油することなく自己給油できるものであゆ、
軸受荷重の小さい領域では、その安価性から広く利用さ
れているう 一部に1強制給油のすべり軸受では、411がla1転
中には摺動面の油噂に20に9/ff14度の油圧が生
じて軸が浮き上がり、軸と軸受は@層内には接触しない
いわゆる完全潤滑(液体潤滑)きなる。−方、含油軸受
では、油圧が生じてもその一部が軸受の多孔層を通じて
外部にリークして油圧が低下し、軸と軸受とは局部的に
接1@するいわゆる境界fA清が行なわれるこ々になる
。従って、軸受摩擦係数も1強匍1給油の場合の0.0
2〜0.05に対し。
It is a self-lubricating device that does not require external lubrication.
In areas with small bearing loads, sliding bearings with forced lubrication on one part, which are widely used due to their low cost, require 20 to 9/ff 14 degrees of oil pressure on the sliding surface during la1 rotation. This causes the shaft to lift up, resulting in so-called complete lubrication (liquid lubrication) in which the shaft and bearing do not come into contact within the @ layer. - On the other hand, in oil-impregnated bearings, even if oil pressure is generated, a portion of it leaks to the outside through the porous layer of the bearing, resulting in a decrease in oil pressure, and a so-called boundary clearance occurs in which the shaft and bearing come into local contact. It's going to be this. Therefore, the bearing friction coefficient is also 0.0 in the case of 1 liter of lubrication.
2 to 0.05.

含油軸受の場合は0.1〜0.2と増η口し、@度上昇
も比較的高くなる。
In the case of oil-impregnated bearings, the increase in η is 0.1 to 0.2, and the increase in degree is also relatively high.

以上の含油軸受の許容軸受荷重は、摺動面の油″虜千を
向上できれば改善できる。これに対し、従来より、多孔
質;qを通じて油流が生じ、しかも油圧が低下しないよ
うな方法が検討されている。
The permissible bearing load of the above oil-impregnated bearings can be improved if the oil content of the sliding surface can be improved.In contrast, conventional methods have been proposed that allow oil flow to occur through the porous material without reducing the oil pressure. It is being considered.

列として、@受表面は多孔体の気孔直径の小さい1轡に
、保油部分は気孔直径の大きい層に分ける方法がある。
There is a method in which the receiving surface is divided into a layer with a small pore diameter of the porous body, and the oil retaining part is divided into a layer with a large pore diameter.

すなわち、保油層に、気孔直径の小さいライニング層を
接合する方法であ轢、ライニング層で油圧低下を改善し
ている。この方法は1例えば、刊行物「用崎著、“オイ
ルレスベアリング、アグネ社発行、P、87Jに記載さ
れている。しかし。
That is, by joining a lining layer with a small pore diameter to an oil retaining layer, the lining layer improves the oil pressure drop. This method is described, for example, in the publication ``Oil-less Bearings'' by Yosaki, published by Agne Publishing, p. 87J. but.

この方法は、二層の妾続部分で気孔直径(気孔率)が不
連続になるので、保油層からライニング層への自己給油
抵抗が太き(なり、軸受荷重の改善効果が十分発揮され
ていなかった。
In this method, the pore diameter (porosity) is discontinuous in the contiguous part of the two layers, so the self-lubricating resistance from the oil retaining layer to the lining layer is large (and the bearing load improvement effect is not fully demonstrated). There wasn't.

これに対し9本発明に係る多孔質PI!iI造体では。On the other hand, porous PI according to the present invention! In the iI structure.

軸受多孔質本の気孔直径を、軸受表面で府も小さくシ、
底部に向って連続的に気孔直径を大きくするこ♂ができ
るので、油j嘆圧の向上と共に自己給油量も適tが保た
れ良好な軸受性能を得ることができる。
The diameter of the pores in the porous bearing is reduced to a small size on the bearing surface.
Since the pore diameter can be continuously increased toward the bottom, the oil pressure is improved and the self-lubricating amount is maintained at an appropriate level, resulting in good bearing performance.

本発明に係る多孔質構造体では、気孔直径(気孔率)を
変えることができるのでフィルタとして利用すれば連続
的に粉噸が除去できて目づまりが少なくなり粉塵の捕獲
効率の良いものを得るこきができるうさらに、外イ11
8を気孔直径の小さい層とする構造体として利用すれば
一体型フィルタユニットにすることもできる。
The porous structure according to the present invention can change the pore diameter (porosity), so if used as a filter, it can continuously remove dust, reduce clogging, and obtain a filter with high dust capture efficiency. In addition, outside A11
If 8 is used as a structure having a layer with a small pore diameter, it can be made into an integrated filter unit.

尚、空孔率(比重)を連続的に変化させた多孔質層を有
する多孔質構造体は、その優れた特性や復唯な材質にも
対応できる特長を活かして上記以外の分野へも利用でき
ることは言うまでもない。
In addition, porous structures with porous layers with continuously varying porosity (specific gravity) can be used in fields other than those mentioned above, taking advantage of their excellent properties and ability to be used with flexible materials. It goes without saying that it can be done.

以上説明した多孔質層を形成する耐指紋は形状が球状の
?1か0円筒状1円往状、立方体などでもよい。ひげ付
きの熱可塑性樹脂粒はひげの部分が溶融しやすいので、
原料として好適である。又多層材の軽量化を図る目的で
9例えば発泡した中空粒状素材や発泡性素材を原料とし
て利用するこきもできる。又補強用として原料に短繊維
を混入させてもよいし、バインダーとして糸状の熱可塑
性有脂を原料に混入させてもよい。
The anti-fingerprint that forms the porous layer explained above is spherical in shape? It may be 1 or 0 cylindrical, 1 yen circular, cubic, etc. Thermoplastic resin particles with whiskers tend to melt at the whiskers, so
Suitable as a raw material. In addition, for the purpose of reducing the weight of the multilayer material, for example, foamed hollow granular materials or foamable materials can be used as raw materials. Further, short fibers may be mixed into the raw material for reinforcement, and thread-like thermoplastic fat may be mixed into the raw material as a binder.

尚、多孔質体としての特性、特に吸音特性に対し1粒状
素材の形状や長径には、より優れた特性を有する範囲が
あることを確認した。以下、説明する。
In addition, it was confirmed that there is a range in which the shape and major axis of a single granular material have better properties in terms of properties as a porous body, especially sound absorption properties. This will be explained below.

第12図は9粒状素材の形状を変えた場合の垂直入射吸
音率の特注のバラツキ(サンプル数5個での特性のバラ
ツキ)を示す図である5曲線Aは粒状素材が直径o、 
8 (fl) 、長さ1(龍)の円筒形状のもの0曲線
Bは直径1(fl)の球体状のものである。尚、いずれ
も多孔質層の厚さは10(mw )であり、吸音率を測
定した問波数は2 (Kllz)であるう同図より0球
体状のもの(曲線B)は。
Figure 12 is a diagram showing custom-made variations in the normal incidence sound absorption coefficient (variations in characteristics with 5 samples) when the shape of the granular material is changed.5 Curve A shows that the granular material has a diameter o,
8 (fl), cylindrical shape with length 1 (dragon) 0 Curve B is spherical with diameter 1 (fl). In both cases, the thickness of the porous layer is 10 (mw), and the wave number at which the sound absorption coefficient was measured is 2 (Kllz).From the figure, the spherical one (curve B) is 0.

サンプルの違いによる特性の差が少なく、極めて安定し
ていることが判ろうこの叩出は1球体状の場合粒状素材
どうしの接触点が一個所となるので。
It can be seen that there is little difference in properties due to differences in samples, and it is extremely stable.This knock-out method has only one point of contact between the granular materials in the case of a single spherical shape.

成形時に粒状素材の層状卵が安定して均一になるためで
あろう このように、特にサンプル間で7侍性の安定性を要する
場合などには球体状(球体もしくは嘴円体)にする方が
、より好ましい多孔質構造体を得ることができろう オた。吸音特性は9粒状素材の長径よっても異なること
を確認した。第13図に1粒状素材の長径と吸音率の関
係を示す、サンプルの厚さdlo(*N)で、測定犠波
牧は2 (Ktlz)である。粒状素材を径を小さくし
過ぎたり、大きくし邊ぎたりするき、音波が多孔質体内
に侵入しにくくなったり。
This is probably because the layered egg of the granular material becomes stable and uniform during molding, so it is better to make it spherical (spherical or beak-shaped), especially when stability is required between samples. However, a more preferable porous structure could be obtained. It was confirmed that the sound absorption properties also differ depending on the major axis of the nine granular materials. Figure 13 shows the relationship between the long axis and sound absorption coefficient of a single granular material.The sample thickness is dlo (*N), and the measured sacrificial wave size is 2 (Ktlz). If the diameter of the granular material is made too small or too large, it becomes difficult for sound waves to penetrate into the porous body.

多孔質体の固有音響インピーダンスが空気側の固有音響
インピーダンスと整合しなくなったりして吸音率が低下
するう同図より1粒状素材の長径は。
From the figure, the major axis of a single granular material is:

実用的な範囲では0.2〜3.0(+*m)、好ましく
け1.0〜2.0 (1n)の範囲とすることにより、
吸音特性を良好にできることを確認した。
By setting it in the practical range of 0.2 to 3.0 (+*m), preferably in the range of 1.0 to 2.0 (1n),
It was confirmed that the sound absorption properties can be improved.

次に0本発明に係る多孔質構造体の他の実殉例について
説明する。この多孔質構造体は1層の厚さ方向もしくは
層の面方向に比重を連続的に変化させた多孔質層と、こ
の多孔質層よりも空孔率が小さ(比重の大きい中実層と
を層状にしたものである。この中実層は1粒状素材が熱
可塑性樹脂の場合は、融合If1になり、融合の程度に
より通気性から非通気性まで変化する3また1粒状素材
が熱硬化性樹脂の場合には1粒状素材が軟化しバインダ
ーで接着されて比重の大きい層となり、軟化の程度によ
り通気性から非通気性1で変化するつまず、このような
多孔質構造体の代表的な製造方法につfハて説明する。
Next, another example of the porous structure according to the present invention will be described. This porous structure consists of a porous layer whose specific gravity is continuously changed in the thickness direction or plane direction of the layer, and a solid layer with a smaller porosity than this porous layer (a solid layer with a higher specific gravity). If one of the granular materials is a thermoplastic resin, this solid layer will be fused If1, and depending on the degree of fusion, it will vary from breathable to non-breathable.Also, one granular material will be thermoset. In the case of a porous resin, one granular material is softened and bonded with a binder to form a layer with a high specific gravity, which changes from breathable to non-breathable depending on the degree of softening, which is typical of such porous structures. The manufacturing method will be explained below.

!1町:!法1);ン!1■−2 特法のにおいて、凹側金型(7)の管部o9の温度を1
50℃にセットし、凸側金型(8)の帝都03の偏度を
100℃にセットし、AH8樹脂きして、市気化学工業
株式会社製GTR−40(グレード)。
! 1 town:! Law 1) ;n! 1■-2 In the special method, the temperature of the pipe part o9 of the concave mold (7) is set to 1
The temperature was set at 50°C, the degree of deviation of Teito 03 of the convex side mold (8) was set at 100°C, and the AH8 resin was heated to GTR-40 (grade) manufactured by Ichiki Kagaku Kogyo Co., Ltd.

軟化する温度86℃の熱可塑性樹脂の粒状素材。A granular thermoplastic resin material with a softening temperature of 86°C.

直径1すの球状粒子を金型に入れ、金型fil +81
を閉じた。壁面fill(11間の甲雌は10龍であっ
たつこの状報で20分1lJ1経過(つまり加熱状態を
持続)させて金型+71181を開放し九つなお加熱状
態のききの加圧力は100 k#/、fflであった。
Put spherical particles with a diameter of 1 mm into a mold, mold fil +81
closed. Wall fill (the upper female between 11 and 11 was 10 dragons) After 20 minutes of 1lJ1 (that is, the heating state was continued), the mold +71181 was opened, and the pressurizing force when the mold was still in the heating state was 100 k. #/, ffl.

このようにして成形した多層材C1)を第14図に示す
うこの多層材fi1は1雫さがIQmでその中の融合層
イ2)の11[さけ約11n@ 多孔質層(3)の摩さ
は約9順であった。
The multilayer material C1) formed in this way is shown in FIG. The roughness was about 9th.

製法列■−3 製法■において、凹1則金型イア)の管部(111の温
度を180℃にセントし、凸イ11り金型(8)の帝都
03の遠度を130℃にセクトし、ABsil脂さして
、噴気化学工業株式会社製GTR−40(グレード)。
Manufacturing method column ■-3 In manufacturing method ■, set the temperature of the tube part (111 of the concave mold ear) to 180℃, and set the distance of Teito 03 of the convex mold (8) to 130℃. Then, use ABsil oil and GTR-40 (grade) manufactured by Fuuka Kagaku Kogyo Co., Ltd.

軟化する温度86℃の熱可塑性樹脂の粒状素材。A granular thermoplastic resin material with a softening temperature of 86°C.

直径t *xの球状粒子を金型に入れ、金型t71 +
81を閉じた。清面αu0間の距稚は10龍であったっ
この状態で15分間経過させて金型f71 +s+ ′
l?開放した。なおη[l熱状萼のときの1川圧力は1
00に9/−であった、このさき成形した多層材+11
は1享さがfQw+ その中の叫合層(2)の1雫さは
約1謂、多孔層(3)の1雫さけ約9鰭であったが、@
!法例の−2の成形多層材Fllに比べ、多孔層(3)
の表面部の一合化が一部分進み、30μm桿度のスキン
Rが形成されたつ 製法列■−2 製法■において、凹1[Q金型(7)の糠a11の温度
を200℃にセットし、61則金型(8)の管部113
の温度を150℃にセクトし、熱硬化性樹脂として、フ
ェノール樹脂(明和化成株式会社fp、+vW−752
(グレード)、軟化する温度190℃)で直径1龍の粒
状素材を、バインダーとなる粉末状セルロース15重t
%と共に金型に入れ、金型f71 ’8)を閉じた。壁
面111111間の中略はIQrMであった。この状態
で25分間経過(つまり0口熱状態を持R)させて金型
f71 +81を開放したつ なおり口熱状與の々きのqa圧力け15Qkq/−であ
った、このように成形した多層材Ellは厚さが101
で、その中の比重の大^い層(2)の1ダさは約1mm
+多孔質層(3)の厚さは約9順であったっ々お熱硬化
性樹脂を熱可塑性樹脂でコートした粒状素材を原料とし
て用いてもよい。
A spherical particle with a diameter t*x is placed in a mold, and a mold t71 +
81 closed. The distance between Qingmen αu0 was 10 dragons. After 15 minutes in this state, mold f71 +s+ '
l? Opened. Note that the pressure of one river in the case of η[l heated calyx is 1
The multilayer material previously formed was 9/- to 00 +11
is 1 drop is fQw + Among them, 1 drop of the cryolayer (2) was about 1 drop, and 1 drop of the porous layer (3) was about 9 fins, but @
! Porous layer (3)
In manufacturing process ■-2, the surface part of the mold (7) was partially integrated and a skin R with a radius of 30 μm was formed. , pipe part 113 of the 61 rule mold (8)
The temperature was set at 150°C, and a phenol resin (Meiwa Kasei Co., Ltd.
(grade), softening temperature of 190℃), granular material with a diameter of 1 dragon, and powdered cellulose as a binder, 15 tons
%, and the mold f71'8) was closed. The abbreviation between wall surfaces 111111 was IQrM. After 25 minutes elapsed in this state (that is, 0 mouth heat state R), the mold f71 +81 was opened. The multilayer material Ell has a thickness of 101
The thickness of the layer (2) with high specific gravity is about 1mm.
+The thickness of the porous layer (3) was about 9 degrees.A granular material obtained by coating a thermosetting resin with a thermoplastic resin may be used as the raw material.

上記のようにして成形された多層材(層状の多孔質構造
体)の特性等について説明するっ<11  空孔率 第151頭は成形された多層材の空孔率を示す曲線図で
曲線実■−2,実■−3はそれぞれ製法列■−2,製法
列■−3によって製造された多層材の厚さ(w)K対す
る空孔率(%)を示す、3層合層r21はいずれ本非通
気性で、実■−2の多孔質層(3)は帽さ方向に空孔率
が連続的に変化し1表面(低温側)で空孔率が青大とな
る。実■−3の多孔質層(3)は厚さ方向に空孔率が連
続的に変化するが、多孔質層(3)の中央で空孔率が最
大になり表面部(低温イ1llI)で空孔率が低下し、
すなわち1表面部の空孔率は、多孔質層(3)のや大の
空孔率と融合層(2)の空孔率の中間であり1部分的に
融合したスキン層14)が形成されていることを示して
いるっなお比重は材質が同じであれば、当然ながら空孔
率が小さいほど大きいう 多層材を吸音材として使用する場合にはその吸音特性が
問題に彦る。第16図は垂直入射吸音率を比軸する曲線
図で、垂直入射吸音率を前述のJ工5A1405により
測定した結果を示す5曲線実の−2は製法列の−2で製
造した多層材で厚さ10龍のもの1曲線従は従来の吸音
材であるウレタンフオームで厚さ10羽のものの特性を
それぞれ示す5層からも判るように多層材の垂直入射吸
音率は従来の吸音材(ウレタンフオーム)のそれと同等
以上の特性を有することを確認したつ第11図は同様な
垂直入射吸音率の苛性曲線図で、いずれの曲線も前述の
方法で製造した多層材の特性で、実■−2,実■−3は
それぞれ夷法列■−2,l!!!法列■−3で製造した
]季さ10朋の多層材の特性を示す。製法例■−3のも
のの特性が良好々叩出は表面部の空孔率の隣適化の影響
と思われるう 次に、スキン層により吸音特性が向上する現象の解明及
びその場適暉さについて説明するつまず、多孔質体素材
としてAB81討脂を用いて。
The characteristics of the multilayer material (layered porous structure) formed as described above will be explained below. ■-2 and Actual ■-3 indicate the porosity (%) against the thickness (w) K of the multilayer materials manufactured by manufacturing method column ■-2 and manufacturing method column ■-3, respectively. The three-layer composite layer r21 is In the porous layer (3) of Example 1-2, which is impervious to air, the porosity changes continuously in the vertical direction, and the porosity becomes blue at one surface (low temperature side). The porosity of the porous layer (3) of Example II-3 changes continuously in the thickness direction, but the porosity reaches its maximum at the center of the porous layer (3) and reaches the surface (low temperature). The porosity decreases,
In other words, the porosity of the first surface portion is between the slightly larger porosity of the porous layer (3) and the porosity of the fused layer (2), and a partially fused skin layer 14) is formed. As long as the specific gravity is the same, it goes without saying that the smaller the porosity, the greater the problem when using a multilayer material as a sound absorbing material. Figure 16 is a curve diagram showing the normal incidence sound absorption coefficient on the specific axis, and -2 of the 5 curves showing the results of measuring the normal incidence sound absorption coefficient with the above-mentioned J Engineering 5A1405 is the multilayer material manufactured by -2 in the manufacturing method row. As can be seen from the 5 layers, each of which shows the characteristics of a 10 layer thick urethane foam, which is a conventional sound absorbing material, the normal incidence sound absorption coefficient of the multilayer material is higher than that of a conventional sound absorbing material (urethane foam). Fig. 11 is a similar caustic curve diagram of normal incidence sound absorption coefficient, and both curves are the characteristics of the multilayer material manufactured by the method described above. 2, real ■-3 are respectively eimodal sequence ■-2, l! ! ! This figure shows the characteristics of the multi-layered material of 10 degrees (manufactured by Method 1-3). The properties of manufacturing method example ■-3 are good.The knockout seems to be due to the effect of optimizing the porosity of the surface area.Secondly, the phenomenon of improving sound absorption properties due to the skin layer was clarified and on-site optimization was performed. The problem I will explain is that AB81 fat is used as the porous material.

庫さ10削のサンプルを前述の製法■によね製作した。A 10-cut sample was produced using the above-mentioned manufacturing method (■).

このサンプルの空孔率分布の実測結果を第1B図に、空
孔率の小さい方を音波入射面なしてその垂直入射吸音率
特性を第1919に示すつ図から明らかなように、この
サンプルでは、40G(Hz)という低(資)波で吸音
率が青火となり、しかもその値が90(%)を越える良
好な吸音特性が得られた。このとき、このサンプルの音
波入射面1111の低空孔率部を顕微鏡で破断覗察した
結果、その表面が摩さ30ミクロン程度の、はぼ非通気
性のスキン層になっているこきが見出された。
Figure 1B shows the actual measurement results of the porosity distribution of this sample, and Figure 1919 shows the normal incidence sound absorption coefficient with the side with the smaller porosity serving as the sound wave incidence surface. , the sound absorption coefficient was very high at low (material) waves of 40G (Hz), and moreover, good sound absorption properties with a value exceeding 90 (%) were obtained. At this time, when the low porosity part of the sound wave incidence surface 1111 of this sample was fractured and inspected using a microscope, it was found that the surface had a rough impermeable skin layer with a grindness of about 30 microns. It was done.

この現象を、第20図に示す音饗モデルを用いて説明す
る。多孔質構造体の音響インピーダンス(図中、2で示
す)は次式(1)で表わされる。
This phenomenon will be explained using the sound box model shown in FIG. The acoustic impedance (indicated by 2 in the figure) of the porous structure is expressed by the following equation (1).

ここで*  rn  :多孔質層(3)の音響抵抗ω 
:角速度 −:多孔質層13)の空気のイナータンス j :多孔質層(3)の厚さ ρ* :多孔質層(3)内の空気の等価密度C市:多孔
質1−(3)内の空気の等価音速m ニスキン層14)
の面密度 吸音率が青太きなる同波数は1式(1)の複素成分が零
となる場合であり、その周波数fは次式+21となる。
Here *rn: acoustic resistance ω of the porous layer (3)
: Angular velocity - : Inertance j of air in porous layer 13) : Thickness ρ* of porous layer (3) : Equivalent density of air in porous layer (3) C: Inside porous 1-(3) Equivalent sound speed of air m Niskin layer 14)
The same wave number at which the areal density sound absorption coefficient becomes thicker is the case where the complex component of Equation 1 (1) becomes zero, and the frequency f becomes the following equation +21.

スキン層の面密度mは、多孔質層のイナータンスmfi
  よりもはるかに太き(なるので1式(2)より明ら
かなように、青火吸音率が得られる周波数fは、スキン
層を設けることにより大幅に低8波域まで下げることが
できる。一般に、多孔質層の吸音率は低固波域で悪いた
め、その改善策(!:L−ては有効である。尚、スキン
層による上記効果は公知であるが、従来はスキン層を多
孔体に貼りつける方法で行っていた。
The areal density m of the skin layer is the inertance mfi of the porous layer
As is clear from Equation 1 (2), the frequency f at which the blue flame sound absorption coefficient is obtained can be significantly lowered to the low 8 wave range by providing a skin layer. Since the sound absorption coefficient of the porous layer is poor in the low solid wave range, the improvement measures (!: L-) are effective.The above effect of the skin layer is well known, but conventionally the skin layer was made of a porous material. I used the method of pasting it on.

このような貼りつけ方法では、最大吸音率が得られる周
波数は低下するが、その吸音率の絶対値が低下し0通常
80(%)以下となる。この理由は1次のように考えら
れる。
In such a pasting method, the frequency at which the maximum sound absorption coefficient is obtained is lowered, but the absolute value of the sound absorption coefficient is lowered, and is usually 80 (%) or less. The reason for this is thought to be as follows.

式11)より、!を大吸音率の周波数領域では、音響イ
ンピーダンス2は。
From equation 11),! In the frequency region of large sound absorption coefficient, the acoustic impedance is 2.

Z = rfi きなる。一般に知られているように、rn=ρC(ρ、
Cは空気の密度、音速)のときに、吸音率は100(%
)になる。しかし、従来のようにスキン層を貼りつけた
場合、スキン層と多孔体との間の貼りつけ部の抵抗成分
が大きくなる。これが。
Z = rfi signal. As is generally known, rn=ρC(ρ,
When C is the density of air, the speed of sound), the sound absorption coefficient is 100 (%
)become. However, when the skin layer is pasted as in the past, the resistance component at the pasted portion between the skin layer and the porous body becomes large. This is.

多孔体の音響抵抗と直列に入るため、上記のrn=ρC
を満足しかくなるきともに貼りつけきいう不安定性から
特性にバラツキが生じたりしていた。
Since it is in series with the acoustic resistance of the porous body, the above rn=ρC
However, even when the properties were not satisfied, the instability of pasting caused variations in properties.

これに対し1本発明では、スキン層と多孔質層とが一体
に成形されるため上記の欠点を鱗消することかできる。
In contrast, in the present invention, the skin layer and the porous layer are integrally molded, so that the above-mentioned drawbacks can be eliminated.

さらに、スキン層の厚さを種々変更して吸音特性の試@
を行った結果、スキン層の厚さが100ミクロンを越え
ると、スキン層が質量としてではなく1弾性Ig(バネ
系)として働くようになり。
Furthermore, we experimented with sound absorption characteristics by changing the thickness of the skin layer.
As a result, when the thickness of the skin layer exceeds 100 microns, the skin layer starts to function not as a mass but as a single elastic Ig (spring system).

最高吸音率の周41数は、逆に上がってしまい、所要の
効果は得られなかった。従って。(00ミクロン以下が
妥当であることを確認した。
On the contrary, the number of laps with the highest sound absorption coefficient of 41 increased, and the desired effect could not be obtained. Therefore. (It was confirmed that 00 microns or less is appropriate.

上記の層状の多孔質構造体は、主として二層の場合で説
明してきたが、三層あるいは任意層・任意材質の多孔質
構造体とすることもできる。
The above-mentioned layered porous structure has mainly been explained in the case of two layers, but it can also be a three-layered porous structure or a porous structure with arbitrary layers and arbitrary materials.

第21図は、スキン層(4)、多孔質層(3)および非
通気性の中実#(2)よりなる三重層の多孔質構造体(
19)の断面図を示す、これを、吸音材とじて用いる場
合には、前述したように、スキン層14)および多孔質
層(3)により優れた吸音特性を有し、かつ非油気性の
中実層(2)が遮音体きなるので、吸音と遮音の両機能
を効果的に発揮する構造体きすることができる。
FIG. 21 shows a triple-layered porous structure (
19). When this is used together with a sound absorbing material, as mentioned above, the skin layer 14) and the porous layer (3) have excellent sound absorbing properties, and a non-oily material is used. Since the solid layer (2) acts as a sound insulator, it is possible to create a structure that effectively exhibits both sound absorbing and sound insulating functions.

また、断熱・保温材として用いる場合には、スキン層1
4Jが輻射断熱として、多孔質層(3)が熱伝導断熱と
して、中実#(2)が機器構成ケースさしての役割を果
たす構造体きすることができる。
In addition, when used as a heat insulating material, the skin layer 1
It is possible to create a structure in which 4J serves as a radiant heat insulator, the porous layer (3) serves as a heat conductive heat insulator, and the solid #(2) serves as a device component case.

#!22叩け、さらに的の多層状構造体の一実施例であ
り、中実層(2)の両IIIK多孔質層!3)とスキン
層(4)とを有する構造体(lb)  の断面図である
うこの構造体は、スプリットあるいはセル形消音器に応
用することができる。第23図はその一応用列で、ダク
ト(至)内を複数41に分割するように多層状の構造体
(lb)  を配置するものであり、低周波の消音性能
の優れたスジ1フツト(セル)形消音器とすることがで
きる。
#! 22, this is an example of a target multilayer structure, and both the solid layer (2) and the IIIK porous layer! 3) and a skin layer (4). This structure can be applied to a split or cell silencer. Figure 23 shows one example of this, in which a multilayered structure (lb) is arranged so as to divide the inside of the duct (toward) into a plurality of 41 parts, and a striped one-foot structure (lb) with excellent low-frequency sound deadening performance is used. It can be a cell type silencer.

尚、上記列に限らず、各分野でその用途に応じて、任意
層會任意材質の多孔質構造体さして応用できることはい
うまでもない。
It goes without saying that the present invention is not limited to the above-mentioned examples, but can be applied to porous structures having arbitrary layers and made of arbitrary materials depending on the application in various fields.

さらに1粒状素材に樹脂粒以外の粒を含む素材を用いる
ときにより、多孔質構造体の機能を拡大させることがで
きる7以下、その−実施列を説明する。
Further, when a material containing particles other than resin particles is used in one granular material, the function of the porous structure can be expanded.

まず。(1造方法について説明する。first. (I will explain the one-piece construction method.

頓法列■−1 第24図は金を(7) ’81の空間αaに2種類の粒
を含む素材を入れ金型(71!81を閉じたところを示
す断面図である。凹側金型(71内に、4を初に長径が
約0.2削の鉄粒a!9を積み厚さが約IHになるよう
に充填し、その後、長径が約1 vp(D A B 8
 f@脂粒tie ($1!法列■−2に使用したもの
と同じもの)を閉空間aSの高さ(10w)より約2鰭
はど高くなるように充填する。充填後凸側金型(8)(
第24図では板状金型)を凹側金型(7)に密着接合さ
せることにより、上記鉄粒n9とABB樹脂粒a9の充
填層を圧縮し、閉空間a3内に異種粒の充填層を形成す
る5以上の条件で、hBs明脂粒の軟化する温度86℃
より高い温度、つまり凹側金型温度を150℃。
Tonpo row ■-1 Figure 24 is a cross-sectional view showing the metal mold (71!81 closed) where the material containing two types of grains is placed in the space αa of (7) '81. Into the mold (71), 4 is first stacked with iron grains a!9 with a major axis of approximately 0.2 milled, and filled so that the thickness is approximately IH, and then the major axis is approximately 1 vp (D A B 8
Fill the f@ fat grain tie ($1! same as that used in the sequence ■-2) so that it is about 2 fins higher than the height (10w) of the closed space aS. After filling, convex side mold (8) (
By closely joining the plate-shaped mold (in Fig. 24) to the concave mold (7), the packed layer of iron particles n9 and ABB resin particles a9 is compressed, and a packed layer of different types of particles is formed in the closed space a3. Under conditions of 5 or more to form a
Higher temperature, that is, the concave mold temperature is 150℃.

凸側金型温度を100℃に昇温し、約20分加熱するっ
鉄粒子+9の融点は約tsoo℃であることから、その
鉄粒の粒形状は保持された状態となる。
The temperature of the convex side mold is raised to 100° C. and the iron particles +9 are heated for about 20 minutes. Since the melting point of iron particles +9 is about tsoo° C., the shape of the iron particles is maintained.

一方hBs重脂粒は、特に凹1111J金型(7シの暗
部συは高温であることから、それVC接触する鉄粒も
高温となり、鉄粒α1と妾触するAB84を脂粒αeは
溶融し、溶融したAB S’ll脂粒が秩粒嗜を亀り巻
くように流・肋する。
On the other hand, since the hBs heavy fat grains are particularly hot in the dark part συ of the concave 1111J mold (7), the iron grains in contact with the VC also become high temperature, and the fat grains αe melt AB84, which is in contact with the iron grain α1. The molten AB S'll fat particles flow and wrap around the grains.

加熱後、冷却された成形された多層体11)は、厚さが
10mでその中鉄粒n′Jが混入された融合層(2)は
厚さが約1謂、多孔質層(3)は厚さが約9順の一体化
した積層体となったう融合層(2)の比重は、鉄粒を含
まない場合は、  ABsi14脂の比重そのものき々
す*  1.05 gr/ ccであるが、鉄粒を入れ
た場合は融合層のみを切断し、その比重を測定した結果
、4.4gr/ccであった。多層材の多孔質層を吸音
材とし、融合層を遮音材として利用する場合、遮音材と
してはその比重が大きいほど遮音特性が向上するので、
この多層材は遮音特性に優れる。従来は、  ABs@
脂のような比重の・軽い材料の遮音度を上げるには、そ
の材料のワさを厚くするか、秩板などの金属を貼りつけ
ることが必要であったが、この・模造方法では溶融する
部分に比重の大きい材料を混入させることにより、多孔
質層と比重のさらに大きい融合層を持つ多層材を容易に
実現できる。
After heating and cooling, the molded multilayer body 11) has a thickness of 10 m, in which the fused layer (2) into which iron particles n'J are mixed has a thickness of about 1 m, and the porous layer (3) The specific gravity of the fused layer (2), which is an integrated laminate with a thickness of approximately 9, is the same as that of ABsi14 fat if it does not contain iron grains* 1.05 gr/cc. However, when iron particles were added, only the fused layer was cut and its specific gravity was measured and found to be 4.4 gr/cc. When using the porous layer of a multilayer material as a sound absorbing material and the fused layer as a sound insulating material, the higher the specific gravity of the sound insulating material, the better the sound insulation properties.
This multilayer material has excellent sound insulation properties. Previously, ABs@
In order to increase the sound insulation of a material with a specific gravity or light weight, such as fat, it was necessary to make the material thicker or to attach metal such as china plate, but with this imitation method, it would not melt. By mixing a material with a high specific gravity into the part, a multilayer material having a porous layer and a fused layer with a higher specific gravity can be easily realized.

第26図はこの多層材の遮音度特性を示す曲線図である
5曲線実■−21曲線実■−1はそれぞれ製法例■−2
で製造した多層材(鉄粒なし)の厚さ10肩眉のもの、
製法[MJ■−1で製造した多層材(鉄粒入り)の「雫
さ101のものの遮音特性を示す。この遮音特性は第2
5図の特性測定図を用いて測定した。パイプ+171(
1G(Itsφ)の中に。
Figure 26 is a curve diagram showing the sound insulation properties of this multilayer material. 5 curves ■-21 curves ■-1 are manufacturing method examples ■-2
A multi-layered material (without iron grains) manufactured with a thickness of 10 mm,
This shows the sound insulation properties of a multilayer material (containing iron particles) manufactured using the manufacturing method [MJ■-1] with a drop size of 101.
Measurements were made using the characteristic measurement diagram shown in Figure 5. Pipe +171 (
In 1G (Itsφ).

測定する多層材tl)を挿入し、その前後にマイクロホ
ン魔1,42悄口9を役(纜する。バイブロηの一方端
よりスピーカ翰で音を入射させる。パイプ(I71の他
端は閉じており、その閉端には、長さ約1000朋のグ
ラスウールQυを充填しており、閉端で音が反射しない
ように処理されている。スピーカ■で放射され、多層材
に入射する入射波の音圧レベルはマイクロホン41 I
llで測定し、多層材を透禍する透過波の音圧レベルは
、マイクロホン42Q値で測定される。多層材の遮音度
(dB)は、入射波の音圧レベルから透過波の音圧レベ
ルを差引いた値で評価した。
Insert the multilayer material (tl) to be measured, and connect the microphones 1, 42 and 9 in front and behind it.Inject sound through the speaker wire from one end of the vibro η.The other end of the pipe (I71) is closed. The closed end is filled with glass wool Qυ with a length of approximately 1000 mm, and is treated to prevent sound from being reflected at the closed end. Sound pressure level is microphone 41 I
The sound pressure level of the transmitted wave that penetrates the multilayer material is measured by the Q value of the microphone 42. The sound insulation degree (dB) of the multilayer material was evaluated by subtracting the sound pressure level of the transmitted wave from the sound pressure level of the incident wave.

第26図に示すように、鉄粒入りのもの(実■−1)が
、鉄粒なしのもの(実■−2)より約10dB  g音
度が向上している。
As shown in FIG. 26, the one containing iron particles (Example ■-1) has improved g sound intensity by about 10 dB than the one without iron particles (Example ■-2).

以上では樹脂粒に混合する粒を鉄粒としたが。In the above description, iron particles were used as particles to be mixed with resin particles.

他の金属、ガラスや比重の大きい材料でも同様の効果を
発揮するっ又遮音特性の向上のみ説明し九が、 ’i?
iBシールドや熱伝導用にアルミニウムなどI!磁シー
ルドに効果のある材料を混入させて本よく、又融合層や
多孔質層の強度向上にグラスファイバなどを、明脂粒に
混入して成形してもよい。
Similar effects can be achieved with other metals, glass, and other materials with high specific gravity.
Aluminum etc. for iB shielding and heat conduction I! It is possible to mix a material that is effective in magnetic shielding, or to improve the strength of the fused layer or porous layer, glass fiber or the like may be mixed into the clear resin particles and molded.

〔発明の効果〕〔Effect of the invention〕

本発明は以上、説明したきおり、比重を0層の厚さ方向
もしくけ層の面方向に連続的に変化させた多孔質を有す
るので、吸音特性や断熱特性などの特性の優れ念多孔質
嘴造体を得ることができる。
As explained above, the present invention has a porous material whose specific gravity is continuously changed in the thickness direction of the zero layer and in the plane direction of the structured layer, so it is possible to improve the properties such as sound absorption properties and heat insulation properties. You can get a beak structure.

また1本発明では、比重を変化させた多孔質層をWII
Fi!する粒状素材を球体もしくは嘴円体とし。
In addition, in the present invention, a porous layer with a changed specific gravity is used as WII.
Fi! The granular material is made into a sphere or a circular shape.

さらにはその長径を0,2〜3.0龍にしたので、特性
の向上およびその安定性を図ることができる。
Furthermore, since the major axis is set to 0.2 to 3.0 mm, it is possible to improve the characteristics and improve the stability.

また5本発明によれば、比重を変化させた多孔質層き、
この多孔質層よりも空孔率が小さい中実層とを層状にし
、さらには中実層が融合層で多孔質層とM着させ、さら
にはこの融合Iiiを非通気性としたので、吸音特性な
どを向−トできる。ま念。
Further, according to the present invention, the porous layer has a changed specific gravity,
This porous layer is layered with a solid layer that has a smaller porosity than the porous layer, and the solid layer is a fusion layer that is bonded to the porous layer, and furthermore, this fusion III is made non-air permeable, so it absorbs sound. Characteristics etc. can be adjusted. Sincerely.

層間が融育されているので複雑な材質にも対応できる多
孔質構造体を得ることができる。
Since the interlayers are fused, a porous structure that can be used with complex materials can be obtained.

また0本発明では、複数の、比重を変化させた多孔質層
き中実層とを組合せたので、多孔質構造体の適用分野を
拡大させることができる。
Furthermore, in the present invention, since a plurality of porous layers and solid layers having different specific gravity are combined, the field of application of the porous structure can be expanded.

また1本発明では、中実層の厚さを100ミクロン以下
のスキン層としたので、さらに吸音特性や断!!1特性
を向上させることができる。
In addition, in the present invention, since the solid layer is made into a skin layer with a thickness of 100 microns or less, it has even better sound absorption properties and insulation properties. ! 1 characteristic can be improved.

また1本発明では、比重を変化させた多孔質層の−I1
15面に、この多孔質よりも空孔率が小さい中実層を、
他IRff面に摩さ100ミクロン以下のスキン層を設
けたので、相乗的に特性向上が図れるとともに、場合に
よっては機器構造体としての機能を兼用させることがで
きる。
In addition, in the present invention, -I1 of the porous layer with varying specific gravity
On the 15th side, a solid layer with a smaller porosity than this porous layer,
Since a skin layer with a polishing thickness of 100 microns or less is provided on the other IRff surface, the characteristics can be synergistically improved, and in some cases, it can also serve as a device structure.

さらに1本発明では、比重を変化させた多孔質を構成す
る粒状素材を複数の異なる形状や材質にしたので、多孔
質構造体の4!#能を拡大させることができる。
Furthermore, in the present invention, the granular material constituting the porous structure with varying specific gravity is made of a plurality of different shapes and materials, so that the porous structure has a 4. #Capability can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)、(ロ)はそれぞt−本発明に係る多層材
(多孔質構造体)の模式的断面図、第2図は第1図に示
す多層材を吸音付きして用いた電気掃除機の要部断面図
、第3図および第4図はそれぞれ本発明に係る多孔質構
造体を製造する金型構成断面図、第5図は本発明に係る
第1の実施列の多孔質構造体の厚さに対する空孔率を示
す曲線図、第6図は第5図に空孔率曲線を示した多孔質
m遺体の垂直入射吸音率の特性曲線図、第1図は垂直入
射吸音率を測定するときの構成図、第8図は本発明に係
る第2の実施a]の多孔質構造体の厚さに対する空孔率
を示す曲線図、第9図は第8図に空孔率曲線を示した多
孔質構造体の垂直入射吸音率の特性曲#i1図、$10
図は本発明に係る第3の実施列の多孔質構造体の厚さに
対する空孔率を示す曲線図、第11図は第10図に空孔
率面#J5−示した多孔質構造体の垂直入射吸音率の特
性曲線図、第12図は多孔質層を形成する粒状素材の形
状を変えた場合の垂直入射吸音率の特性のバラツー#を
示す図。 第13図は粒状素材の直径と吸音率の関係を示す特性図
、第14図は本発明に係る層状の多孔質構造体を一部断
面で示す図、第15図は本発明に係る第4の実施列の多
孔質構造体の厚さに対する空孔率を示す曲線図、第16
図及び第1γ図は従来のものと第15図に空孔率曲線を
示した多孔質構造体との垂直入射吸音率の特性を比較す
る曲線図。 第18図は本発明に係るスキン層を有する多孔質構造体
の空孔率を示す曲線図、第19図は第18図に空孔率曲
線を示したスキン層を有する多孔質構造体の垂直入射吸
音率の特性曲線図、第2a図はスキン層の効果を説明す
るための多孔質構造体の音響モデル図、第21図ないし
第23図は本発明に係る任意層状の多孔質構造体を示す
断面図。 第24図は鉄粒入り多孔質構造体を製造するための金型
構成断面図、第25図は遮音特性を測定する特性測定図
、第261図は本発明に係る二種類の多孔質構造体の遮
音度特性曲線図である。 図中、(1)は多層材(多孔質構造体)、+21は融合
層(比重の大きい層、中実層)、t3)は多孔質層。 (4(はスキン層、a9け鉄粒、tUf!け樹脂粒であ
る。 なお1図中同一符号は同−又は相当部分を示す。 第1図 (イ) 第2図 (ロ) 第 図 第 図 梶 ポ蒼l 第 図 @川<&寥や@−7 ・四g」←杷 、bg登? @硼イ味翳槽晋寥 叫侘イ富惇や升? サンフ゛ル(ト号 第 図 粒状氷社長径 (mm) 喘鵬<騙寥や讐寥 第 図 堺褐イ載怪伽知? ゼH −丼? 第 図 洲偶7.詔が(1劃2 第 図 第 図 第 第 図 第 図 簗 図 0゜ 6に 32に 6.4に →龍枚 (Hz)
Figures 1 (A) and (B) are schematic cross-sectional views of the multilayer material (porous structure) according to the present invention, and Figure 2 shows the use of the multilayer material shown in Figure 1 with sound absorption. FIGS. 3 and 4 are sectional views of the main parts of a vacuum cleaner according to the present invention, respectively, and FIG. A curve diagram showing the porosity relative to the thickness of the porous structure. Figure 6 is a characteristic curve diagram of the normal incidence sound absorption coefficient of the porous body whose porosity curve is shown in Figure 5. Figure 1 is the vertical incidence sound absorption coefficient diagram. A configuration diagram when measuring the incident sound absorption coefficient, FIG. 8 is a curve diagram showing the porosity with respect to the thickness of the porous structure of the second embodiment a] according to the present invention, and FIG. Characteristic curve #i1 of normal incidence sound absorption coefficient of porous structure showing porosity curve, $10
The figure is a curve diagram showing the porosity versus the thickness of the porous structure of the third implementation row according to the present invention, and FIG. 11 is a curve diagram showing the porosity of the porous structure shown in FIG. FIG. 12 is a characteristic curve diagram of the normal incidence sound absorption coefficient; FIG. 12 is a diagram showing variations in the characteristic of the normal incidence sound absorption coefficient when the shape of the granular material forming the porous layer is changed; Fig. 13 is a characteristic diagram showing the relationship between the diameter of the granular material and the sound absorption coefficient, Fig. 14 is a partial cross-sectional view of the layered porous structure according to the present invention, and Fig. 15 is a characteristic diagram showing the relationship between the diameter of the granular material and the sound absorption coefficient. Curve diagram showing the porosity versus the thickness of the porous structure of the implementation row, No. 16
Figure 1 and Figure 1.gamma. are curve diagrams comparing the normal incidence sound absorption coefficient characteristics of the conventional porous structure and the porous structure whose porosity curve is shown in Figure 15. FIG. 18 is a curve diagram showing the porosity of the porous structure having a skin layer according to the present invention, and FIG. 19 is a vertical curve diagram of the porous structure having the skin layer whose porosity curve is shown in FIG. A characteristic curve diagram of the incident sound absorption coefficient, FIG. 2a is an acoustic model diagram of a porous structure for explaining the effect of the skin layer, and FIGS. 21 to 23 are diagrams showing the arbitrary layered porous structure according to the present invention. A sectional view shown. Fig. 24 is a sectional view of the mold configuration for manufacturing a porous structure containing iron particles, Fig. 25 is a characteristic measurement diagram for measuring sound insulation properties, and Fig. 261 is a diagram of two types of porous structures according to the present invention. It is a sound insulation degree characteristic curve diagram of. In the figure, (1) is a multilayer material (porous structure), +21 is a fusion layer (layer with high specific gravity, solid layer), and t3) is a porous layer. (4) is a skin layer, a9 iron grains, and tUf! resin grains. Note that the same reference numerals in Figure 1 indicate the same or corresponding parts. Figure 1 (A) Figure 2 (B) Figure 1 Diagram: Kaji Port Blue Diagram @ River <& Toya@-7 ・4g" ← Loquat, bg climb? President diameter (mm) Figure 0゜6 to 32 to 6.4 → Dragon piece (Hz)

Claims (10)

【特許請求の範囲】[Claims] (1)比重を、層の厚さ方向もしくは層の面方向に連続
的に変化させた多孔質層を有する多孔質構造体、
(1) A porous structure having a porous layer in which the specific gravity is continuously changed in the thickness direction or in the plane direction of the layer,
(2)多孔質層を構成する粒状表材を、球体もしくは楕
円体としたことを特徴とする請求項1記載の多孔質構造
体、
(2) The porous structure according to claim 1, wherein the granular surface material constituting the porous layer is spherical or ellipsoidal.
(3)粒状素材の長径を0.2〜3.0(mm)とした
ことを特徴とする請求項2記載の多孔質構造体。
(3) The porous structure according to claim 2, wherein the long axis of the granular material is 0.2 to 3.0 (mm).
(4)請求項1記載の多孔質層と、空孔率が前記多孔質
層よりも小さい中実層とを層状にしたことを特徴とする
多孔質構造体。
(4) A porous structure comprising the porous layer according to claim 1 and a solid layer having a smaller porosity than the porous layer.
(5)中実層が融合層で、多孔質層と融着していること
を特徴とする請求項4記載の多孔質構造体。
(5) The porous structure according to claim 4, wherein the solid layer is a fused layer and is fused to the porous layer.
(6)融合層を非通気性としたことを特徴とする請求項
5記載の多孔質構造体。
(6) The porous structure according to claim 5, wherein the fused layer is non-air permeable.
(7)複数の多孔質層と中実層とを組合せたことを特徴
とする請求項4記載の多孔質構造体。
(7) The porous structure according to claim 4, characterized in that a plurality of porous layers and a solid layer are combined.
(8)中実層を厚さ100ミクロン以下のスキン層とし
たことを特徴とする請求項4記載の多孔質構造体。
(8) The porous structure according to claim 4, wherein the solid layer is a skin layer having a thickness of 100 microns or less.
(9)請求項1記載の多孔質層の一側面に空孔率が前記
多孔質層よりも小さい中実層を、他側面に厚さ100ミ
クロン以下のスキン層を設けたことを特徴とする多孔質
構造体。
(9) The porous layer according to claim 1 is characterized in that a solid layer having a porosity smaller than that of the porous layer is provided on one side, and a skin layer having a thickness of 100 microns or less is provided on the other side. Porous structure.
(10)多孔質層を構成する粒状素材を、複数の異なる
形状や材質にしたことを特徴とする請求項1、4又は9
記載の多孔質構造体。
(10) Claim 1, 4 or 9, characterized in that the granular material constituting the porous layer has a plurality of different shapes and materials.
The porous structure described.
JP1110996A 1988-10-31 1989-04-28 Porous structure Expired - Fee Related JPH0818376B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP1110996A JPH0818376B2 (en) 1989-04-28 1989-04-28 Porous structure
EP19930112446 EP0578272B1 (en) 1988-10-31 1989-10-27 Porous structural unit
DE1989627806 DE68927806T2 (en) 1988-10-31 1989-10-27 Porous structure
EP19890119990 EP0368098B1 (en) 1988-10-31 1989-10-27 A porous structural unit and a method of preparing the same
SG1996000311A SG44423A1 (en) 1988-10-31 1989-10-27 A porous structural unit and a method of preparing the same
DE1989621548 DE68921548T2 (en) 1988-10-31 1989-10-27 Porous structure and process for its manufacture.
CA 2001757 CA2001757C (en) 1988-10-31 1989-10-30 Porous structural unit and a method of preparing the same
KR1019890015614A KR920003976B1 (en) 1988-10-31 1989-10-30 Porous structural unit and a method of preparing the same
US07/429,496 US5108833A (en) 1988-10-31 1989-10-31 Porous structural unit and a method of preparing the same
US07/721,243 US5143664A (en) 1988-10-31 1991-06-26 Method of preparing a porous structural unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110996A JPH0818376B2 (en) 1989-04-28 1989-04-28 Porous structure

Publications (2)

Publication Number Publication Date
JPH02289333A true JPH02289333A (en) 1990-11-29
JPH0818376B2 JPH0818376B2 (en) 1996-02-28

Family

ID=14549756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110996A Expired - Fee Related JPH0818376B2 (en) 1988-10-31 1989-04-28 Porous structure

Country Status (1)

Country Link
JP (1) JPH0818376B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261834A (en) * 1991-01-18 1992-09-17 Mitsubishi Electric Corp Manufacture of porous constructional body
US5432860A (en) * 1990-02-09 1995-07-11 Mitsubishi Denki Kabushiki Kaisha Speaker system
EP0700030A2 (en) 1994-08-31 1996-03-06 Mitsubishi Electric Home Appliance Co., Ltd Sound absorbing mechanism using a porous material
US5707718A (en) * 1995-09-12 1998-01-13 Mitsubishi Electric Home Appliance Co., Ltd. Porous-plastic bearing and method of manufacturing porous-plastic bearing
JPH1177836A (en) * 1997-09-11 1999-03-23 Matsushita Electric Ind Co Ltd Porous structural molded object and its production
JP2001527474A (en) * 1997-04-24 2001-12-25 ポーレックス テクノロジーズ コーポレーション Sintered porous plastic product and method of manufacturing the same
JP2005523808A (en) * 2002-04-23 2005-08-11 フレデレール インフラストラクチュルテクニック ゲーエムベーハー アンド シーオー.カーゲー Aerator
JP2007221052A (en) * 2006-02-20 2007-08-30 Komatsu Ltd Laser equipment
JP2009100840A (en) * 2007-10-22 2009-05-14 Panasonic Corp Electric blower and electric vacuum cleaner using it
JP2018200099A (en) * 2017-05-26 2018-12-20 株式会社デンソー Product with vibration propagation component and vehicular air conditioner
WO2020153376A1 (en) * 2019-01-21 2020-07-30 日東電工株式会社 Film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432860A (en) * 1990-02-09 1995-07-11 Mitsubishi Denki Kabushiki Kaisha Speaker system
JPH04261834A (en) * 1991-01-18 1992-09-17 Mitsubishi Electric Corp Manufacture of porous constructional body
JP2621664B2 (en) * 1991-01-18 1997-06-18 三菱電機株式会社 Method for producing porous structure
EP0700030A2 (en) 1994-08-31 1996-03-06 Mitsubishi Electric Home Appliance Co., Ltd Sound absorbing mechanism using a porous material
US5707718A (en) * 1995-09-12 1998-01-13 Mitsubishi Electric Home Appliance Co., Ltd. Porous-plastic bearing and method of manufacturing porous-plastic bearing
JP2001527474A (en) * 1997-04-24 2001-12-25 ポーレックス テクノロジーズ コーポレーション Sintered porous plastic product and method of manufacturing the same
JPH1177836A (en) * 1997-09-11 1999-03-23 Matsushita Electric Ind Co Ltd Porous structural molded object and its production
JP2005523808A (en) * 2002-04-23 2005-08-11 フレデレール インフラストラクチュルテクニック ゲーエムベーハー アンド シーオー.カーゲー Aerator
JP2007221052A (en) * 2006-02-20 2007-08-30 Komatsu Ltd Laser equipment
JP2009100840A (en) * 2007-10-22 2009-05-14 Panasonic Corp Electric blower and electric vacuum cleaner using it
JP2018200099A (en) * 2017-05-26 2018-12-20 株式会社デンソー Product with vibration propagation component and vehicular air conditioner
WO2020153376A1 (en) * 2019-01-21 2020-07-30 日東電工株式会社 Film
CN113329869A (en) * 2019-01-21 2021-08-31 日东电工株式会社 Film

Also Published As

Publication number Publication date
JPH0818376B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
KR920003976B1 (en) Porous structural unit and a method of preparing the same
US4615411A (en) Sound-insulated flow duct and process for the manufacture thereof
JPH02289333A (en) Porous structure
CN107804046B (en) A kind of composite material sound-deadening and noise-reducing sound lining and preparation method thereof
US4713277A (en) Foamed metal and method of producing same
JP4387367B2 (en) SOUND ABSORBING MATERIAL FOR VEHICLE OUTDOOR AND METHOD FOR PRODUCING THE SOUND ABSORBING MATERIAL FOR VEHICLE
US7661508B1 (en) Lightweight speaker enclosure
RU2155689C1 (en) Foamed plastic member for sound insulation of spaces
JPH06504631A (en) noise damping panel
JPH03295105A (en) Sound absorbing illumination device
IT8322859A1 (en) PROCEDURE FOR OBTAINING WITH A SINGLE MOLDING OPERATION OF DOUBLE WALL STRUCTURES FOR THE SOUNDPROOFING OF ENGINE VEHICLES IN GENERAL AND DOUBLE WALL STRUCTURE OBTAINED WITH THIS PROCEDURE
CN214144482U (en) Decorative board for architectural decoration
JP2508285B2 (en) Magnetic recording / reproducing device
JPH0379642A (en) Production of multilayered material
CN206273677U (en) A kind of helicopter noise-reducing sound-insulating panel
JPH0371795A (en) Television receiver
JP2018072525A (en) Multilayer soundproof material
CN213868389U (en) Effectual building acoustic celotex board keeps warm
JP2018192789A (en) Foam adhesion conjugate
JPH04266942A (en) Porous material and sound-absorbing panel
JPS5811122A (en) Manufacture for piled plate such as shutter
KR101293470B1 (en) Soundproofing material for vehicle
JP2018071149A (en) Heat insulation material for construction
JPH03122425A (en) Air conditioner
JPS62282925A (en) Manufacture of multilayer porous ceramic board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees