JPH02288382A - Laser device - Google Patents

Laser device

Info

Publication number
JPH02288382A
JPH02288382A JP11007789A JP11007789A JPH02288382A JP H02288382 A JPH02288382 A JP H02288382A JP 11007789 A JP11007789 A JP 11007789A JP 11007789 A JP11007789 A JP 11007789A JP H02288382 A JPH02288382 A JP H02288382A
Authority
JP
Japan
Prior art keywords
cavity resonator
resonator
microwave
discharge
cylindrical cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11007789A
Other languages
Japanese (ja)
Other versions
JP2659800B2 (en
Inventor
Takao Abe
隆夫 阿部
Hiroaki Shimazutsu
島筒 博章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11007789A priority Critical patent/JP2659800B2/en
Publication of JPH02288382A publication Critical patent/JPH02288382A/en
Application granted granted Critical
Publication of JP2659800B2 publication Critical patent/JP2659800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To generate uniform discharge in an axial direction by specifying the inner size of a cylindrical cavity resonator, increasing a microwave wavelength in a tube representing the microwave electric field distribution of a cavity resonator axial direction to infinitive, and forming a uniform electric field distribution in the discharge tube axial direction. CONSTITUTION:The inner radius (a) of a cylindrical cavity resonator 9 is set to a=lambdao.Pn, m/2pi with first type of Bessel function pn, m (n=1, 2,..., m=1, 2,...) for imparting electromagnetic field distribution existing in the resonator and vacuum wavelength lambdao of used microwave. When the radium (a) is determined in this manner, wavelength lambdag in the resonator tube becomes infinitive, and the axial electromagnetic field intensity of the resonator 9 becomes constant. Thus, uniform discharge can be generated in the discharge tube direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばレーザー加工機のガスレーザー発振器
、又は医療用レーザー装置のレーザー発振器等に適用さ
れるレーザー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser device applied to, for example, a gas laser oscillator of a laser processing machine or a laser oscillator of a medical laser device.

[従来の技術] 従来のレーザー装置を第3図及び第4図を参照して説明
する。
[Prior Art] A conventional laser device will be explained with reference to FIGS. 3 and 4.

第3図は従来のレーザー装置の構成を示す正面図である
FIG. 3 is a front view showing the configuration of a conventional laser device.

放電管1は、マイクロ波発振器6から導波管7を経て接
続された空胴共振器5の中に挿入、設置されており、そ
の両端に全反射ミラー2と出力ミラー3が設置されてい
る。放電管lの中にはレーザーガスが満たされており、
マイクロ波発振器8から出力されたマイクロ波が導波管
7の中を伝わり、空胴共振器5へ伝送され、放電管1の
中でマイクロ波の電界により放電が発生する。これによ
りレーザーガス媒質を励起し、誘導放出光を得て、光共
振器を構成する全反射ミラー2と出力ミラー3の間の往
復反射によって増重し、出力ミラー3を透過したレーザ
ー光4を取り出す。放電管1の軸方向とマイクロ波の電
界方向を平行にするとき、電磁界モードは7Mモード(
TransverseMagnetic Mode)と
なるが、マイクロ波発振器6と空胴共振器5の内寸法に
より多様のモードが発生する。第4図はその一例である
。しかして、この装置に於いて、電界電界ベクトル8は
放電管lの軸方向に均一とはなっていない。このため、
放電は放電管lの軸方向に均一に発生せず、放電管内空
間を全てレーザーガス媒質の励起に利用できないという
欠点がある。
The discharge tube 1 is inserted and installed in a cavity resonator 5 connected to a microwave oscillator 6 via a waveguide 7, and a total reflection mirror 2 and an output mirror 3 are installed at both ends of the cavity resonator 5. . The discharge tube l is filled with laser gas,
Microwaves output from the microwave oscillator 8 propagate through the waveguide 7 and are transmitted to the cavity resonator 5, and a discharge is generated in the discharge tube 1 due to the electric field of the microwaves. This excites the laser gas medium to obtain stimulated emission light, which is amplified by round-trip reflection between the total reflection mirror 2 and the output mirror 3 that constitute the optical resonator, and the laser light 4 transmitted through the output mirror 3. Take it out. When the axial direction of the discharge tube 1 and the electric field direction of the microwave are made parallel, the electromagnetic field mode is the 7M mode (
However, various modes are generated depending on the internal dimensions of the microwave oscillator 6 and the cavity resonator 5. Figure 4 is an example. However, in this device, the electric field vector 8 is not uniform in the axial direction of the discharge tube l. For this reason,
Discharge does not occur uniformly in the axial direction of the discharge tube l, and the disadvantage is that the entire space inside the discharge tube cannot be used for excitation of the laser gas medium.

[発明が解決しようとする課題] 本発明は上記実情に鑑みなされたもので、空胴共振器の
内寸法の選定によって、空胴共振器軸方向のマイクロ波
電界分布を表わす管内マイクロ波波長を無限大とし、放
電管軸方向に均一な電界分布を形成して、軸方向に均一
な放電を発生させることのできるレーザー装置を提供す
ることを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and by selecting the internal dimensions of the cavity resonator, the in-tube microwave wavelength representing the microwave electric field distribution in the axial direction of the cavity resonator can be adjusted. It is an object of the present invention to provide a laser device that can generate a uniform electric field in the axial direction by forming an electric field distribution that is infinite and uniform in the axial direction of the discharge tube.

[課題を解決するための手段] 本発明は、マイクロ波発振器から出力されたマイクロ波
を空胴共振器の巾に導入し、その電界によって放電を発
生させる放電管と、全反射ミラー及び出力ミラーでなる
光共振器とにより構成されるレーザー発振器に於いて、
真空中マイクロ波周波数fO2真空中マイクロ波波長λ
o.空胴共振器の遮断周波数fc、同じく波長λC1空
胴共振器の管内マイクロ波波長λg、光速Cとしたとき
、λo−C/fO,λC −C/fc、  λg −λo/1l−(λo/λC)2) の関係があることに注目し、λo−λCとなるように空
胴共振器寸法を調整して、空胴共振器軸方向のマイクロ
波の電界分布を表わす管内マイクロ波波長λgを無限大
とし、空胴共振器軸方向と平行な放電管軸方向に均一な
放電を発生させることを特徴とする。
[Means for Solving the Problems] The present invention includes a discharge tube that introduces microwaves output from a microwave oscillator into the width of a cavity resonator and generates a discharge by the electric field, a total reflection mirror, and an output mirror. In a laser oscillator configured with an optical resonator,
Microwave frequency in vacuum fO2 Microwave wavelength in vacuum λ
o. When the cutoff frequency fc of the cavity resonator, the same wavelength λC1, the internal microwave wavelength λg of the cavity resonator, and the speed of light C, λo-C/fO, λC-C/fc, λg-λo/1l-(λo/ λC)2) Noting the relationship of It is characterized by being infinite in size and generating a uniform discharge in the axial direction of the discharge tube parallel to the axial direction of the cavity resonator.

[作用] 上記した構成により、放電管軸方向の不均一放電を防ぎ
、放電管内空間を全てレーザーガス媒質の励起に利用す
ることができる。
[Function] With the above configuration, non-uniform discharge in the axial direction of the discharge tube can be prevented, and the entire space inside the discharge tube can be used for excitation of the laser gas medium.

[実施例] 本発明のレーザー装置の一実施例を第1図及び第2図を
参照して説明する。
[Example] An example of the laser device of the present invention will be described with reference to FIGS. 1 and 2.

ここでは空胴共振器として円筒空胴共振器を用いる場合
を例示しており、第1図はその正面図、第2図は円筒空
胴共振器9の内部のマイクロ波電界ベクトル8の模式図
である。これらの図に於いて、前述した第3図及び第4
図と同一部分には同一符号を付している。
Here, a case where a cylindrical cavity resonator is used as the cavity resonator is illustrated, and FIG. 1 is a front view thereof, and FIG. 2 is a schematic diagram of the microwave electric field vector 8 inside the cylindrical cavity resonator 9. It is. In these figures, the above-mentioned figures 3 and 4
The same parts as those in the figure are given the same reference numerals.

円筒空胴共振器9内の電磁界モードを前述の7Mモード
に設定したとき、次数を最低次のn=0.m−1とし、
λc−2πa/Pn、mと、前述のλC=λoの条件か
ら、円筒空胴共振器内半径aは a−λo−PO1/2π となる。
When the electromagnetic field mode in the cylindrical cavity resonator 9 is set to the aforementioned 7M mode, the order is set to the lowest order, n=0. m-1,
From λc-2πa/Pn,m and the above-mentioned condition of λC=λo, the inner radius a of the cylindrical cavity resonator becomes a-λo-PO1/2π.

ここに、Pn、IIは、TMOIモードの次数に対応す
る係数であり、空胴共振器内の電磁界分布を与える第1
種ベッセル関数の解である(詳細は割愛するがPOIζ
2.405となる)。この関係式から円筒空胴共振器9
の内径を定めることができ、内半径aをこのように定め
ておけば、円筒空胴共振器内の管内波長λgは無限大と
なって、円筒空胴共振器9の軸方向電磁界強度は一定と
なる。
Here, Pn,II is a coefficient corresponding to the order of the TMOI mode, and is the first coefficient that gives the electromagnetic field distribution within the cavity resonator.
It is a solution of the seed Bessel function (details are omitted, but POIζ
2.405). From this relational expression, the cylindrical cavity resonator 9
If the inner radius a is determined in this way, the tube wavelength λg in the cylindrical cavity resonator becomes infinite, and the axial electromagnetic field strength of the cylindrical cavity 9 becomes It becomes constant.

円筒空胴共振器9の軸方向長さは、円筒空胴共振器9の
内部両端に挿入し、設置している短絡板lOを軸方向に
移動できるようにしておき、任意可変とする。マイクロ
波電界強度は円筒空胴共振器9の内部両端に挿入し、設
置している短絡板lOを円筒空胴共振器9の軸方向に動
かし、円筒空胴共振器9の軸方向長さを変えることによ
って調整する。
The axial length of the cylindrical cavity resonator 9 can be arbitrarily varied by making it possible to move the shorting plates 10 inserted into both ends of the cylindrical cavity 9 in the axial direction. The microwave electric field strength is determined by inserting the short-circuit plate lO into both ends of the cylindrical cavity resonator 9 in the axial direction of the cylindrical cavity resonator 9, and changing the axial length of the cylindrical cavity resonator 9. Adjust by changing.

なお、円筒空胴共振器を用いる場合には遮断波長λCは a:矩形の長辺 b:矩形の短辺 として与えられ、最低次のT Mモードn−1゜m=1
に対応するλCは、am2bとして、λc−0,89a
となる。従って、a−λO10,89,b=a/2とな
るように矩形空胴共振器の長辺−1−法を定めれば、矩
形空胴共振器内の管内波長λgは無限大となって、円筒
空胴共振器内の軸方向電界強度は一定となる。
In addition, when using a cylindrical cavity resonator, the cutoff wavelength λC is given as a: the long side of the rectangle b: the short side of the rectangle, and the lowest order TM mode n-1゜m=1
λC corresponding to am2b is λc-0,89a
becomes. Therefore, if the long side -1- method of the rectangular cavity cavity is determined so that a-λO10,89,b=a/2, the tube wavelength λg in the rectangular cavity cavity becomes infinite. , the axial electric field strength within the cylindrical cavity resonator is constant.

[発明の効果] 本発明によれば、レーザー装置に於いて、その放電管軸
方向に均一の放電を発生することができ、放電管内空間
を全てレーザーガス媒質の励起に有効に利用できる。
[Effects of the Invention] According to the present invention, a uniform discharge can be generated in the axial direction of the discharge tube in a laser device, and the entire space inside the discharge tube can be effectively used for excitation of the laser gas medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るレーザー装置の正面図、
第2図は本発明の実施例に係る電界モードの模式図、第
3図は従来のレーザー装置を示す正面図。第4図は従来
の実施例を示す電界モードの模式図である。 1・・・放電管、2・・・全反射ミラー、3・・・出力
ミラ、4・・・レーザー光、5・・・空胴共振器、6・
・・マイクロ波発振器、7・・・導波管、8・・・電界
ベクトル、9・・・円筒空胴共振器、■0・・・短絡波
。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a front view of a laser device according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of an electric field mode according to an embodiment of the present invention, and FIG. 3 is a front view of a conventional laser device. FIG. 4 is a schematic diagram of an electric field mode showing a conventional embodiment. DESCRIPTION OF SYMBOLS 1... Discharge tube, 2... Total reflection mirror, 3... Output mirror, 4... Laser light, 5... Cavity resonator, 6...
... Microwave oscillator, 7... Waveguide, 8... Electric field vector, 9... Cylindrical cavity resonator, ■0... Short circuit wave. Applicant's agent Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1) マイクロ波発振器から出力されたマイクロ波を
円筒空胴共振器中に導入し、その電界によって放電を発
生させる放電管と、全反射ミラー及び出力ミラーからな
る光共振器とによって構成されるレーザー発振器に於い
て、円筒空胴共振器内半径aを、当該円筒空胴共振器内
に存在する電磁界分布を与える第1種のベッセル関数p
n,m(n=1,2,・・・,m=1,2,・・・)及
び使用するマイクロ波の真空波長λ_oを用いて、a=
λ_o・Pn,m/2πとすることを特徴とするレーザ
ー装置。
(1) Consists of a discharge tube that introduces microwaves output from a microwave oscillator into a cylindrical cavity resonator and generates a discharge using the electric field, and an optical resonator that consists of a total reflection mirror and an output mirror. In a laser oscillator, the inner radius a of a cylindrical cavity resonator is defined by a Bessel function of the first kind that gives the electromagnetic field distribution existing within the cylindrical cavity resonator.
Using n, m (n = 1, 2, ..., m = 1, 2, ...) and the vacuum wavelength λ_o of the microwave to be used, a =
A laser device characterized in that λ_o·Pn, m/2π.
(2) マイクロ波発振器から出力されたマイクロ波を
矩形空胴共振器中に導入し、その電界によって放電を発
生させる放電管と、全反射ミラー及び出力ミラーからな
る光共振器とによつて構成されるレーザー発振器に於い
て、矩形空胴共振器長辺寸法a、同じく短辺寸法bを、
使用マイクロ波の真空波長λ_oを用いて、a=λ_o
・(m^2+4n^2)^1^/^2/2(m=1,2
,・・・,n=0,1,2,・・・),b=a/2とす
ることを特徴とするレーザー装置。
(2) Consisting of a discharge tube that introduces microwaves output from a microwave oscillator into a rectangular cavity resonator and generates a discharge using the electric field, and an optical resonator consisting of a total reflection mirror and an output mirror. In the laser oscillator to be used, the long side dimension a of the rectangular cavity resonator and the short side dimension b are
Using the vacuum wavelength λ_o of the microwave used, a=λ_o
・(m^2+4n^2)^1^/^2/2 (m=1,2
,..., n=0, 1, 2,...), b=a/2.
JP11007789A 1989-04-28 1989-04-28 Laser equipment Expired - Lifetime JP2659800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11007789A JP2659800B2 (en) 1989-04-28 1989-04-28 Laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11007789A JP2659800B2 (en) 1989-04-28 1989-04-28 Laser equipment

Publications (2)

Publication Number Publication Date
JPH02288382A true JPH02288382A (en) 1990-11-28
JP2659800B2 JP2659800B2 (en) 1997-09-30

Family

ID=14526449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11007789A Expired - Lifetime JP2659800B2 (en) 1989-04-28 1989-04-28 Laser equipment

Country Status (1)

Country Link
JP (1) JP2659800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264868A (en) * 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd Microwave stimulated gas laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264868A (en) * 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd Microwave stimulated gas laser

Also Published As

Publication number Publication date
JP2659800B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US4513424A (en) Laser pumped by X-band microwaves
US4698822A (en) Apparatus for exciting a plasma in a column of gas by means of microwaves, in particular for providing an ion laser
Barone Resonances of the Fabry‐Perot Laser
US3283262A (en) Optical maser operating in the tmon mode
JPH02288382A (en) Laser device
Hershberger Absorption and reflection spectrum of a plasma
Guss et al. Sideband mode competition in a gyrotron oscillator
Pantell et al. Transmission of x-rays through curved waveguides
JPH03209785A (en) Waveguide tube laser by microwave excitation
Ginzburg et al. Experimental observation of mode competition and single-mode operation in JINR-IAP millimeter-wave FEM oscillator
US3614657A (en) Cylindrical plasma laser
JPH03208385A (en) Microwave excitation power laser
Harris et al. Low-loss single-mode waveguide for submillimetre and millimetre wavelengths
JPS629686A (en) Gas laser unit
JPH05507181A (en) Gas discharge pulsed laser system
CS229752B1 (en) Gas discharge lamp for active medium especially for lasers for laser amplifiers
JP3519116B2 (en) Microwave excitation light source device
JP2989296B2 (en) Microwave discharge excitation method for laser gas
JP2877267B2 (en) Laser oscillation device
JPH04123559U (en) laser device
JP2871217B2 (en) Microwave pumped gas laser device
Böhm Resonant microwave absorption in an overdense plasma column
JPS61220486A (en) Laser oscillator
JP3202970B2 (en) Electrodeless discharge energy supply device and electrodeless discharge lamp device
JPH046887A (en) Laser device