JPH02288227A - Plasma treatment method and device therefor - Google Patents

Plasma treatment method and device therefor

Info

Publication number
JPH02288227A
JPH02288227A JP10761089A JP10761089A JPH02288227A JP H02288227 A JPH02288227 A JP H02288227A JP 10761089 A JP10761089 A JP 10761089A JP 10761089 A JP10761089 A JP 10761089A JP H02288227 A JPH02288227 A JP H02288227A
Authority
JP
Japan
Prior art keywords
pressure
plasma
power
discharge
discharge gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10761089A
Other languages
Japanese (ja)
Other versions
JP2670140B2 (en
Inventor
Hidezo Sano
秀造 佐野
Mikio Hongo
幹雄 本郷
Takashi Kamimura
隆 上村
Katsuro Mizukoshi
克郎 水越
Takahiko Takahashi
高橋 貴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1107610A priority Critical patent/JP2670140B2/en
Publication of JPH02288227A publication Critical patent/JPH02288227A/en
Application granted granted Critical
Publication of JP2670140B2 publication Critical patent/JP2670140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form and treat plasma stably even on the low pressure of a treating gas by specifying the pressure of a discharge gas in plasma treatment and variably setting supply power. CONSTITUTION:The pressure of a discharge gas can be set at the two stages of gas pressure (such as 10<-2>Torr level) capable of stably forming plasma and gas pressure (such as 10<-3>Torr level) at the time of actual treatment, and power fed to an electrode can also be set similarly at the three stages of a time when the power is increased when plasma is shaped, a time when the power is reduced in an extent that the quantity of treatment is not affected as discharge is kept as it is during setting at treating-gas pressure after the formation of plasma and power at the time of treatment. The formation of plasma is detected optically, an output is lowered as discharge is kept as it is in high-frequency power by a controller 15, a pressure regulating valve 9 is driven through a pressure regulator 14, and the pressure of the discharge gas is set at treating pressure. High-frequency power is also set at a value at the time of treatment, and the rise of discharge is completed while the measurement of the time of sputtering and etching treatment is started.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流あるいは高周波放電を用いて薄膜を形成し
たりエツチング処理を行うプラズマ処理方法及びその装
置、特に放電ガス圧力が低いところで処理を行う場合に
好適なプラズマ処理方法および装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing method and apparatus for forming a thin film or etching using direct current or high frequency discharge, and particularly to a plasma processing apparatus for performing the processing in a place where the discharge gas pressure is low. The present invention relates to a plasma processing method and apparatus suitable for various cases.

〔従来の技術〕[Conventional technology]

直流あるいは高周波放電を用いた処理装置としては、ス
パッタ成膜装置、スパッタエツチング装置およびプラズ
マCVD装置などがある。近年、半導体素子の高性能・
高速化の目的から微細化・高集積化とともに基板ウェハ
の大面積化が行われており、半導体製造装置もこれらの
要求を満足すべく開発が進められている。特開昭60−
123034に示すドライエツチング装置を例にとると
、磁場を導入することにより大面積ウェハに対し、低ガ
ス圧で高速かつ均一なエツチングを実現している。
Processing apparatuses using direct current or high-frequency discharge include sputter film forming apparatuses, sputter etching apparatuses, and plasma CVD apparatuses. In recent years, the high performance and
For the purpose of increasing speed, substrate wafers are becoming larger in size along with miniaturization and higher integration, and semiconductor manufacturing equipment is also being developed to meet these demands. Japanese Patent Application Publication 1986-
Taking the dry etching apparatus shown in No. 123034 as an example, by introducing a magnetic field, a large area wafer can be etched at high speed and uniformly at low gas pressure.

また、スパッタ成膜装置の例としては応用物理1988
年9月号第19ページから第31ページに記載されてい
る様に素子へのダメージと膜中への放電ガス吸蔵を低減
させるため、低ガス圧力での処理が用いられている。
In addition, as an example of a sputtering film forming apparatus, the Applied Physics 1988
As described on pages 19 to 31 of the September issue, processing at low gas pressure is used to reduce damage to the device and storage of discharge gas in the film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のととく成膜あるいはエツチング処理を行
うこれらの装置は低ガス圧力でプラズマ処理を行う傾向
にあり、この処理ガス圧で処理装置の電極に直流あるい
は高周波電力を供給して放電を開始しようとしても従来
の処理ガス圧の場合のように安定してプラズマが形成さ
れないという問題がある。また、前述のスパッタ成膜装
置のようにマイクロ波を用いると低ガス圧でプラズマを
形成することが可能であるが、マイクロ波電源および導
波管などの電力供給設備が必要となり、装置コストが高
くなるとともに、専有スペースも大きくなるという問題
がある。
In the conventional technology mentioned above, these devices that perform film forming or etching processing tend to perform plasma processing at low gas pressure, and at this processing gas pressure, direct current or high frequency power is supplied to the electrodes of the processing device to start discharge. However, there is a problem in that plasma cannot be stably formed as in the case of conventional processing gas pressures. In addition, using microwaves as in the sputtering film-forming equipment mentioned above allows plasma to be formed at low gas pressure, but this requires power supply equipment such as a microwave power source and waveguide, which increases equipment costs. There is a problem in that as the price increases, the dedicated space also increases.

本発明の目的は、従来の直流あるいは高周波放電を用い
る処理装置で低ガス圧処理の場合でも安定してプラズマ
を形成できるようにしたプラズマ処理方法及びその装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma processing method and apparatus capable of stably forming plasma even in low gas pressure processing using a conventional processing apparatus using direct current or high-frequency discharge.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明のプラズマ形成方法
においては、放電ガス圧力をプラズマが安定して形成可
能なガス圧力(例えば10−”Torr台)と実際の処
理時のガス圧力(例えば10−’Torr台)の2段階
に設定できるようにし、同様に電極に供給する電力もプ
ラズマ形成時は大きく、またプラズマ形成後に処理ガス
圧力に設定する間は放電を維持したまま処理量に影響を
与えない程度に小さく、さらに処理時の電力の3段階に
設定できるようにした。
In order to achieve the above object, in the plasma forming method of the present invention, the discharge gas pressure is set to a gas pressure at which plasma can be stably formed (e.g., 10-'' Torr range) and a gas pressure during actual processing (e.g., 10-'' Torr range). Similarly, the power supplied to the electrode is large during plasma formation, and while the processing gas pressure is set after plasma formation, the discharge is maintained while the processing amount is affected. It is so small that it does not cause any damage, and it can be set to three levels of power during processing.

また、本発明のプラズマ処理装置は放電によりスパッタ
リング成膜あるいはスパッタエツチング処理を行う電極
ユニットと、この電極を備えた真空反応室と1反応室に
接続して真空排気する真空ポンプ、反応室の真空度を測
定する真空ゲージ、および放電ガスの供給装置と、反応
室と真空ポンプの間に取りつけて反応室に供給する放電
ガスの圧力を一定に保つ圧力調整弁ユニットと、前記電
極ユニットに直流あるいは高周波電力を供給する電源ユ
ニットと、前記各ユニットを自動的にコントロールする
制御装置から構成され、真空排気された反応室に放電ガ
スを一定条件で供給しながら、制御装置からのプラズマ
形成指令により圧力調整弁ユニットおよび電力供給電源
ユニットを駆動するように構成されたものである。
In addition, the plasma processing apparatus of the present invention includes an electrode unit that performs sputtering film formation or sputter etching treatment by electric discharge, a vacuum reaction chamber equipped with this electrode, a vacuum pump connected to one reaction chamber and evacuated, and a vacuum pump that evacuates the reaction chamber. a vacuum gauge for measuring the temperature, a discharge gas supply device, a pressure regulating valve unit installed between the reaction chamber and the vacuum pump to keep the pressure of the discharge gas supplied to the reaction chamber constant, and a direct current or Consists of a power supply unit that supplies high-frequency power and a control device that automatically controls each of the above units. While supplying discharge gas under certain conditions to the evacuated reaction chamber, pressure is increased by plasma formation commands from the control device. It is configured to drive a regulating valve unit and a power supply unit.

〔作用〕[Effect]

本発明では、放電ガス圧力および電極ユニットに供給の
電力をそれぞれ可変に設定できるようにしており、それ
によって、プラズマを形成の時は制御装置からの指令で
圧力調整弁ユニットにより放電ガス圧力を処理圧力より
も高く、電力も大きく設定するので安定してプラズマを
形成できる。
In the present invention, the discharge gas pressure and the electric power supplied to the electrode unit can be set variably, so that when plasma is to be formed, the discharge gas pressure is processed by the pressure regulating valve unit according to a command from the control device. Since the voltage is set higher than the pressure and the power is also larger, plasma can be stably formed.

また、プラズマ形成後は電力を小さくしても放電が保持
されることから電力を小さく設定し、さらにガス圧力を
処理圧力に設定した後、電力を処理時の値に設定して処
理を実施することにより所定の処理を行うことができる
In addition, after plasma formation, the discharge is maintained even if the power is reduced, so the power is set to a small value, the gas pressure is set to the processing pressure, and then the power is set to the value at the time of processing and processing is performed. This allows predetermined processing to be performed.

〔実施例〕〔Example〕

以下、本発明を図に従い説明する。第1図は本発明の一
実施例である高周波放電を用いたスパッタエツチング装
置の全体構成を示している。真空反応室1には磁石ユニ
ット2を有するアノード電極3および絶縁物4によりア
ースと絶縁されたカソード電極5が取り付けられている
。なおりソード電極5上には試料6が載置され、さらに
インピーダンス整合装置7を介して高周波電源8に接続
されている。また、反応室1には圧力!131整弁9を
介して真空ポンプ10が、また放電ガス供給装置11を
介して放電ガスボンベ12がそれぞれ接続されている。
The present invention will be explained below with reference to the drawings. FIG. 1 shows the overall structure of a sputter etching apparatus using high frequency discharge, which is an embodiment of the present invention. An anode electrode 3 having a magnet unit 2 and a cathode electrode 5 insulated from earth by an insulator 4 are attached to the vacuum reaction chamber 1 . A sample 6 is placed on the sword electrode 5 , and is further connected to a high frequency power source 8 via an impedance matching device 7 . Also, there is pressure in reaction chamber 1! A vacuum pump 10 and a discharge gas cylinder 12 are connected via a 131 valve regulator 9 and a discharge gas supply device 11, respectively.

なお、圧力調整弁9は反応室1に取付けた真空ゲージ1
3とともに圧力調整装置14に接続している。さらに、
制御装置15は高周波電g8.放電ガス供給装置11、
および圧力調整装置14にそれぞれ接続している。以上
に述べた構成の装置を用いて熱酸化膜を表面に形成した
ウェハをスパッタエツチング処理した例を第2図に示す
。この結果から、放電ガスであるArのガス圧力が低い
方で、エツチング速度も大きく、エツチング均一性も良
好でこの例の場合には、Arガス圧力が0.27Pzで
エツチング速度も均一性も最も良い結果となっているこ
とがわかる。しかし、この圧力では高周波電力を大きく
してもプラズマを形成することはできない。
Note that the pressure regulating valve 9 is a vacuum gauge 1 attached to the reaction chamber 1.
3 and is connected to a pressure regulator 14. moreover,
The control device 15 uses high frequency electric g8. discharge gas supply device 11,
and pressure regulator 14, respectively. FIG. 2 shows an example in which a wafer having a thermal oxide film formed on its surface was subjected to sputter etching using the apparatus having the structure described above. From this result, the etching speed is high and the etching uniformity is good when the gas pressure of Ar, which is the discharge gas, is low.In the case of this example, the etching speed and uniformity are the highest when the Ar gas pressure is 0.27Pz. It can be seen that the results are good. However, at this pressure, plasma cannot be formed even if the radio frequency power is increased.

従って、本発明の一実施例であるプラズマ形成方法につ
いて第1図、第3図に従って説明する。
Therefore, a plasma forming method according to an embodiment of the present invention will be explained with reference to FIGS. 1 and 3.

第1図で真空ポンプ10により真空排気された反応室1
に、まず制御装置15から放電立上げ指令として圧力調
整装置14を介して圧力調整弁9.放電ガス(Ar)ボ
ンベ12、および放電ガス供給装置11により放電ガス
を所定圧力になるように供給する(第2図(山)点)。
In FIG. 1, the reaction chamber 1 is evacuated by the vacuum pump 10.
First, the control device 15 issues a discharge start-up command to the pressure regulating valve 9 via the pressure regulating device 14. A discharge gas (Ar) cylinder 12 and a discharge gas supply device 11 supply discharge gas to a predetermined pressure (see the peak in FIG. 2).

この結果に基づき、制御装置15より高周波電源8に出
力指令を出し放電立上げに必要な電力を整合装置7を介
してカソード電極5に供給する(第2図(b)点)。プ
ラズマの形成を光学的に検出(図示せず)した後、制御
装置15により高周波電力は放電を維持したまま出力を
小さくシ(第2図(c)点)、さらに圧力調整装置14
を介して圧力調整弁9を暉動して放電ガス圧力を処理圧
力に設定しく第2図(d)点)、高周波電力も処理を行
う時の値に設定して(第2図(e)点)放電立上げを終
了すると同時にスパッタエツチング処理の時間測定を開
始する。
Based on this result, the control device 15 issues an output command to the high frequency power source 8 to supply the power necessary for starting the discharge to the cathode electrode 5 via the matching device 7 (point (b) in FIG. 2). After optically detecting the formation of plasma (not shown), the control device 15 reduces the output of the high-frequency power while maintaining the discharge (point (c) in Figure 2), and further reduces the output of the high-frequency power by the pressure adjustment device 14.
The discharge gas pressure is set to the processing pressure by adjusting the pressure regulating valve 9 through the pressure control valve (point (d) in Fig. 2), and the high-frequency power is also set to the value for processing (point (e) in Fig. 2). Point) At the same time as finishing the discharge start-up, start measuring the time of the sputter etching process.

所定の処理時間が終了(第2図(f)点)した後、放電
を維持したまま再び高周波電力を小さくしく第2図(g
)点)、放電ガス圧力を放電立上げ時ね同じ圧力まで上
昇させ(第2図(h)点)、さらに高周波電力も放電立
上げ時と同じ値まで大きくして(第2図(i)点)電力
供給を停止し、放電ガス供給装置11を閉じると同時に
圧力調整弁9を全開にして真空ポンプlOにより反応室
1を真空排気する。放電立下げ時に、放電立上げ時と同
じ放電ガス圧力および高周波電力に設定してから電力供
給を停止する理由は、整合装置7のインピーダンス設定
値を放電立上げ時と同じ値にすることにより、繰り返し
スパッタエツチング処理を行う場合に、整合装置のイン
ピーダンス調整範囲が小さくなり、安定してプラズマの
形成が可能となるためである。
After the predetermined processing time has ended (point (f) in Figure 2), the high frequency power is reduced again while maintaining the discharge as shown in Figure 2 (g).
), the discharge gas pressure was increased to the same pressure as at the start of discharge (point (h) in Figure 2), and the high-frequency power was also increased to the same value as at the start of discharge (point (i) in Figure 2). Point) The power supply is stopped, the discharge gas supply device 11 is closed, and at the same time, the pressure regulating valve 9 is fully opened and the reaction chamber 1 is evacuated by the vacuum pump IO. The reason why the power supply is stopped after setting the same discharge gas pressure and high-frequency power as at the time of starting the discharge at the time of stopping the discharge is that by setting the impedance setting value of the matching device 7 to the same value as at the time of starting the discharge, This is because when repeated sputter etching processes are performed, the impedance adjustment range of the matching device becomes smaller, making it possible to stably form plasma.

なお、高周波放電を用いたスパッタリング成膜装置でも
全く同様にしてプラズマを形成することができる。
Note that plasma can be formed in exactly the same manner using a sputtering film forming apparatus using high-frequency discharge.

次に別の実施例である直流放電を用いたスパッタ装置に
ついて、第4図を用いて説明する。真空反応室1には磁
石ユニット2を有し表面に導電性ターゲット41を固定
して絶縁物42によりアースと絶縁されたカソード電極
43と、試料6を!!置したアノード電極44が取りつ
けられている。なお、カソード電極は直流電源45に接
続されている。また。
Next, another embodiment of a sputtering apparatus using direct current discharge will be described with reference to FIG. The vacuum reaction chamber 1 has a magnet unit 2, a conductive target 41 is fixed on the surface, a cathode electrode 43 is insulated from the ground by an insulator 42, and a sample 6! ! An anode electrode 44 is attached thereto. Note that the cathode electrode is connected to a DC power source 45. Also.

反応室1には圧力調整装置を介して真空ポンプIOか、
また放電ガス供給装置11を介して放電ガスボンベ12
がそれぞれ接続されている。なお、圧力調整弁9は反応
室1に取付けた真空ゲージ13とともに圧力調整装置1
4に接続している。さらに、制御装置15は直流電源4
5.放電ガス供給装置11、および圧力調整装置14に
それぞれ接続している。以上に述べた構成の装置を用い
たプラズマ形成方法について第4図および第5図を用い
て説明する。第4図で真空ポンプlOにより真空排気さ
れた反応室1に、まず制御装置15から放電立上げ指令
として圧力調整装置14を介して圧力調整弁9.放電ガ
スボンベ12、および放電ガス供給装置11により放電
ガスを所定圧力になるように供給する(第5図(山)点
)。この結果で、制御装置■5より直流電@45に出力
指令を出し放電立上げに必要な電力をカソード電極43
に供給する(第5図(b)点)。プラズマへ形成を光学
的に検出した後、制御装置15によす直流電源電力は放
電を維持したまま出力小さくしく第5図(c)点)、さ
らに圧力調整装置14を介して圧力調整弁9を開動して
放電ガス圧力を処理圧力に設定しく第5図(d)点)、
直流電源電力も処理を行う時の値に設定して(第5図(
e)点)放電立上げを終了すると同時にスパッタデボジ
シゴン処理の時間測定を開始する。
A vacuum pump IO or a vacuum pump IO is connected to the reaction chamber 1 via a pressure regulator.
In addition, a discharge gas cylinder 12 is supplied via a discharge gas supply device 11.
are connected to each other. Note that the pressure regulating valve 9 is connected to the pressure regulating device 1 together with the vacuum gauge 13 attached to the reaction chamber 1.
Connected to 4. Furthermore, the control device 15
5. It is connected to the discharge gas supply device 11 and the pressure adjustment device 14, respectively. A plasma forming method using the apparatus configured as described above will be explained with reference to FIGS. 4 and 5. In FIG. 4, a discharge start-up command is sent from the controller 15 to the reaction chamber 1, which has been evacuated by the vacuum pump IO, through the pressure regulator 14 and the pressure regulating valve 9. The discharge gas is supplied to a predetermined pressure by the discharge gas cylinder 12 and the discharge gas supply device 11 (see the peak in FIG. 5). Based on this result, the control device 5 issues an output command to the DC power @ 45 to supply the power necessary for starting the discharge to the cathode electrode 43.
(point (b) in Figure 5). After optically detecting the formation of plasma, the DC power supply power applied to the control device 15 is reduced in output while maintaining the discharge (point (c) in FIG. 5), and is further connected to the pressure regulating valve 9 via the pressure regulating device 14. (point (d) in Figure 5) to set the discharge gas pressure to the processing pressure by opening the
The DC power supply power is also set to the value used for processing (see Figure 5).
Point e)) At the same time as the discharge start-up is completed, time measurement of the sputter deposition process is started.

所定の処理時間が終了(第5図(f)点)した後は制御
装置15より直流電源電力供給を停止し、放電ガス供給
装置11を閉じると同時に圧力調整弁9を全開にして真
空ポンプ10により反応室1を真空排気する。
After the predetermined processing time has ended (point (f) in FIG. 5), the control device 15 stops the DC power supply, and at the same time closes the discharge gas supply device 11, the pressure regulating valve 9 is fully opened and the vacuum pump 10 The reaction chamber 1 is evacuated.

〔発明の効果〕〔Effect of the invention〕

本発明によればプラズマ処理における放電ガス圧力と供
給電力を可変に設定できるので、実際の処理ガス圧力が
低い場合でも安定してプラズマを形成、処理を行うこと
が可能となる効果がある。
According to the present invention, since the discharge gas pressure and power supply in plasma processing can be variably set, it is possible to stably form plasma and perform processing even when the actual processing gas pressure is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラズマ処理装置の一実施例を示す構
成図、第2図は第1図に示す装置における実験結果を示
した図、第3図は本発明のプラズマ処理方法を高周波放
電に適用した場合の説明図、第4図は本発明のプラズマ
処理装置の他の実施例を示す構成図、第5図は本発明の
プラズマ処理方法を直流放電に適用した場合の説明図で
ある。 1016反応室、      6・・・試料、8・・・
高周波電源、    9・・・圧力調整弁、11・・・
放電ガス供給装置、14・・・圧力調整装置、15・・
・制御装置、    45・・・直流電源。
FIG. 1 is a block diagram showing an embodiment of the plasma processing apparatus of the present invention, FIG. 2 is a diagram showing experimental results for the apparatus shown in FIG. 1, and FIG. 3 is a diagram showing the plasma processing method of the present invention using high-frequency discharge. FIG. 4 is a configuration diagram showing another embodiment of the plasma processing apparatus of the present invention, and FIG. 5 is an explanatory diagram when the plasma processing method of the present invention is applied to DC discharge. . 1016 reaction chamber, 6...sample, 8...
High frequency power supply, 9...pressure regulating valve, 11...
Discharge gas supply device, 14... Pressure adjustment device, 15...
-Control device, 45...DC power supply.

Claims (1)

【特許請求の範囲】 1、真空処理室に放電ガスを供給し、対向する電極の一
方に電力を供給し、放電ガス圧力が10mTorr以上
でプラズマを形成し、10mTorr未満で基体に対し
てプラズマ処理を行うことを特徴とするプラズマ処理方
法。 2、高周波電力によりスパッタエッチングを行うことを
特徴とする請求項1記載のプラズマ処理方法。 3、高周波電力によりスパッタデポジションを行うこと
を特徴とする請求項1記載のプラズマ処理方法。 4、直流電力によりスパッタデポジションを行うことを
特徴とする請求項1記載のプラズマ処理方法。 5、真空処理室に対向する電極と、放電ガス供給部と、
放電ガス圧力の調整手段と、電力供給装置と放電ガス圧
力および供給電力の制御手段を備え、プラズマを形成後
プラズマ処理ガス圧力および処理電力を、設定するよう
にしたことを特徴とするプラズマ処理装置。 6、高周波電力によりスパッタエッチングを行うことを
特徴とする請求項5記載のプラズマ処理装置。 7、高周波電力によりスパッタデポジションを行うこと
を特徴とする請求項5記載のプラズマ処理装置。 8、直流電力によりスパッタデポジションを行うことを
特徴とする請求項5記載のプラズマ処理装置。
[Claims] 1. Supplying a discharge gas to a vacuum processing chamber, supplying power to one of the opposing electrodes, forming plasma at a discharge gas pressure of 10 mTorr or more, and plasma processing the substrate at a pressure of less than 10 mTorr. A plasma processing method characterized by performing. 2. The plasma processing method according to claim 1, wherein the sputter etching is performed using high frequency power. 3. The plasma processing method according to claim 1, wherein the sputter deposition is performed using high frequency power. 4. The plasma processing method according to claim 1, wherein the sputter deposition is performed using DC power. 5. An electrode facing the vacuum processing chamber and a discharge gas supply section;
A plasma processing apparatus comprising a discharge gas pressure adjustment means, a power supply device, and a discharge gas pressure and supply power control means, and the plasma processing gas pressure and processing power are set after plasma is formed. . 6. The plasma processing apparatus according to claim 5, wherein sputter etching is performed using high frequency power. 7. The plasma processing apparatus according to claim 5, wherein sputter deposition is performed using high frequency power. 8. The plasma processing apparatus according to claim 5, wherein the sputter deposition is performed using DC power.
JP1107610A 1989-04-28 1989-04-28 Plasma processing method and apparatus Expired - Fee Related JP2670140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107610A JP2670140B2 (en) 1989-04-28 1989-04-28 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107610A JP2670140B2 (en) 1989-04-28 1989-04-28 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH02288227A true JPH02288227A (en) 1990-11-28
JP2670140B2 JP2670140B2 (en) 1997-10-29

Family

ID=14463538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107610A Expired - Fee Related JP2670140B2 (en) 1989-04-28 1989-04-28 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2670140B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490534A (en) * 1987-10-01 1989-04-07 Matsushita Electric Ind Co Ltd Plasma reactor
JPH01218024A (en) * 1988-02-26 1989-08-31 Matsushita Electric Ind Co Ltd Dry etching apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490534A (en) * 1987-10-01 1989-04-07 Matsushita Electric Ind Co Ltd Plasma reactor
JPH01218024A (en) * 1988-02-26 1989-08-31 Matsushita Electric Ind Co Ltd Dry etching apparatus

Also Published As

Publication number Publication date
JP2670140B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
KR101163264B1 (en) A method for modifying a gate dielectric stack containing a high-k layer using plasma processing
KR101677239B1 (en) Plasma processing apparatus and plasma processing method
US5935373A (en) Plasma processing apparatus
US8431035B2 (en) Plasma processing apparatus and method
US20100224587A1 (en) Plasma etching method, plasma etching apparatus and computer-readable storage medium
US9966291B2 (en) De-chuck control method and plasma processing apparatus
US20100203736A1 (en) Plasma Processing Method
KR20080111627A (en) Plasma processing apparatus and method thereof
KR20060002877A (en) Method and system for temperature control of a substrate
US20200357658A1 (en) Etching apparatus and etching method
US11189483B2 (en) Method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US20030024900A1 (en) Variable aspect ratio plasma source
KR20040018256A (en) Plasma processing method and apparatus with control of plasma excitation power
JP3411814B2 (en) Plasma processing equipment
JP7433164B2 (en) Substrate processing system
US20110198315A1 (en) Plasma processing method
KR20210097027A (en) Plasma processing apparatus and plasma processing method
KR20040030329A (en) Plasma doping method and plasma doping apparatus
KR20070116505A (en) Apparatus for processing of semiconductor wafer
US5861103A (en) Etching method and apparatus
JPH06122983A (en) Plasma treatment and plasma device
JPH02288227A (en) Plasma treatment method and device therefor
EP3748668A1 (en) Reactive ion etching device
JP4443819B2 (en) Plasma doping method
JP2928555B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees