JPH02287329A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH02287329A
JPH02287329A JP11154289A JP11154289A JPH02287329A JP H02287329 A JPH02287329 A JP H02287329A JP 11154289 A JP11154289 A JP 11154289A JP 11154289 A JP11154289 A JP 11154289A JP H02287329 A JPH02287329 A JP H02287329A
Authority
JP
Japan
Prior art keywords
optical
light
amplifier
gain
gain medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11154289A
Other languages
Japanese (ja)
Inventor
Hirohito Yamada
博仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11154289A priority Critical patent/JPH02287329A/en
Publication of JPH02287329A publication Critical patent/JPH02287329A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve SN ratio and stability by having a feedback optical path for light to return a part of light output by an antiphase to an input side. CONSTITUTION:This amplifier has the feedback optical path 10 for light to return a part of the light output in the antiphase to the input side. Namely, an optical system to return the light from the output side of the optical amplifier to the input side, i.e. a half mirror 13 and a mirror 12 are provided on the outside of a gain medium 11. The sum of the length l of the feedback optical path 10 of light and the optical path length nL of the gain medium 11 is determined by equation l+nL=mlambda/2 (m: odd number). In the equation, L is the length of the gain medium 11; n is the refractive index in the gain medium 11; lambda is the gain peak wavelength of the gain medium 11. Natural release light is suppressed in this way and the SN ratio and frequency stability are improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光アンプに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical amplifier.

〔従来の技術〕[Conventional technology]

従来、反転分布による誘導増幅を利用する光アンプは、
□色素レーザや固体レーザにおけるレーザ光増幅に用い
られており、さらに最近では長距離光通信システムにお
いて、光・電変換を行うことなく光の信号のまま直接増
幅する半導体光アンプも研究されている。特に半導体光
アンプは小型で低電力で動作し、高い増幅率が得られる
可能性があることから近年活発に研究が進められている
Conventionally, optical amplifiers that utilize stimulated amplification using population inversion,
□It is used for laser light amplification in dye lasers and solid-state lasers, and more recently, semiconductor optical amplifiers that directly amplify optical signals without performing optical-to-electrical conversion are also being researched in long-distance optical communication systems. . In particular, semiconductor optical amplifiers have been actively researched in recent years because they are small, operate with low power, and have the potential to provide high amplification factors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、以上に述べた従来の光アンプは光学利得媒体の
みから成り、光の帰還回路を持たず、SN比や安定度の
点ではまだ問題が残されている。特に長距離光通信シス
テムにおける光中継器のように、長距離伝送によって減
衰した微弱信号を増幅する光アンプには特に高いSN比
が求められている。しかしSN比の点では、メーザなど
のマイクロ波帯の電磁波増幅器に比べて、はるかに高い
周波数の電磁波である光を増幅するため、原理的に自然
放出の遷移確率が高くなるので、この自然放出光が雑音
として混入し、SN比の劣化を招いてしまう。また同時
に、この自然放出光の混入は出力光の周波数ゆらぎや利
得の変動を生じさせ、光アンプの安定度を劣化させる要
因にもなっている。
However, the conventional optical amplifier described above consists only of an optical gain medium and does not have an optical feedback circuit, and problems still remain in terms of S/N ratio and stability. In particular, an optical amplifier that amplifies weak signals that have been attenuated by long-distance transmission, such as an optical repeater in a long-distance optical communication system, is required to have a particularly high signal-to-noise ratio. However, in terms of signal-to-noise ratio, compared to electromagnetic wave amplifiers in the microwave band such as masers, it amplifies light, which is electromagnetic waves, at a much higher frequency, so in principle the transition probability of spontaneous emission increases, so this spontaneous emission Light mixes in as noise, leading to deterioration of the S/N ratio. At the same time, the contamination of this spontaneous emission light causes frequency fluctuations and gain fluctuations in the output light, and is a factor that deteriorates the stability of the optical amplifier.

本発明の目的はこのような従来の光アンプの欠点を除去
せしめて、長距離光通信システムにおける光中継器を始
めとするSN比や安定度が求められる光増幅器の分野に
十分適用できる光アンプを提供することにある。
The purpose of the present invention is to eliminate the drawbacks of conventional optical amplifiers, and to provide an optical amplifier that can be fully applied to the field of optical amplifiers that require high signal-to-noise ratio and stability, such as optical repeaters in long-distance optical communication systems. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するための手段としては、反転分布に
よる光学利得を有する媒体に光を入射させて、出力側か
ら増幅された光出力を取り出す光アンプにおいて、光出
力の一部を逆位相で入力側に戻す光の帰還光路を備えた
構成とした。
As a means to solve the above problem, in an optical amplifier that inputs light into a medium that has an optical gain due to population inversion and extracts the amplified optical output from the output side, a part of the optical output is output in reverse phase. The configuration includes a return optical path for returning light to the input side.

光出力の一部を逆位相で入力側に戻すには、光の帰還光
路の長さlと利得媒体の光路長nLの和が、次式によっ
て関係づけられる構成とすることで実現できる。
Returning a part of the optical output to the input side with an opposite phase can be realized by using a configuration in which the sum of the length l of the optical return path of the light and the optical path length nL of the gain medium is related by the following equation.

1 + n L=mλ/2(m:奇数)ここで、しは利
得媒体の長さ、nは利得媒体内での屈折率、λは利得媒
体の利得ピーク波長である。
1 + n L=mλ/2 (m: odd number) Here, is the length of the gain medium, n is the refractive index within the gain medium, and λ is the gain peak wavelength of the gain medium.

〔作用〕[Effect]

本発明の光アンプにおいては、出力の一部を逆位相で入
力側に戻す電子回路におけるいわゆる負帰還アンプの原
理を応用し、SN比および周波数安定度の改善を図って
いる。光の負帰還をかける方法としては、第1図の例に
示す様に通常の光アンプの出力側からの光を入力側に戻
す光学系(この図の場合はハーフミラ−13とミラー1
2で構成)を利得媒体の外部に設けることによって行う
。即ち、利得媒体11の長さをり、その内部での屈折率
をn、光帰還光路10の長さをlとすると、波長λに利
得ピークを有する利得媒体に対して負II*還を行うた
めには、次式の関係が成り立つように帰還光路の長さg
を決めれば良い。
In the optical amplifier of the present invention, the principle of a so-called negative feedback amplifier in an electronic circuit that returns part of the output to the input side in an opposite phase is applied to improve the S/N ratio and frequency stability. As a method for applying negative feedback to light, as shown in the example in Figure 1, an optical system that returns light from the output side of a normal optical amplifier to the input side (in the case of this figure, half mirror 13 and mirror 1 are used)
2) is provided outside the gain medium. That is, if the length of the gain medium 11 is the length of the gain medium 11, the refractive index inside it is n, and the length of the optical feedback optical path 10 is l, then in order to perform negative II* return on the gain medium that has a gain peak at the wavelength λ, is the length g of the return optical path so that the following relationship holds true:
All you have to do is decide.

1 + n L=mλ/2(m:奇数)−(1)こうす
ることによって、上式の条件を満たす利得ピーク付近の
波長の光に対して負帰還がかがる。
1 + n L=mλ/2 (m: odd number) - (1) By doing this, negative feedback is applied to light having a wavelength near the gain peak that satisfies the above condition.

この場合光アンプが利得を有する全ての波長域の光に対
して負帰還がかかることが望ましい。光の全帰還光路長
J2+nLと負帰還をかけることができる波長域へλと
の間には次式の関係が成り立つので、先負帰還をかける
利得媒体としてはできるだけ狭帯域の利得を有するもの
が望ましい。
In this case, it is desirable that negative feedback be applied to light in all wavelength ranges in which the optical amplifier has a gain. Since the following relationship holds between the total feedback optical path length J2+nL of light and the wavelength range λ to which negative feedback can be applied, it is desirable that the gain medium that applies negative feedback first has a gain as narrow as possible. .

、RL/n<λ2/Δλ ・・・(2)ここで、1は光
帰還光路の長さ、Lは利得媒体の長さ、nはその内部で
の屈折率、λは利得ピークの波長である。
, RL/n<λ2/Δλ (2) where 1 is the length of the optical return path, L is the length of the gain medium, n is the refractive index inside it, and λ is the wavelength of the gain peak. be.

第2図、第3図は従来の光無帰還アンプ(第2図A)と
本発明の先負帰還アンプ(第3図A)との違いを、電子
回路における無帰還アンプ(第2図B)および負帰還ア
ンプ(第3図B)と対比させて説明するものである。第
2図A、Bに示す無帰還アンプでは入・出力の関係は第
2図C,Dの様に表されるが、これに対して負帰還をか
けたアンプでは、第3図Bに示す電子回路の場合には周
知の様に入・出力の関係は第3図りのようになり、SN
比や周波数特製が改善される。一方、第3図Aの光アン
プの場合も電子回路と同様に、負帰還をかけることによ
ってSN比や利得の安定度の改善が期待できるが、光ア
ンプの場合には(1)式において、mが奇数の場合には
負帰還がががり、偶数の場合には逆に正帰還となり発振
することもあるので、第3図Cに示すように、利得のあ
る全領域で負帰還がかかることが望ましい。こうするこ
とにより自然放出光が抑えられ、利得ピーク波長付近の
光信号の増幅を行う場合SN比が改善される。
Figures 2 and 3 show the differences between the conventional optical non-feedback amplifier (Figure 2A) and the pre-negative feedback amplifier of the present invention (Figure 3A), and the non-feedback amplifier in the electronic circuit (Figure 2B). and a negative feedback amplifier (FIG. 3B). In the non-feedback amplifiers shown in Figure 2A and B, the input/output relationship is expressed as in Figure 2C and D, but in contrast, in the amplifier with negative feedback, it is shown in Figure 3B. In the case of electronic circuits, the input/output relationship is as shown in Figure 3, as is well known, and the SN
Ratio and frequency specialization are improved. On the other hand, in the case of the optical amplifier shown in FIG. 3A, as with electronic circuits, it can be expected that the stability of the S/N ratio and gain can be improved by applying negative feedback, but in the case of the optical amplifier, in equation (1), If m is an odd number, the negative feedback will be harsh, and if m is an even number, it will be positive feedback and may cause oscillation, so as shown in Figure 3C, negative feedback is applied in the entire gain range. is desirable. By doing so, spontaneous emission light is suppressed, and the S/N ratio is improved when an optical signal near the gain peak wavelength is amplified.

〔実施例〕〔Example〕

第4図は半導体を用いた光アンプの実施例を示すもので
、利得媒体21としては波長1.6μm組成の活性層を
有する素子長的30μmのDC−PBH半導体レーザの
両光出力端面に無反射コーティングを施した半導体光ア
ンプを用いた。半導体光アンプの出力側の端面から出る
光は光フアイバーカップラ23によって2つに分岐され
、一方は出力として、もう一方は光ファイバー25で成
る負帰還光路に入り、光アイソレータ24を通って再び
半導体光アンプの入力側に戻される。この場合、負帰還
光路の光ファイバー25の長さ(約100μm)を調節
することによって、アンプの利得ピーク付近の波長の光
に対して負帰還をがけられる。実際には光ファイバー2
5とアイソレータ24との距離をピエゾ素子で変えるこ
とによって、自然放出光が最小となるように調節するこ
とができる。ここでは通常の半導体レーザの端面に無反
射コーティングを施して利得媒体として用いているため
、特に狭帯域の利得媒体を用いているわけではない。し
かしこの様な構成においても、先負帰還を行わない場合
に比べて約2dB(7)SN比の改善を行うことができ
る。さらに大きなSN比の改善を図るためにはアンプの
利得を狭帯域化する必要があり、活性層を量子井戸構造
にするとか、Euなとの希土類をドープした半導体を用
いるとか、あるいは、フィルター特性を有する導波路と
結合したアンプを用いる方法などもある。
FIG. 4 shows an embodiment of an optical amplifier using a semiconductor, in which the gain medium 21 is a DC-PBH semiconductor laser with an element length of 30 μm and an active layer with a wavelength of 1.6 μm. A semiconductor optical amplifier with a reflective coating was used. The light emitted from the output side end face of the semiconductor optical amplifier is split into two by an optical fiber coupler 23, one as an output, and the other enters a negative feedback optical path consisting of an optical fiber 25, passes through an optical isolator 24, and returns to the semiconductor light. It is returned to the input side of the amplifier. In this case, by adjusting the length (approximately 100 μm) of the optical fiber 25 of the negative feedback optical path, negative feedback can be applied to light having a wavelength near the gain peak of the amplifier. Actually optical fiber 2
By changing the distance between the isolator 5 and the isolator 24 using a piezo element, the spontaneous emission light can be adjusted to be minimized. Here, an anti-reflection coating is applied to the end face of a normal semiconductor laser and used as a gain medium, so a particularly narrow band gain medium is not used. However, even with this configuration, the S/N ratio can be improved by about 2 dB (7) compared to the case where no prior negative feedback is performed. In order to further improve the S/N ratio, it is necessary to make the amplifier gain narrower, and it is necessary to make the active layer a quantum well structure, use a semiconductor doped with a rare earth such as Eu, or use filter characteristics. There is also a method of using an amplifier coupled to a waveguide having .

〔発明の効果〕〔Effect of the invention〕

本発明の実施例に示した光アンプでは、200mAの電
流注入時にファイバー間利得17dBが得られており、
従来の無帰還の光アンプ(ファイバー間利得16〜18
dB)に匹敵する増幅率が得られている。一方、利得の
ゆらぎに関しては、従来の無帰還の光アンプが3dB程
度の利得のゆらぎがあるのに対して、本発明の実施例の
光アンプでは0.5dB以内に抑えられている。またS
N比も従来の光アンプより2dB程度の改善がなされて
おり、従って本発明の光アンプを長距離大容量光通信シ
ステムの中継器に応用することも十分可能である。これ
は従来型の光・電変換型の光中継器に代用可能なことを
示唆するものである。さらに従来型の光・電変換型の中
継器に比べて部品点数が少なく、故障する確率は光アン
プを用いた光中継器でははるかに小さくなる。従って大
洋横断海底光ケーブルの中継器などのように故障修理の
困難な箇所へ応用するメリットは大きい また本発明による光アンプを固体レーザや色素レーザの
光増幅器として用いれば、よりコヒートレンドなレーザ
光出力が得られ、単色性、集束性に優れた光源として用
いることができる。
In the optical amplifier shown in the embodiment of the present invention, a fiber-to-fiber gain of 17 dB was obtained when a current of 200 mA was injected.
Conventional non-feedback optical amplifier (fiber-to-fiber gain 16 to 18
dB) was obtained. On the other hand, regarding gain fluctuations, while conventional non-feedback optical amplifiers have gain fluctuations of about 3 dB, the optical amplifier according to the embodiment of the present invention suppresses the gain fluctuations to within 0.5 dB. Also S
The N ratio is also improved by about 2 dB over conventional optical amplifiers, and therefore it is fully possible to apply the optical amplifier of the present invention to repeaters in long-distance, large-capacity optical communication systems. This suggests that it can be used as a substitute for conventional optical-to-electrical conversion type optical repeaters. Additionally, optical repeaters that use optical amplifiers have fewer parts than conventional optical-to-electrical converter repeaters, and the probability of failure is much lower with optical repeaters that use optical amplifiers. Therefore, there is a great advantage in applying it to locations where failure and repair are difficult, such as transoceanic submarine optical cable repeaters.Furthermore, if the optical amplifier according to the present invention is used as an optical amplifier for solid-state lasers or dye lasers, laser light output with a higher coherency trend can be achieved. can be obtained, and can be used as a light source with excellent monochromaticity and focusing properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光アンプの概念図で、第2図、第3図
は光アンプの動作を説明する図である。第4図は本発明
の実施例を示す図である。 図において、11・・・反転分布による光学利得を有す
る媒体、12・・・ミラー 13・・・ハーフミラ−2
1・・・半導体光アンプ、23・・・光フアイバーカッ
プラ、24・・・光アイソレータ、25・・・光ファイ
バー
FIG. 1 is a conceptual diagram of the optical amplifier of the present invention, and FIGS. 2 and 3 are diagrams for explaining the operation of the optical amplifier. FIG. 4 is a diagram showing an embodiment of the present invention. In the figure, 11...Medium having optical gain due to population inversion, 12...Mirror 13...Half mirror 2
1... Semiconductor optical amplifier, 23... Optical fiber coupler, 24... Optical isolator, 25... Optical fiber

Claims (1)

【特許請求の範囲】[Claims]  反転分布による光学利得を有する媒体に光を入射させ
て、出力側から増幅された光出力を取り出す光アンプに
おいて、光出力の一部を逆位相で入力側に戻す光の帰還
光路を具備したことを特徴とする光アンプ。
An optical amplifier that inputs light into a medium having an optical gain due to population inversion and extracts an amplified optical output from the output side, which is equipped with a return optical path for returning part of the optical output to the input side with an opposite phase. An optical amplifier featuring
JP11154289A 1989-04-27 1989-04-27 Optical amplifier Pending JPH02287329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11154289A JPH02287329A (en) 1989-04-27 1989-04-27 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11154289A JPH02287329A (en) 1989-04-27 1989-04-27 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH02287329A true JPH02287329A (en) 1990-11-27

Family

ID=14564012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154289A Pending JPH02287329A (en) 1989-04-27 1989-04-27 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH02287329A (en)

Similar Documents

Publication Publication Date Title
JP3025210B2 (en) Apparatus including optical fiber Raman amplifier
JP2640445B2 (en) Optical amplifier
US5623362A (en) Erbium-doped fiber amplifier and an optical fiber communication system
Joergensen et al. 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers
US5497265A (en) High-power signals optical generator for telecommunication systems
JP3283714B2 (en) All-optical flip-flop device and operation method thereof
JPH05509202A (en) optical waveguide amplifier
JP2598211B2 (en) Optical device, lightwave transmission system and light amplification method
JP2852161B2 (en) Amplifier using amplified optical fiber
US6862132B1 (en) Suppression of double rayleigh backscattering and pump reuse in a raman amplifier
US5235604A (en) Optical amplifier using semiconductor laser as multiplexer
JPH04504784A (en) High gain semiconductor laser amplifier package
JPH0496287A (en) Optical amplifier
JPH02287329A (en) Optical amplifier
JP2834867B2 (en) Erbium-doped fiber amplifier
US6504647B1 (en) Optical fiber amplifier, a method of amplifying optical signals, optical communications system
JPH06102546A (en) Optical communication system having power limiter for high energy pulse
JPS62189830A (en) Optical repeater
JPS6153709B2 (en)
JP3536691B2 (en) Optical transmission path
KR100192229B1 (en) Unit for amplifying light signals in optical fiber transmission lines
JP4655353B2 (en) Optical amplification fiber, optical fiber amplifier, and optical communication system
CN220527387U (en) Single-frequency optical fiber laser
CN216413497U (en) Laser device
Yamada et al. Automatic intensity control of an optical transmission line using enhanced gain saturation in cascaded optical amplifiers