JPH0228886B2 - KOTAIDENKAIKONDENSA - Google Patents

KOTAIDENKAIKONDENSA

Info

Publication number
JPH0228886B2
JPH0228886B2 JP12942783A JP12942783A JPH0228886B2 JP H0228886 B2 JPH0228886 B2 JP H0228886B2 JP 12942783 A JP12942783 A JP 12942783A JP 12942783 A JP12942783 A JP 12942783A JP H0228886 B2 JPH0228886 B2 JP H0228886B2
Authority
JP
Japan
Prior art keywords
acetylene
formula
dielectric
polymer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12942783A
Other languages
Japanese (ja)
Other versions
JPS6022311A (en
Inventor
Masao Kobayashi
Kazumi Naito
Soichiro Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12942783A priority Critical patent/JPH0228886B2/en
Publication of JPS6022311A publication Critical patent/JPS6022311A/en
Publication of JPH0228886B2 publication Critical patent/JPH0228886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Primary Cells (AREA)
  • Thermistors And Varistors (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔質誘電体に触媒溶液を塗布し、次
いでアセチレンガスを導入して誘電体上にアセチ
レン高重合体を生成せしめ、次いで該アセチレン
高重合体にドーパントをドープして得られる電導
性アセチレン高重合体を固体電解質として用いた
性能の良好な固体電解コンデンサに関する。従来
固体電解コンデンサ、例えばアルミ電解コンデン
サはエツチング処理した比表面積の大きい多孔質
アルミはくの上に誘電体である酸化アルミニウム
層をもうけ、陰極はくとの間の電解紙に液状の電
解液を含浸させた構造からなつているが、この電
解液の液状であることは液もれ等の問題を惹起し
好ましいものでは無く、この電導層を固体電解質
で代替する試みがなされている。それらの固体電
解コンデンサは陽極酸化皮膜を有するアルミニウ
ム、タンタルなどの皮膜形成金属に固体電解質を
付着した構造を有したものであり、この種の固体
コンデンサの固体電解質には主に硝酸マンガンの
熱分解により、形成される二酸化マンガンが用い
られている。しかしこの熱分解の際に要する高熱
と発生するNOxガスの酸化作用などによつて、
誘電体であるアルミニウム、タンタルなどの金属
酸化皮膜の損傷があり、そのため耐電圧は低下
し、もれ電流が大きくなり、誘電特性を劣化させ
るなど極めて大きな欠点がある。また、再化成と
いう工程も必要である。 これらの欠点を補うため、高熱を付加せずに固
体電解質層を形成する方法、つまり高電動性の有
機半導体材料を固体電解質とする方法が試みられ
ている。その例としては特開昭52−79255号公報
に記載されている。7,7,8,8−テトラシア
ノキノジメタン(TSNQ)錯塩を含む電導性高
重合体組成物を固体電解質として含む固体電解コ
ンデンサ、特開昭58−17609号公報に記載されて
いるN−n−プロピルイソキノリンと7,7,
8,8−テトラシアノキノジメタンからなる錯塩
を固体電解コンデンサが知られている。これら
TCNQ錯塩化合物は陽極酸化皮膜との付着性に
劣り、電導度も10-3〜10-2S・cm-1と不十分であ
るため、コンデンサの容量値は小さく誘電損失も
大きい。また熱的経時的な安定性も劣り信頼性が
低い。 本発明の目的は上述した従来の欠点を解決する
ため、電導度が高く誘電体皮膜との付着性のよい
有機半導体を固体電解質に用いた固体電解コンデ
ンサを提供することにある。 本発明は多孔質誘電体に触媒溶液を塗布し、次
いでアセチレンガスを導入して誘電体上にアセチ
レン高重合体を生成せしめ、次いで該アセチレン
高重合体にドーパントをドープして得られる電導
性アセチレン高重合体を固体電解質として用いた
固体電解コンデンサに関するものである。 本発明により得られる固体電解コンデンサは従
来の無機酸化半導体や有機半導体を用いた固体電
解コンデンサに比して容量、誘電損失、経時安定
性において著しく優れた性能を有している。 本発明において用いられる多孔質誘電体は特に
限定されないが例えば公知のアルミ、タンタル、
ニオブなどの金属酸化物を使用することができ
る。 本発明でアセチレンの重合に用いられる触媒は
従来公知の均一系、不均一系のアセチレン重合触
媒のいずれも用いることができるが、好ましいも
のは均一系触媒である。これらの触媒の触媒の具
体例としては特開昭32−10597号、USP−
4200716号、特開昭57−53509号、同昭57−5707
号、 同昭57−70114号、Angew、Chem、Int、Ed、
Engl、20、361(1981);Polymer、23、243
(1982);Makromol、Chem.、Rapid Commun.、、621(1980)等に記載のアセチレ
ン重合触媒をあげることができるが、必ずしもこ
れらに限定されるものではない。 多孔質誘電体上に均一触媒を塗布する方法とし
ては従来公知の方法で塗布すれば良いが、多孔質
誘電体と触媒溶液の濡れを改良するために、減圧
下で触媒溶液を仕込む等の方法を用いても良い。
また、塗布方法はバツチ方式でも連続方式のいず
れの方法も用いることができる。連続方式で触媒
溶液を多孔質誘電体に塗布する方法の具体例のひ
とつとして、連続的に移動する多孔質誘電体に触
媒溶液を塗布する方法が挙げられる。 アセチレンの重合条件は特に制限は無いが、重
合温度は通常−80℃〜100℃、好ましくは0℃〜
80℃の範囲の温度であり、アセチレンの圧力は通
常10気圧以下、好ましくは5気圧以下である。重
合時間は特に制限は無い。 重合終了後、アセチレン高重合体中の残存触媒
を除去しても良いが、除去しなくても一向に差し
支えない。残存溶媒は真空脱気等の通常の乾燥方
法で除去しておくことが好ましい。 この様にしてアセチレン高重合体で被覆された
誘電体皮膜が得られる。このアセチレン高重合体
は電気伝導度が10-10〜10-5S/cmの半導体であ
り、ドーパントをドーピングしてその電気伝動度
を10-2〜103S/cmの範囲にしておくことが必要で
ある。ドーピングは化学的ドーピング、電気化学
的ドーピングのいずれの方法を採用してもよい。 化学的にドーピングするドーパントとしては、
従来知られている種々の電子受容性化合物および
電子供与性化合物、即ち、()ヨウ素、臭素お
よびヨウ化臭素の如きハロゲン、()五フツ化
ヒ素、五フツ化アンモチン、四フツ化ケイ素、五
塩化リン、五フツ化リン、塩化アルミニウム、臭
化アルミニウムおよびフツ化アルミニウムの如き
金属ハロゲン化物、()硫酸、硝酸、フルオロ
硫酸、トリフルオロメタン硫酸およびクロロ硫酸
の如きプロトン酸、()三酸化イオウ、二酸化
窒素、ジフルオロスルホニルパーオキシドの如き
酸化剤、()AgClO4.()テトラシアノエチレ
ン、テトラシアノキノジメタン、クロラニール、
2,3−ジクロル−5,6−ジシアノパラベンゾ
キノン、2,3ジブロム−5,6−ジシアノパラ
ベンゾキノン、()Li、Na、Kの如きアルカリ
金属等をあげることができる。 一方、アセチレン高重合体に電気化学的にドー
ピングするドーパントとしては、(i)PF- 6、SbF- 6
AsF- 6、SbCl- 6の如きVa族の元素のハロゲン化物
アニオン、BF- 4の如きa族の元素のハロゲン化
物アニオン、I-(I- 3)、Br-3Cl-の如きハロゲンア
ニオン、 ClO- 4の如き過塩素酸アニオンなどの陰イオン・
ドーパントおよび(ii)Li+、Na+、K+の如きアルカ
リ金属イオン、R4N+(R:炭素数1〜20の炭素
水素基)の如き4級アンモニウムイオンなどの陽
イオン・ドーパント等をあげることができるが、
必ずしもこれ等に限定されるものではない。 上述の陰イオン・ドーパントおよび陽イオン・
ドーパントを与える化合物の具体例としては
LiPF6、LiSbF6、LiAsF6、LiClO4、NaI、
NaPF6、NaSbF6、NaAsF6、NaClO4、KI、
KPF6、KSbF6、KAsF6、KClO4、 〔(n−Bu)4N〕+・(AsF6-、 〔(n−Bu)4N〕+・(PF6-、 〔(n−Bu)4N〕+・ClO4、 LiAlCl4、LiBF4、NO・AsF6、NO2・AsF6
NO・BF4、 NO2・BF4、NO・PF6をあげることができるが
必ずしもこれ等に限定されるものではない。これ
らのドーパントは一種類、または二種類以上を混
合して使用してもよい。 前記以外の陰イオン・ドーパントとしてはHF2
アニオンであり、また、前記以外の陽イオン・ド
ーパントとしては次式で表わされるピリリウム
またはピリジウム・カチオン: (式中、Xは酸素原子または窒素原子、R′は水
素原子または炭素数が1〜15のアルキル基、炭素
数6〜15のアリール(aryl)基、R″はハロゲン
原子または炭素数が1〜10のアルキル基、炭素数
が6〜15のアリール(aryl)基、mはXが酸素原
子のとき0であり、Xが窒素原子のとき1であ
る。nは0または0〜5である。) また次式()もしくは()で表わされるカ
ルボニウム・カチオン: および 〔上式中、R1、R2、R3は水素原子(R1、R2、R3
は同時に水素原子であることはない)、炭素数1
〜15のアルキル基、アリル(allyl)基、炭素数
6〜15のアリール(aryl)基または−OR5基、但
しR5は炭素数が1〜10のアルキル基または炭素
数6〜15のアリール(aryl)基を示し、R4は水
素原素、炭素数が1〜15のアルキル基、炭素数6
〜15のアリール基である。〕 である。 用いられるHF2アニオンは通常、下記の一般式
()、()または(): 〔但し、上式中R′、R″は水素原子または炭素数
が1〜15のアルキル基、炭素数6〜15のアリール
(aryl)基、Rは炭素数が1〜10のアルキル基、
炭素数6〜15のアリール(aryl)基、Xは酸素原
子または窒素原子、nは0または5以下の正の整
数である。Mはアルカリ金属である〕 で表わされる化合物(フツ化水素塩)を適当な有
機溶媒に溶解することによつて得られる。上式
()、()および()で表わされる化合物の
具体例としてはH4N・HF2、n−Bu4N・HF2
Na・HF2、K・HF2、Li・HF2および
The present invention involves coating a porous dielectric with a catalyst solution, then introducing acetylene gas to form an acetylene polymer on the dielectric, and then doping the acetylene polymer with a dopant to obtain conductive acetylene. This invention relates to a solid electrolytic capacitor with good performance using a high polymer as a solid electrolyte. Conventional solid electrolytic capacitors, such as aluminum electrolytic capacitors, have an aluminum oxide dielectric layer on an etched porous aluminum foil with a large specific surface area, and a liquid electrolyte is applied to the electrolytic paper between the cathode foil and the etched porous aluminum foil. However, the liquid state of the electrolyte is not desirable as it causes problems such as leakage, and attempts have been made to replace this conductive layer with a solid electrolyte. These solid electrolytic capacitors have a structure in which a solid electrolyte is attached to a film-forming metal such as aluminum or tantalum that has an anodized film. Manganese dioxide, which is formed by However, due to the high heat required during this thermal decomposition and the oxidizing effect of the NOx gas generated,
There is damage to the metal oxide film of the dielectric material, such as aluminum or tantalum, resulting in extremely large drawbacks such as a decrease in withstand voltage, an increase in leakage current, and a deterioration of dielectric properties. In addition, a process called reconstitution is also necessary. In order to compensate for these drawbacks, attempts have been made to form a solid electrolyte layer without applying high heat, that is, to use a highly electrically conductive organic semiconductor material as the solid electrolyte. An example of this is described in Japanese Patent Application Laid-Open No. 79255/1983. A solid electrolytic capacitor containing a conductive polymer composition containing a 7,7,8,8-tetracyanoquinodimethane (TSNQ) complex salt as a solid electrolyte, the N- n-propylisoquinoline and 7,7,
A solid electrolytic capacitor using a complex salt of 8,8-tetracyanoquinodimethane is known. these
Since the TCNQ complex salt compound has poor adhesion to the anodic oxide film and insufficient conductivity of 10 -3 to 10 -2 S·cm -1 , the capacitance value of the capacitor is small and the dielectric loss is large. Furthermore, thermal stability over time is poor and reliability is low. SUMMARY OF THE INVENTION An object of the present invention is to provide a solid electrolytic capacitor using an organic semiconductor having high conductivity and good adhesion to a dielectric film as a solid electrolyte, in order to solve the above-mentioned drawbacks of the conventional capacitor. The present invention involves coating a porous dielectric with a catalyst solution, then introducing acetylene gas to form an acetylene polymer on the dielectric, and then doping the acetylene polymer with a dopant to obtain conductive acetylene. This invention relates to a solid electrolytic capacitor using a high polymer as a solid electrolyte. The solid electrolytic capacitor obtained by the present invention has significantly superior performance in terms of capacity, dielectric loss, and stability over time compared to conventional solid electrolytic capacitors using inorganic oxide semiconductors or organic semiconductors. The porous dielectric material used in the present invention is not particularly limited, but for example, known aluminum, tantalum,
Metal oxides such as niobium can be used. The catalyst used for acetylene polymerization in the present invention may be any of the conventionally known homogeneous and heterogeneous acetylene polymerization catalysts, but homogeneous catalysts are preferred. Specific examples of these catalysts are disclosed in Japanese Patent Application Laid-Open No. 32-10597, USP-
No. 4200716, JP-A-57-53509, JP-A No. 57-5707
No. 57-70114, Angew, Chem, Int, Ed.
Engl, 20 , 361 (1981); Polymer, 23 , 243
(1982); Makromol, Chem., Rapid Commun., 1 , 621 (1980), etc., but are not necessarily limited thereto. Conventionally known methods can be used to uniformly coat the catalyst on the porous dielectric, but in order to improve the wetting of the catalyst solution with the porous dielectric, methods such as charging the catalyst solution under reduced pressure can be used. You may also use
Further, as the coating method, either a batch method or a continuous method can be used. One specific example of a method of continuously applying a catalyst solution to a porous dielectric is a method of applying a catalyst solution to a continuously moving porous dielectric. There are no particular restrictions on the polymerization conditions for acetylene, but the polymerization temperature is usually -80°C to 100°C, preferably 0°C to
The temperature is in the range of 80°C and the acetylene pressure is usually below 10 atmospheres, preferably below 5 atmospheres. There is no particular restriction on the polymerization time. After the polymerization is completed, the residual catalyst in the acetylene high polymer may be removed, but there is no problem even if it is not removed. It is preferable to remove the residual solvent by a conventional drying method such as vacuum degassing. In this way, a dielectric film coated with an acetylene polymer is obtained. This acetylene polymer is a semiconductor with an electrical conductivity of 10 -10 to 10 -5 S/cm, and it is necessary to dope it with a dopant to keep its electrical conductivity in the range of 10 -2 to 10 3 S/cm. is necessary. For doping, either chemical doping or electrochemical doping may be used. As dopants for chemical doping,
Various electron-accepting and electron-donating compounds known in the art include () halogens such as iodine, bromine and bromine iodide, () arsenic pentafluoride, ammothine pentafluoride, silicon tetrafluoride, Metal halides such as phosphorus chloride, phosphorus pentafluoride, aluminum chloride, aluminum bromide and aluminum fluoride; () protonic acids such as sulfuric acid, nitric acid, fluorosulfuric acid, trifluoromethanesulfuric acid and chlorosulfuric acid; () sulfur trioxide; Oxidizing agents such as nitrogen dioxide, difluorosulfonyl peroxide, ()AgClO 4 . ()tetracyanoethylene, tetracyanoquinodimethane, chloranil,
Examples include 2,3-dichloro-5,6-dicyanoparabenzoquinone, 2,3-dibromo-5,6-dicyanoparabenzoquinone, and alkali metals such as ()Li, Na, and K. On the other hand, dopants to be electrochemically doped into the acetylene polymer include (i) PF - 6 , SbF - 6 ,
Halide anions of group Va elements such as AsF - 6 , SbCl - 6 , halide anions of group A elements such as BF - 4 , halogen anions such as I - (I - 3 ), Br - 3Cl - , ClO - Anions such as perchlorate anions such as 4 .
Dopants and (ii) cations/dopants such as alkali metal ions such as Li + , Na + , K + , quaternary ammonium ions such as R 4 N + (R: carbon hydrogen group having 1 to 20 carbon atoms), etc. I can give you, but
It is not necessarily limited to these. The above-mentioned anion/dopant and cation/dopant
Specific examples of compounds that provide dopants include
LiPF 6 , LiSbF 6 , LiAsF 6 , LiClO 4 , NaI,
NaPF6 , NaSbF6 , NaAsF6 , NaClO4 , KI,
KPF 6 , KSbF 6 , KAsF 6 , KClO 4 , [(n−Bu) 4 N] +・(AsF 6 ) , [(n−Bu) 4 N] +・(PF 6 ) , [(n− Bu) 4 N] +・ClO 4 , LiAlCl 4 , LiBF 4 , NO・AsF 6 , NO 2・AsF 6 ,
Examples include NO.BF 4 , NO 2.BF 4 , and NO.PF 6 , but are not necessarily limited to these. These dopants may be used alone or in combination of two or more. Anion dopants other than those mentioned above include HF 2
An anion, and a cation dopant other than the above is a pyrylium or pyridium cation represented by the following formula: (In the formula, ~10 alkyl group, aryl group having 6 to 15 carbon atoms, m is 0 when X is an oxygen atom, and 1 when X is a nitrogen atom. n is 0 or 0 to 5. ) Also, carbonium cations represented by the following formula () or (): and [In the above formula, R 1 , R 2 , R 3 are hydrogen atoms (R 1 , R 2 , R 3
is not a hydrogen atom at the same time), carbon number is 1
-15 alkyl group, allyl group, aryl group having 6 to 15 carbon atoms or -OR 5 group, provided that R 5 is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 15 carbon atoms (aryl) group, R 4 is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, and 6 carbon atoms.
~15 aryl groups. ] It is. The HF 2 anion used typically has the following general formula (), () or (): [However, in the above formula, R', R'' is a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, R is an alkyl group having 1 to 10 carbon atoms,
An aryl group having 6 to 15 carbon atoms, X is an oxygen atom or a nitrogen atom, and n is 0 or a positive integer of 5 or less. M is an alkali metal] It can be obtained by dissolving a compound represented by (hydrogen fluoride salt) in a suitable organic solvent. Specific examples of compounds represented by the above formulas (), () and () include H 4 N.HF 2 , n-Bu 4 N.HF 2 ,
Na・HF 2 , K・HF 2 , Li・HF 2 and

【式】をあげることができる。 上記式()で表わされるピリリウムもしくは
ピリジニウムカチオンは、式()で表わされる
カチオンとClO- 4、BF- 2、AlCl- 4、FeCl- 4、SnCl- 5
PF- 6、PCl- 6、SbF- 6、AsF- 6、CF3SO- 3、HF- 2等の
アニオンとの塩を適当な有機溶媒に溶解すること
によつて得られる。そのような塩の具体例として
[Formula] can be given. The pyrylium or pyridinium cation represented by the above formula () is a combination of the cation represented by the formula () and ClO - 4 , BF - 2 , AlCl - 4 , FeCl - 4 , SnCl - 5 ,
It can be obtained by dissolving a salt with an anion such as PF - 6 , PCl - 6 , SbF - 6 , AsF - 6 , CF 3 SO - 3 or HF - 2 in a suitable organic solvent. Examples of such salts include

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】等をあげることができる。 上記式()または()で表わされるカルボ
ニウム・カチオンの具体例とては (C6H53C+、(CH33C+
[Formula] etc. can be given. Specific examples of carbonium cations represented by the above formula () or () are (C 6 H 5 ) 3 C + , (CH 3 ) 3 C + ,

【式】【formula】

【式】 をあげることができる。 これらのカルボニウムカチオンは、それらと陰
イオンの塩(カルボニウム塩)を適当な有機溶媒
に溶解することによつて得られる。ここで用いら
れる陰イオンの代表例としては、BF- 4、AlCl- 4
AlBr3Cl+、FeCl- 4、SnCl- 3、PF- 6、PCl- 6、SbCl- 6
SbF- 6、ClO- 4、CF3SO- 3等をあげることができ、
また、カルボニウム塩の具体例としては、例えば
(C6H53C・BF4、 (CH3)今C・BF4、HCO・AlCl4、HCO・
BF4、C6H5CO・SnCl5等をあげることができる。 本発明の固体電解コンデンサは従来公知の固体
電解コンデンサに比較して下記の利点を有してい
る。 高温加熱することなしに電解質層を形成でき
るので陽極の酸化被膜の損傷がなく、補修のた
めの陽極酸化(再化成)を行なう必要がない。
そのため、定格電圧を従来の数倍にでき、同容
量、同定格電圧のコンデンサを得るのに、形状
を小型化できる。 もれ電流が小さい。 高耐圧のコンデンサを作製できる。 電解質の電導度が102〜103S・cm-1と十分に
高いため、グラフアイトなどの導電層を設ける
必要がない。そのため工程が簡略化され、コス
ト的にも有利となる。 実施例 厚さ100μmのアルミニウムはく(純度99.99%)
を陽極とし、直流、交流の交互使用して、はくの
表面を電気化学的にエツチングして平均細孔径
2μmで、比表面積が12m2/gとした。次いでこ
のエツチング処理したアルミニウムはくにホウ酸
アンモニウムの液中で電気化学的に誘電体の薄層
を形成した。 別途調製したテトラブトキシチタニウムとトリ
エチアルミニウムのトルエン溶液 (Al/Ti=2,[Ti]=0.005モル/l)を上記誘
電体層に塗布し、次いで、0.5気圧のアセチレン
圧で15分間重合した。重合終了後、大過剰のトル
エンで2回洗滌し、次いで真空脱気した。次いで
この素子をNO+・BF- 4のニトロメタン溶液に浸
して、アセチレン高重合体BF- 4をドープし、アセ
チレン高重合体の電気伝導体を2.5S/cmとした。 陰極にアルミニウムはくを用いてゴムで封止し
て特性を測定した。結果を表に示した。 比較例として従来の二参加マンガンを固体電解
質とした固体電解コンデンサの特性を表に示し
た。
[Formula] can be given. These carbonium cations can be obtained by dissolving salts of them and anions (carbonium salts) in a suitable organic solvent. Representative examples of anions used here include BF - 4 , AlCl - 4 ,
AlBr 3 Cl + , FeCl - 4 , SnCl - 3 , PF - 6 , PCl - 6 , SbCl - 6 ,
Examples include SbF - 6 , ClO - 4 , CF 3 SO - 3 , etc.
Specific examples of carbonium salts include (C 6 H 5 ) 3 C・BF 4 , (CH 3 )C・BF 4 , HCO・AlCl 4 , HCO・
Examples include BF 4 , C 6 H 5 CO・SnCl 5 . The solid electrolytic capacitor of the present invention has the following advantages over conventionally known solid electrolytic capacitors. Since the electrolyte layer can be formed without high-temperature heating, there is no damage to the oxide film of the anode, and there is no need to perform anodization (reformation) for repair.
Therefore, the rated voltage can be increased several times compared to conventional capacitors, and the shape can be made smaller to obtain a capacitor with the same capacity and rated voltage. Leakage current is small. Capacitors with high withstand voltage can be manufactured. Since the electrolyte has a sufficiently high conductivity of 10 2 to 10 3 S·cm −1 , there is no need to provide a conductive layer such as graphite. This simplifies the process and is advantageous in terms of cost. Example: 100μm thick aluminum foil (99.99% purity)
is used as an anode, and the surface of the foil is electrochemically etched using alternating direct current and alternating current to determine the average pore diameter.
2 μm and a specific surface area of 12 m 2 /g. A thin dielectric layer was then electrochemically applied to the etched aluminum foil in an ammonium borate solution. A separately prepared toluene solution of tetrabutoxytitanium and triethyaluminum (Al/Ti = 2, [Ti] = 0.005 mol/l) was applied to the above dielectric layer, and then polymerized for 15 minutes at an acetylene pressure of 0.5 atm. . After the polymerization was completed, it was washed twice with a large excess of toluene, and then degassed under vacuum. Next, this device was immersed in a nitromethane solution of NO + BF - 4 to dope it with acetylene polymer BF - 4 , and the electrical conductivity of the acetylene polymer was adjusted to 2.5 S/cm. Characteristics were measured using an aluminum foil for the cathode and sealing it with rubber. The results are shown in the table. As a comparative example, the characteristics of a conventional solid electrolytic capacitor using dimanganese as a solid electrolyte are shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質誘電体に触媒溶液を塗布し、次いでア
セチレンガスを導入して誘電体上にアセチレン高
重合体を生成せしめ、次いで該アセチレン高重合
体にドーパントをドープして得られる電導性アセ
チレン高重合体を固体電解質として用いた固体電
解コンデンサ。
1 A conductive acetylene polymer obtained by applying a catalyst solution to a porous dielectric, then introducing acetylene gas to form an acetylene polymer on the dielectric, and then doping the acetylene polymer with a dopant. A solid electrolytic capacitor that uses a combination as a solid electrolyte.
JP12942783A 1983-07-18 1983-07-18 KOTAIDENKAIKONDENSA Expired - Lifetime JPH0228886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12942783A JPH0228886B2 (en) 1983-07-18 1983-07-18 KOTAIDENKAIKONDENSA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12942783A JPH0228886B2 (en) 1983-07-18 1983-07-18 KOTAIDENKAIKONDENSA

Publications (2)

Publication Number Publication Date
JPS6022311A JPS6022311A (en) 1985-02-04
JPH0228886B2 true JPH0228886B2 (en) 1990-06-27

Family

ID=15009221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12942783A Expired - Lifetime JPH0228886B2 (en) 1983-07-18 1983-07-18 KOTAIDENKAIKONDENSA

Country Status (1)

Country Link
JP (1) JPH0228886B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719719B2 (en) * 1985-07-01 1995-03-06 昭和電工株式会社 Method for manufacturing solid electrolytic capacitor
JPH0638415B2 (en) * 1986-09-12 1994-05-18 キヤノン株式会社 Organic conductive medium and manufacturing method thereof
DE68925437T2 (en) * 1988-05-20 1996-08-14 Mitsubishi Chem Corp Method of manufacturing an electrode for a solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS6022311A (en) 1985-02-04

Similar Documents

Publication Publication Date Title
JPS63173313A (en) Solid electrolytic capacitor
JPH0456445B2 (en)
JPH0365887B2 (en)
JPH0546693B2 (en)
JP2006024708A (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0650710B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0552656B2 (en)
JPS6147625A (en) Solid electrolytic condenser
JPH0228886B2 (en) KOTAIDENKAIKONDENSA
JPH0650711B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62118509A (en) Solid electrolytic capacitor
JPH0552658B2 (en)
JPH0558254B2 (en)
JPH03291909A (en) Solid-state electrolytic capacitor
JPH053129B2 (en)
JPH0155571B2 (en)
JPH0682588B2 (en) Solid electrolytic capacitor
JPH0546692B2 (en)
JPH0328443B2 (en)
JPH0552657B2 (en)
JP2610026B2 (en) Battery electrode
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH033220A (en) Tantalum solid-state electrolytic capacitor
JPH0365008B2 (en)
JPH08203785A (en) Electrolytic solution for electrolytic capacitor