JPH02289267A - Core for catheter guide wire and catheter guide wire - Google Patents

Core for catheter guide wire and catheter guide wire

Info

Publication number
JPH02289267A
JPH02289267A JP1107857A JP10785789A JPH02289267A JP H02289267 A JPH02289267 A JP H02289267A JP 1107857 A JP1107857 A JP 1107857A JP 10785789 A JP10785789 A JP 10785789A JP H02289267 A JPH02289267 A JP H02289267A
Authority
JP
Japan
Prior art keywords
guide wire
core material
tip
catheter guide
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1107857A
Other languages
Japanese (ja)
Other versions
JPH048065B2 (en
Inventor
Kiyoshi Yamauchi
清 山内
Takahiro Kugo
久呉 高博
Yasuo Miyano
保男 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Tokin Corp
Original Assignee
Terumo Corp
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Tokin Corp filed Critical Terumo Corp
Priority to JP1107857A priority Critical patent/JPH02289267A/en
Priority to US07/515,591 priority patent/US5069226A/en
Priority to KR1019900005966A priority patent/KR940005307B1/en
Priority to EP90108097A priority patent/EP0395098B1/en
Priority to DE69007841T priority patent/DE69007841T2/en
Priority to AU54515/90A priority patent/AU623006B2/en
Publication of JPH02289267A publication Critical patent/JPH02289267A/en
Publication of JPH048065B2 publication Critical patent/JPH048065B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PURPOSE:To maintain ductility of a tip part at a body heat and to maintain rigidity of a substrate part at a high value by a method wherein the tip part and the substrate part have substantially the same composition component as that by which a Ti.Ni series alloy is formed, and the annealing temperature of the tip part is different from that of the substrate part. CONSTITUTION:A tip part and a substrate part have substantially the same composition component as that by which a Ti-Ni series alloy is formed. The composition component contains 50.3-52.0at% in atomic percent and balancing Ti, and the annealing temperature of the tip part is different from that of the substrate part. Namely, in the tip part, heat treatment of 400-500 deg.C is substantially applied on the Ti.Ni series alloy, and in the substrate part, heat treatment of 400 deg.C or less is applied. This constitution provides the core of a catheter in which the tip part maintains ductility at a body heat (37 deg.C) or less and meanwhile the substrate part maintains rigidity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、医科用器具であるカテーテルガイドワイヤの
芯材及びカテーテルガイドワイヤに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a core material of a catheter guide wire, which is a medical instrument, and a catheter guide wire.

[従来の技術] 一般に、カテーテルガイドワイヤは、血管部位から穿刺
したセルデインガー針により血管内に導入された後、セ
ルデインガー針をガイドワイヤから取外し、ガイドワイ
ヤの後端にカテーテルを取付けて、生体の脈管、特に血
管内の目的部位までカテーテルに先行してカテーテルを
案内するために用いられる医科用器具である。
[Prior Art] In general, a catheter guidewire is introduced into a blood vessel by a Seldinger needle punctured from a blood vessel site, and then the Seldinger needle is removed from the guidewire, a catheter is attached to the rear end of the guidewire, and the pulse of the living body is measured. A medical device used to guide a catheter in advance of a catheter to a target site within a vessel, particularly a blood vessel.

このため、カテーテルガイドワイヤの芯材は。For this reason, the core material of the catheter guide wire.

!、12雑な形状を呈する先端部と、線状形状を呈する
基質部とから構成され、また、生体温度(約37℃)に
おいて、血管への導入・移動時に発生する捻りを含む変
形応力の荷重・除去に伴う可逆的なエネルギーの吸収・
放出及び可逆的な形状の変形・回復が可能な弾性特性を
有することが必要とされることから、一般に、Ti−N
i系合金を基本素材としている。
! , 12 It is composed of a tip section with a rough shape and a matrix section with a linear shape, and also has a deformation stress load including twisting that occurs during introduction and movement into blood vessels at biological temperature (approximately 37 degrees Celsius).・Reversible energy absorption associated with removal・
Generally, Ti-N is required to have elastic properties that enable release and reversible shape deformation and recovery.
The basic material is i-based alloy.

しかし、上述の単なる弾性特性を有するT1Ni系合金
素材を芯材として用いるカテーテルガイドワイヤでは、
伸び変形等の増加と共に、その変形に必要な荷重がほぼ
直線的に増加してしまうため、血管内への導入作業等が
一定応力で行え得ず、医者や患者の双方にとって生理的
苦痛等を与えてしまう欠点があった。
However, in catheter guide wires that use the above-mentioned T1Ni alloy material with simple elastic properties as a core material,
As elongation deformation increases, the load required for the deformation increases almost linearly, making it impossible to perform operations such as intravascular introduction with constant stress, which causes physiological pain for both doctors and patients. It had the disadvantage of giving away.

そこで、従来では、Ti−Ni系合金を1通常30〜4
096の冷間加工を施した後、400〜500℃の熱処
理を施すことにより、改良した焼鈍材を生成し、これに
より1体内(約37℃)において、一定応力によっても
伸び変形等の増加を示しく以下、超弾性特性という)、
可逆的なエネルギーの吸収・放出及び可逆的な形状の変
形・回復を行えるカテーテルガイドワイヤの芯材を得て
いたく特開昭83−171570号公報)。
Therefore, conventionally, Ti-Ni alloy is usually 30 to 4
After performing the cold working of 096, heat treatment at 400-500℃ produces an improved annealed material, which prevents increases in elongation deformation etc. even under constant stress in one body (approximately 37℃). (hereinafter referred to as superelastic properties),
It was desired to obtain a core material for a catheter guide wire that can reversibly absorb and release energy and reversibly deform and recover its shape (Japanese Patent Application Laid-open No. 83-171570).

[発明が解決しようとする課題] しかしながら、従来のTi−Ni系合金の焼鈍材を用い
たカテーテルガイドワイヤの芯材では。
[Problems to be Solved by the Invention] However, the core material of the catheter guide wire using the conventional annealed Ti-Ni alloy material.

ステンレス線を用いた芯材と比較すると、その剛性が約
1/2程度と低く、筋向の収縮等の応力に抗してカテー
テルを人体内の所望の部位に導くことが困難であるとい
う欠点があった。
Compared to a core material made of stainless steel wire, its rigidity is about 1/2 lower, making it difficult to guide the catheter to the desired site within the human body against stress such as muscle contraction. was there.

また、芯材の先端部に従来のTi−Ni系合金の焼鈍材
を用いて超弾性特性を持たせると共に。
In addition, a conventional Ti-Ni alloy annealed material is used at the tip of the core material to impart superelastic properties.

その基質部にはステンレス線等を用いて高い剛性を持た
せて、これらを−本の芯材として接続したとしても、芯
材の先端部及び基質部をそれぞれ個別に製造し、且つ、
先端部及び基質部をわざわざ互いに接続する繁雑さがあ
るばかりか1組成成分が互いに異なるため、焼鈍材とス
テンレス線との接合強度を高める必要性があり、かしめ
等の機械的な拘束をも必要とする欠点がある。
Even if the substrate part is made of stainless steel wire or the like to provide high rigidity and these are connected as a core material, the tip of the core material and the substrate part are manufactured separately, and
Not only is it complicated to connect the tip and substrate parts to each other, but one composition component is different from each other, so it is necessary to increase the bonding strength between the annealed material and the stainless steel wire, and mechanical restraint such as caulking is also required. There is a drawback that.

一方、従来のTi−Ni系合金の焼鈍材では。On the other hand, in the conventional annealed Ti-Ni alloy material.

(11に超弾性特性を持たせたに過ぎないことから。(This is because 11 is simply given superelastic properties.

却って、ガイドワイヤの芯材の先端部を、目的部位に応
じて所用の形状に曲げることができず、臨床に即応した
先端部の形状付けが困難となり、このため、わざわざ何
種類かの線形状を持つカテーテルガイドワイヤの芯材を
予め準備していなければならないという欠点があった。
On the contrary, it is not possible to bend the tip of the guidewire core material into the desired shape depending on the target area, making it difficult to shape the tip in a manner that is responsive to clinical practice. There was a drawback in that the core material of the catheter guide wire with a diameter had to be prepared in advance.

そこで1本発明の第1の技術的課題は、上記欠点に鑑み
、カテーテルガイドワイヤの芯材の先端部と基質部とを
一々別個に製造し接続する工程を不要とし、実質的に同
一の組成成分をもって、先端部と基質部とを一体に形成
し、かつ、少なくとも体温(37℃)下で先端部をしな
やかさを持たせる一方、基質部には高い剛性を維持させ
たカテーテルガイドワイヤの芯材を提供することである
In view of the above-mentioned drawbacks, the first technical problem of the present invention is to eliminate the need for the step of separately manufacturing and connecting the distal end portion of the core material and the substrate portion of the catheter guide wire, and to make the distal end portion of the core material and the substrate portion of the catheter guide wire have substantially the same composition. The core of the catheter guidewire has a tip part and a matrix part that are integrally formed with a component, and the tip part is made flexible at least at body temperature (37°C), while the matrix part maintains high rigidity. It is to provide materials.

また1本発明の第2の技術的課題は、上記第1の技術的
課題に加えて、さらに、ガイドワイヤの芯材の先端部を
目的部位に応じて、所用の形状に曲げることができ1且
つ、臨床上で使用される熱湯等の80℃の環境下におい
ても、その変形形状を維持できる可塑性を有する加工性
に優れたカテーテルガイドワイヤの芯材を提供すること
である。
In addition to the first technical problem described above, the second technical problem of the present invention is that the tip of the core material of the guide wire can be bent into a desired shape depending on the target area. Another object of the present invention is to provide a core material for a catheter guide wire that has excellent workability and has plasticity that can maintain its deformed shape even in an environment of 80° C. such as hot water used clinically.

[課題を解決するための手段] 本発明によれば、互いに一体に構成された先端部と基質
部とををするカテーテルガイドワイヤの芯材であって、
前記先端部及びにTi−Ni系合金を構成する実質的に
同一の組成成分を有し、前記T1・Ni系合金を構成す
る組成成分は、原子パーセントで、 N i 50.3
〜52.Oat%。
[Means for Solving the Problems] According to the present invention, there is provided a core material of a catheter guide wire having a distal end portion and a substrate portion integrally formed with each other,
The tip portion has substantially the same compositional components constituting a Ti-Ni alloy, and the compositional components constituting the T1 Ni-based alloy are, in atomic percent, N i 50.3
~52. Oat%.

残部Tiを含み、前記先端部及び前記基質部の焼鈍温度
を互いに変えて成ることを特徴とするカテーテルガイド
ワイヤの芯材が得られる。
A core material for a catheter guide wire is obtained, which contains a remainder of Ti and is characterized in that the annealing temperatures of the distal end portion and the substrate portion are different from each other.

また1本発明によれば、前記先端部は、前記Ti−Ni
系合金に実質的に400〜500℃の熱処理を施して成
り、他方、基質部は400〜500℃の熱処理を施して
成ることを特徴とするカテーテルガイドワイヤの芯材が
得られる。
Further, according to one aspect of the present invention, the tip portion is formed of the Ti-Ni
A core material for a catheter guide wire is obtained, which is characterized in that the base alloy is substantially heat-treated at 400-500°C, and the substrate portion is heat-treated at 400-500°C.

また 本発明によれば、前記先端部は、前記T・Ni系
合金に実質的に700℃以上の熱処理を施して成り、実
質的に、37℃で超弾性特性を有し、且つ、80℃以下
における形状変形に対しても可塑性を有することを特徴
とするカテーテルガイドワイヤの芯材が得られる。
Further, according to the present invention, the tip portion is formed by subjecting the T/Ni alloy to a heat treatment of substantially 700°C or higher, has substantially superelastic properties at 37°C, and has superelastic properties at 80°C. A core material for a catheter guide wire is obtained, which is characterized by having plasticity even when the shape is deformed as described below.

また、本発明によれば、前記芯材に2合成樹脂を彼覆し
てなることを特徴とするカテーテルガイドワイヤが得ら
れる。
Further, according to the present invention, there is obtained a catheter guide wire characterized in that the core material is covered with two synthetic resins.

ここで、T1・Ni系合金のうち、Ntを50.3aL
%以上としたのは1時効処理による中間相変態が50.
3aL%未満では得難く1 また、実質的に700℃(
600〜1000℃)の熱処理による37℃での塑性変
形を受は難くなり1従来の形状記憶領域を脱し得ないた
めである。また、N1を52,031%未満としたのは
、 52.0at%を越えると、加工性が悪くなり、実
用上の問題があるからである。
Here, of the T1/Ni alloy, Nt is 50.3aL
% or more means that the intermediate phase transformation due to aging treatment is 50% or more.
At less than 3aL%, it is difficult to obtain 1 In addition, substantially 700℃ (
This is because it becomes difficult to undergo plastic deformation at 37°C due to heat treatment at 600 to 1000°C, and cannot escape from the conventional shape memory region. Further, the reason why N1 is set to be less than 52,031% is because if it exceeds 52.0 at%, workability deteriorates and there is a practical problem.

[実施例] 次に1本発明の実施例を図面を参照して説明する。[Example] Next, an embodiment of the present invention will be described with reference to the drawings.

一第1実施例− 本実施例においては1体温(37℃)下で、先端部にし
なやかさを維持させる一方、基質部には剛性を維持させ
たカテーテルガイドワイヤの芯材の一実施例を説明する
1. First Example - In this example, an example of the core material of a catheter guide wire is constructed in which the tip part maintains flexibility while the substrate part maintains rigidity under body temperature (37°C). explain.

■準備工程 まず、原子パーセントで、Ni51at%、残部Tiか
らなるTi−Ni系合金を、高周波真空溶解によって得
た。なお、アーク溶解法、電子ビーム溶解法、或は粉末
冶金法によっても構わない。
(2) Preparation Step First, a Ti--Ni alloy consisting of 51 atomic percent Ni and the balance Ti was obtained by high-frequency vacuum melting. Note that an arc melting method, an electron beam melting method, or a powder metallurgy method may also be used.

得られたTi−Ni系合金を、900〜1000℃で溶
体化処理後、約900℃で熱間鍛造、熱間圧延を施し、
その後、冷間加工(最終冷間加工率50%)により、0
.5+uφのサイズの線材に加工した。
The obtained Ti-Ni alloy was solution treated at 900 to 1000°C, then hot forged and hot rolled at about 900°C,
Then, by cold working (final cold working rate 50%), 0
.. It was processed into a wire rod with a size of 5+uφ.

(の直線処理工程(基質部処理工程) 熱矯正のために、得られた0、5mmφのサイズの線材
の全体に渡って、300℃で5分間の直線処理を連続的
に行い、直線性を施した。
(Straight line treatment process (substrate part treatment process) For thermal straightening, straight line treatment was continuously performed for 5 minutes at 300°C over the entire 0.5 mm diameter wire to improve the straightness. provided.

■超弾性処理工程(先端部処理工程) 得られた線材を2m寸法に切断し、断面から約50n長
のみを、約400℃に維持されたソルトバス中に10分
間保持して熱処理を施した後急冷し、これを先端部とし
た。
■Superelasticity treatment process (tip treatment process) The obtained wire was cut into 2m lengths, and only the approximately 50n length from the cross section was heat treated by holding it in a salt bath maintained at approximately 400°C for 10 minutes. It was then rapidly cooled and used as the tip.

■超弾性特性試験 線材の先端部(No、2)と、その残部を基質部(k 
1 )とし、各部位の体温(37℃)下における応力−
ひずみ曲線を測定した。なお、比較例として、1.8−
8ステン1ノス線(No、 4 )をも測定した。その
結果を第1図に示す。
■Superelastic property test The tip part (No. 2) of the wire rod and the remaining part are
1), and the stress of each part under body temperature (37℃) -
Strain curves were measured. In addition, as a comparative example, 1.8-
An 8-sten 1-noss wire (No. 4) was also measured. The results are shown in FIG.

その結果、基質部(No、1)の試料では、100kg
f/mm2を越える応力値を示し、18−8ステンレス
線(魔4)よりも高い値となっている。−方、先端部(
磁2)では、1%のひずみで明瞭な降伏(応力値60k
gf/mm2)を示し、極めて優れた超弾性特性を有し
ていることを示している。
As a result, in the sample of the substrate part (No. 1), 100 kg
It shows a stress value exceeding f/mm2, which is higher than that of 18-8 stainless steel wire (magic 4). - side, tip (
Magnetic 2) has a clear yield (stress value of 60k) at 1% strain.
gf/mm2), indicating that it has extremely excellent superelastic properties.

これにより、しなやかな超弾性特性と18−8ステンレ
ス線よりも高い剛性との互いに異なる材料特性を、同一
の組成成分からなる一本の線材に持たせることが可能と
なった。
This has made it possible to provide a single wire made of the same composition with mutually different material properties, such as supple superelasticity and higher rigidity than 18-8 stainless steel wire.

なお、上記■直線処理工程における300℃の熱処理は
、単なる熱矯正を目的として行われたものであることか
ら、冷間加工仕上りで直線性が得られていれば、基質部
の熱処理は不要であることは当然である。
Note that the heat treatment at 300°C in the straight line treatment process mentioned above was carried out solely for the purpose of heat straightening, so if straightness is achieved in the cold worked finish, heat treatment of the substrate is not necessary. Of course there is.

また、先端部の超弾性処理工程における400℃の熱処
理は、400〜500℃の範囲内であればよい。尚、熱
処理温度が高くなるに従い、その処理時間を短くする必
要がある。
Further, the heat treatment at 400°C in the superelasticity treatment step for the tip portion may be performed within the range of 400 to 500°C. Note that as the heat treatment temperature increases, it is necessary to shorten the treatment time.

一第2実施例− 第1実施例と同様に、■学術工程及び■直線処理工程(
基質部処理工程)までを経た線材を用いて、以下の超弾
性処理工程(先端部処理工程)を施した。
1.2nd Example--Similar to the 1st Example, ■Academic process and ■Linear processing process (
The following superelasticity treatment step (tip portion treatment step) was performed using the wire that had undergone the steps up to the substrate portion treatment step).

まず、得られた線材を2m寸法に切断輻、端面から約5
0 mm長のみを、約700℃に保持されたソルトバス
中に2分間保持した後急冷し、これを先端部(魔3)と
した。
First, cut the obtained wire into a 2m dimension with a radius of approximately 5mm from the end surface.
Only the 0 mm length was held in a salt bath maintained at about 700° C. for 2 minutes, and then rapidly cooled, and this was used as the tip (3).

次に、線材の先端部(Na3)の体温(37℃)下にお
ける応力−ひずみ曲線を測定した。その結果を第1図に
示す。
Next, the stress-strain curve of the tip (Na3) of the wire at body temperature (37° C.) was measured. The results are shown in FIG.

その結果、700℃処理の先端部(Nα3)の試料は、
1%のひずみでは若干の塑性変形しか示さず、却って1
8−8ステンレス線の塑性変形量(gc留ひずみ)より
も少なく2第1実施例の先端部(No、 2 )と同様
に1%程度のひずみからの降伏も認められることから、
超弾性特性を有していることが分かる。
As a result, the sample at the tip (Nα3) treated at 700°C was
At a strain of 1%, only a slight plastic deformation was observed;
It is smaller than the amount of plastic deformation (gc residual strain) of the 8-8 stainless steel wire, and similar to the tip part (No. 2) of the first example, yielding is also observed from about 1% strain.
It can be seen that it has superelastic properties.

一方、3%以上のひずみを付加する強変形状態において
は、700℃処理の先端部(魔3)の試料が、大きく塑
性変形量を残していることが認められた。
On the other hand, in a strongly deformed state where a strain of 3% or more is applied, it was observed that the sample at the tip (3) treated at 700°C retained a large amount of plastic deformation.

このことから、可塑性に優れた700℃処理の先端部(
No、 3 )の試料を、カテーテルガイドワイヤの芯
材の先端部に使用することにより、臨床に応じた任意の
形状に変形加工することができることが分かる。
From this, the tip part treated at 700°C, which has excellent plasticity (
It can be seen that by using the sample No. 3) for the tip of the core material of a catheter guide wire, it can be deformed into any shape suitable for clinical use.

一第3実施例− 第2実施例と同様の方法で得られたカテーテルガイドワ
イヤの芯材の先端部をテーバリングするため、化学処理
(フッ酸)によって先端を細めた後、その全長に合成樹
脂で被覆する。
1. Third Example - In order to taper the tip of the core material of a catheter guide wire obtained by the same method as in the second example, the tip was thinned by chemical treatment (hydrofluoric acid), and then the entire length was made of synthetic resin. Cover with

合成樹脂被膜4は、第3図に示すように、先端部を含め
てほぼ均一の外径を有している。特に。
As shown in FIG. 3, the synthetic resin coating 4 has a substantially uniform outer diameter including the tip. especially.

この合成樹脂被膜4は、はぼ均一の外径となっている。This synthetic resin coating 4 has a nearly uniform outer diameter.

合成樹脂被膜4としては、ポリエチレン。The synthetic resin coating 4 is made of polyethylene.

ポリ塩化ビニル、ポリエステル、ポリプロピレンポリア
ミド、ポリウレタン、ポリスチレン、フッ素樹脂、シリ
コンゴムもしくは各々のエラストマーおよび複合材料等
が好適に使用される。そして。
Polyvinyl chloride, polyester, polypropylene polyamide, polyurethane, polystyrene, fluororesin, silicone rubber, or their respective elastomers and composite materials are preferably used. and.

合成樹脂被膜4は、内芯2の湾曲の妨げにならない程度
に柔軟であり、外表面は凹凸のない滑らかな表面となっ
ていることが好ましい。また1合成樹脂被膜4には、ヘ
パリン、ウロキナーゼ等の抗凝固剤もしくはシリコーン
ゴム、ウレタンとシリコーンのブロック共重合体く登録
商標 アブコサン)、ヒドロキシエチルメタクリレート
−スチレン共重合体等の抗血栓材料をコーティングして
もよい。また1合成樹脂被膜4をフッ素樹脂等の低摩擦
表面を有する樹脂により形成すること、また合成樹脂被
膜4の外表面にシリコーンオイル等潤滑液塗布によって
、ガイドワイヤー1の摩擦性を低下させてもよい。さら
に1合成樹脂被膜4を形成する合成樹脂中に、Ba、W
、Bi、Pb等の金属単体もしくは化合物による微粉末
状のX線造影性物質を混入することが好ましく、このよ
うにすることにより血管内に導入中のガイドワイヤー1
の全体の位置確認が容易となる。合成樹脂被膜4は、上
述のように、はぼ均一の外径を有している。はぼ均一と
は、完全に均一なものに限らず若干先端部が細径となっ
ていてもよい。このように。
It is preferable that the synthetic resin coating 4 is flexible enough not to interfere with the curvature of the inner core 2, and has a smooth outer surface with no irregularities. In addition, the synthetic resin coating 4 is coated with an anticoagulant such as heparin or urokinase, or an antithrombotic material such as silicone rubber, a block copolymer of urethane and silicone (registered trademark Abcosan), or hydroxyethyl methacrylate-styrene copolymer. You may. Furthermore, the friction properties of the guide wire 1 may be reduced by forming the synthetic resin coating 4 from a resin having a low friction surface such as fluororesin, or by applying a lubricant such as silicone oil to the outer surface of the synthetic resin coating 4. good. Furthermore, in the synthetic resin forming the synthetic resin coating 4, Ba, W
It is preferable to mix a finely powdered X-ray contrast substance made of a single metal or a compound such as Bi, Pb, etc. By doing this, the guide wire 1 being introduced into the blood vessel is
It becomes easy to confirm the overall position of the As mentioned above, the synthetic resin coating 4 has a fairly uniform outer diameter. The term ``uniform'' does not mean that the tip is completely uniform, but may be slightly narrower at the tip. in this way.

先端部までをほぼ均一とすることにより、ガイドワイヤ
ーの先端が血管内壁に与える虞れのある損傷を少なくす
ることができる。
By making the guide wire substantially uniform up to the tip, damage that the tip of the guide wire may cause to the inner wall of the blood vessel can be reduced.

合成樹脂被膜の外径は、 0.25〜1.04mm、好
ましくはOJO〜0.84mm、芯材2の本体部2a上
での肉厚は、 0.03〜0.30市、好ましくは0.
05〜0.20mmである。
The outer diameter of the synthetic resin coating is 0.25 to 1.04 mm, preferably OJO to 0.84 mm, and the wall thickness of the core material 2 on the main body 2a is 0.03 to 0.30 mm, preferably 0. ..
05 to 0.20 mm.

また1合成樹脂被膜4は1合成樹脂により、内芯2に対
し、密着状態に被着され、内芯2の先端部および基質部
においても、固着されていることが好ましい。また1合
成樹脂被膜4を中空管で形成し、内芯2の先端部および
基端部または1内芯の適当な部分で、内芯2と接着もし
くは溶融成形により固定してもよい。そして、ガイドワ
イヤー1の先端(合成樹脂被膜4の先端)は、血管壁の
損傷の防止、さらにガイドワイヤー1の操作性向上のた
めに、第3図に示すように半球状等の曲面となっている
ことが好ましい。
Further, it is preferable that the synthetic resin coating 4 is tightly adhered to the inner core 2 by the synthetic resin, and is also fixed to the distal end portion and the substrate portion of the inner core 2. Alternatively, one synthetic resin coating 4 may be formed of a hollow tube and fixed to the inner core 2 at the distal and proximal ends of the inner core 2 or at an appropriate portion of the inner core 1 by adhesion or melt molding. The tip of the guide wire 1 (the tip of the synthetic resin coating 4) has a curved surface such as a hemispherical shape as shown in FIG. 3 in order to prevent damage to the blood vessel wall and improve the operability of the guide wire 1. It is preferable that

さらに1合成樹脂被M4の表面に潤滑性物質が固定され
ていることが好ましい。潤滑性物質とは。
Furthermore, it is preferable that a lubricating substance is fixed to the surface of the first synthetic resin covering M4. What is a lubricating substance?

湿潤時に潤滑性を有する物質をいう。具体的には。A substance that has lubricating properties when wet. in particular.

水溶性高分子物質またはその誘導体がある。There are water-soluble polymer substances or their derivatives.

即ち1本実施例のガイドワイヤーの芯材2として、全長
が1.800+u、先端の直径が0.06m1.後端の
直径が0.25關で、先端から120順が先端に向って
テーパー状に縮径しているものを作成した。
That is, the core material 2 of the guide wire in this embodiment has a total length of 1.800+u and a tip diameter of 0.06 m1. The diameter of the rear end was about 0.25 mm, and the diameter was tapered from the tip toward the tip by 120 mm.

さらに芯材全体の外面に、タングステン微粉末(拉径約
3〜4μI1)を45重量%含有するポリウレタンを全
体外径がほぼ均一になるように被覆し1合成樹脂被膜を
形成させた。そして、テトラヒドロフランに5.0 f
fllu%となるように無水マレイン酸エチルエステル
共重合体を溶解した溶液を。
Further, the entire outer surface of the core material was coated with polyurethane containing 45% by weight of fine tungsten powder (diameter of about 3 to 4 .mu.I1) so that the overall outer diameter was approximately uniform to form a synthetic resin coating. and 5.0 f in tetrahydrofuran
A solution in which maleic anhydride ethyl ester copolymer was dissolved so that the amount was 10%.

上記のポリウレタンにより形成された合成樹脂被膜の表
面にx ’/li L 、無水マレイン酸エチルエステ
ル共重合体重合体を固定し、潤滑性表面を形成させた。
x'/li L and a maleic anhydride ethyl ester copolymer were fixed on the surface of the synthetic resin film formed from the above polyurethane to form a lubricating surface.

このガイドワイヤーは、全体の長さが約1800關。The total length of this guide wire is approximately 1800 mm.

全体の直径が0 、36 msである。The overall diameter is 0.36 ms.

[発明の効果コ 以上の説明から分かるように、本発明によればTi−N
i系合金を構成する実質的に同一の組成成分を用いて、
カテーテルガイドワイヤの芯材の先端部と基質部とを構
成したから、先端部と基質部とを一々別個に製造し接続
する工程を不要とし、先端部と基質部とを一体形成し、
少なくとも体温(37℃)下で、先端部にのみしなやか
さを維持させる一方、基質部はTi・Ni系合金自体の
剛性を維持させたカテーテルガイドワイヤの芯材を提供
することができる。
[Effects of the invention] As can be seen from the above explanation, according to the present invention, Ti-N
Using substantially the same compositional components constituting the i-based alloy,
Since the tip of the core material of the catheter guide wire and the substrate are configured, there is no need to separately manufacture and connect the tip and the substrate, and the tip and the substrate can be integrally formed.
At least under body temperature (37° C.), only the tip portion maintains flexibility while the substrate portion maintains the rigidity of the Ti/Ni alloy itself, making it possible to provide a core material for a catheter guidewire.

また、本発明によれば、先端部のみを700℃以上の温
度で焼鈍したから、ガイドワイヤの芯材の先端部を目的
部位に応じて、所用の形状に曲げることができ、且つ、
臨床上で使用される熱湯等の80℃の環境下においても
、その変形形状を維持できる可塑性を有する加工性に優
れたカテーテルガイドワイヤの芯材及びカテーテルガイ
ドワイヤを提供することができる。
Further, according to the present invention, since only the tip portion is annealed at a temperature of 700° C. or higher, the tip portion of the core material of the guidewire can be bent into a desired shape depending on the target area, and
It is possible to provide a catheter guide wire core material and a catheter guide wire that have excellent workability and have plasticity that can maintain their deformed shape even in an environment of 80° C. such as hot water used clinically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Ni51at%のTi−Ni系合金の引っ張
り時の応力下の体温(37℃)で測定された応力−ひず
み曲線を示す図、第2図は本発明の実施例に係る合成樹
脂で被覆されたカテーテルガイドワイヤの断面図、であ
る。 NO,1・・・本発明の第1実施例に関わる基質部、N
α2・・・本発明の第1実施例に関わる300℃×10
分間の熱処理を施された先端部、Na3・・・本発明の
第1実施例に関わる700℃×2分間の熱処理を施され
た先端部、1・・・カテーテルガイドワイヤ。 2・・・内芯、2a・・・芯材本体部、4・・・合成樹
脂被膜。 第1図 ひずみ
FIG. 1 is a diagram showing a stress-strain curve measured at body temperature (37°C) under stress during tension of a Ti-Ni alloy containing 51 at% Ni, and FIG. 2 is a diagram showing a synthetic resin according to an example of the present invention. FIG. 2 is a cross-sectional view of a catheter guide wire coated with. NO, 1... Substrate part related to the first embodiment of the present invention, N
α2...300°C x 10 related to the first embodiment of the present invention
Tip portion subjected to heat treatment for 2 minutes, Na3... Tip portion subjected to heat treatment at 700° C. for 2 minutes related to the first embodiment of the present invention, 1... Catheter guide wire. 2... Inner core, 2a... Core main body, 4... Synthetic resin coating. Figure 1 Strain

Claims (1)

【特許請求の範囲】 1)互いに一体に構成された先端部と基質部とを有する
カテーテルガイドワイヤの芯材であって、前記先端部及
び前記基質部は、Ti・Ni系合金を構成する実質的に
同一の組成成分を有し、前記Ti・Ni系合金を構成す
る組成成分は、原子パーセントで、Ni50.3〜52
.0at%、残部Tiを含み、 前記Ti・Ni系合金の焼鈍温度が前記先端部と基質部
とで異なることを特徴とするカテーテルガイドワイヤの
芯材。 2)第1請求項記載のカテーテルガイドワイヤの芯材に
おいて、 前記先端部は、前記Ti・Ni系合金に実質的に400
〜500℃の熱処理を施して成り、他方、前記基質部は
、400℃未満の熱処理を施して成ることを特徴とする
カテーテルガイドワイヤの芯材。 3)第1請求項記載のカテーテルガイドワイヤの芯材に
おいて、 前記先端部は、前記Ti・Ni系合金に実質的に700
℃以上の熱処理を施して成り、実質的に、37℃で超弾
性特性を有し、且つ、80℃以下における形状変形に対
しても可塑性を有することを特徴とするカテーテルガイ
ドワイヤの芯材。 4)第1〜第3請求項記載のいずれかの前記芯材に、合
成樹脂を被覆してなることを特徴とするカテーテルガイ
ドワイヤ。
[Scope of Claims] 1) A core material of a catheter guide wire having a distal end portion and a matrix portion that are integrally formed with each other, wherein the distal end portion and the matrix portion are made of a substantially Ti-Ni based alloy. The compositional components constituting the Ti/Ni alloy are Ni50.3-52 in atomic percent.
.. A core material for a catheter guide wire, comprising 0 at% and the remainder Ti, wherein the annealing temperature of the Ti/Ni alloy is different between the distal end portion and the substrate portion. 2) In the core material of the catheter guide wire according to claim 1, the tip portion is made of substantially 400% of the Ti/Ni alloy.
A core material for a catheter guide wire, characterized in that the substrate portion is heat-treated at a temperature of ~500°C, and the substrate portion is heat-treated at a temperature of less than 400°C. 3) In the core material of the catheter guide wire according to claim 1, the tip portion is made of substantially 700% of the Ti/Ni alloy.
1. A core material for a catheter guide wire, characterized in that the core material is heat-treated at a temperature of 37° C. or higher, has superelastic properties at 37° C., and has plasticity against shape deformation at 80° C. or lower. 4) A catheter guide wire characterized in that the core material according to any one of claims 1 to 3 is coated with a synthetic resin.
JP1107857A 1989-04-28 1989-04-28 Core for catheter guide wire and catheter guide wire Granted JPH02289267A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1107857A JPH02289267A (en) 1989-04-28 1989-04-28 Core for catheter guide wire and catheter guide wire
US07/515,591 US5069226A (en) 1989-04-28 1990-04-27 Catheter guidewire with pseudo elastic shape memory alloy
KR1019900005966A KR940005307B1 (en) 1989-04-28 1990-04-27 Readily operable catheter guide wire using shape memory alloy with pseudo elasticity
EP90108097A EP0395098B1 (en) 1989-04-28 1990-04-27 Readily operable catheter guide wire using shape memory alloy with pseudo elasticity
DE69007841T DE69007841T2 (en) 1989-04-28 1990-04-27 Rapidly operational guidewire for catheters using a memory alloy with pseudo-elasticity.
AU54515/90A AU623006B2 (en) 1989-04-28 1990-04-30 Readily operable catheter guide wire using shape memory alloy with pseudo elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107857A JPH02289267A (en) 1989-04-28 1989-04-28 Core for catheter guide wire and catheter guide wire

Publications (2)

Publication Number Publication Date
JPH02289267A true JPH02289267A (en) 1990-11-29
JPH048065B2 JPH048065B2 (en) 1992-02-13

Family

ID=14469826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107857A Granted JPH02289267A (en) 1989-04-28 1989-04-28 Core for catheter guide wire and catheter guide wire

Country Status (1)

Country Link
JP (1) JPH02289267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324144U (en) * 1989-07-18 1991-03-13
WO2009119386A1 (en) * 2008-03-27 2009-10-01 テルモ株式会社 Guide wire
WO2023120406A1 (en) * 2021-12-22 2023-06-29 朝日インテック株式会社 Guide wire and method for manufacturing guide wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324144U (en) * 1989-07-18 1991-03-13
WO2009119386A1 (en) * 2008-03-27 2009-10-01 テルモ株式会社 Guide wire
US8360996B2 (en) 2008-03-27 2013-01-29 Terumo Kabushiki Kaisha Guide wire
WO2023120406A1 (en) * 2021-12-22 2023-06-29 朝日インテック株式会社 Guide wire and method for manufacturing guide wire

Also Published As

Publication number Publication date
JPH048065B2 (en) 1992-02-13

Similar Documents

Publication Publication Date Title
EP0395098B1 (en) Readily operable catheter guide wire using shape memory alloy with pseudo elasticity
EP0480427B1 (en) Guide wire for a catheter
EP2143460B1 (en) Guide wire and stent
US6258182B1 (en) Pseudoelastic β titanium alloy and uses therefor
JP2540211B2 (en) Guide wire
US20030120181A1 (en) Work-hardened pseudoelastic guide wires
JP2003516203A (en) Guide wire made of NITI alloy
JPH0331472B2 (en)
JP3725900B2 (en) Guide wire with superelastic distal portion
JPH02289267A (en) Core for catheter guide wire and catheter guide wire
JP4188663B2 (en) Guide wire
JPH042274B2 (en)
AU2006221094B2 (en) Metal alloy for a stent
JP2729856B2 (en) Catheter guidewire core and catheter guidewire
JPH042273B2 (en)
JPH0663151A (en) Medical guide wire
JP2001009041A (en) Medical guide wire
JP2001037869A (en) Medical guide wire
JPWO2002078779A1 (en) Medical guidewire
JP4141576B2 (en) Medical catheter
JP2022049329A (en) Medical composite material
JPH05293175A (en) Guide wire for catheter
JPH0796037A (en) Catheter
JPH04187160A (en) Core material of catheter guide wire and catheter guide wire
JP2001037867A (en) Medical tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees