JPH02287106A - Uppermost layer film thickness measring method - Google Patents

Uppermost layer film thickness measring method

Info

Publication number
JPH02287106A
JPH02287106A JP10823189A JP10823189A JPH02287106A JP H02287106 A JPH02287106 A JP H02287106A JP 10823189 A JP10823189 A JP 10823189A JP 10823189 A JP10823189 A JP 10823189A JP H02287106 A JPH02287106 A JP H02287106A
Authority
JP
Japan
Prior art keywords
top layer
layer film
thickness
sample
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10823189A
Other languages
Japanese (ja)
Other versions
JPH0690012B2 (en
Inventor
Tomokuni Inoue
井上 友邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP10823189A priority Critical patent/JPH0690012B2/en
Publication of JPH02287106A publication Critical patent/JPH02287106A/en
Publication of JPH0690012B2 publication Critical patent/JPH0690012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure thickness of the uppermost layer of a film even when a substrate has multi-layered structure by deriving logically reflection factor characteristics which are based upon the film thickness of the upper most layer as a parameter, and comparing them with actually found reflection factor characteristics. CONSTITUTION:A sample 10 having no uppermost layer is set opposite a projec tor photodetector 6 and a sample 11 having the uppermost layer is set opposite to a projector photodetector 7; and the output of a spectrometer 1 is inputted to a personal computer 3. Then the reflection factor characteristics of the sam ple 10 having no uppermost layer are measured to find an equivalent refractive index, which is used to derive logically the reflection factor characteristics based upon the film thickness as the parameter by using a specific arithmetic expression. Then, the reflection factor characteristics of the sample 11 where the uppermost layer is formed are found, and compared with said logical reflec tion factor characteristics and the film thickness corresponding to the reflection factor when the both match each other most is regarded as the film thickness of the uppermost layer.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、サンプルに形成された最上層膜の膜厚を光学
的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for optically measuring the thickness of a top layer film formed on a sample.

〈従来の技術〉 従来より、ガラスやフィルムに反射防止膜を形成したり
、半導体基板に特性の異なる半導体を形成したり、フォ
トレジストを塗布したりするときに、膜厚を正確に測定
する必要がある。
<Conventional technology> Conventionally, it has been necessary to accurately measure film thickness when forming antireflection films on glass or films, forming semiconductors with different characteristics on semiconductor substrates, or coating photoresists. There is.

ところが上記の膜厚は、μm、nmの領域にわたること
が多いため、光学的な原理で測定するのが通常であり、
これにより、非接触で高精度の膜厚測定が可能となる。
However, since the above film thickness often ranges from μm to nm, it is usually measured using optical principles.
This enables highly accurate film thickness measurement without contact.

特に最近ではコヒーレントなレーザ光源を使用すること
により、さらに精度の高い測定ができるようになった。
Particularly recently, the use of coherent laser light sources has made it possible to perform even more precise measurements.

上記膜厚を求める方法の一つは、光の干渉現象を利用し
た方法である。例えば、第3図に示すように屈折率ns
の基板に屈折率nrの薄膜が形成されている場合、上部
から光を垂直に入射し、薄膜の表面で反射した光と、薄
膜内を繰り返し反射した後に薄膜の表面を透過した光と
は干渉を起こす。すなわち、薄膜の厚さをD、薄膜表面
での振幅反射率をrl、薄膜と基板との間での振幅反射
率をr2とすると、強度反射率Rは、よく知られている
ように で表される。ここに、δは、4πn(’D/λ−φ(λ
は空気中の波長、φはnf’≧nsのときπ、nf’ 
<nsのとき0)で表される。
One of the methods for determining the film thickness is a method that utilizes a light interference phenomenon. For example, as shown in FIG. 3, the refractive index ns
When a thin film with a refractive index nr is formed on a substrate of wake up That is, if the thickness of the thin film is D, the amplitude reflectance on the surface of the thin film is rl, and the amplitude reflectance between the thin film and the substrate is r2, then the intensity reflectance R is expressed as: be done. Here, δ is 4πn('D/λ−φ(λ
is the wavelength in air, φ is π when nf'≧ns, nf'
<ns, it is expressed as 0).

なお、振幅反射率rlと屈折率とは、 rl = (1−nf’ ) / <1+nf )  
  ■振幅反射率r2と屈折率とは、 r2 = (nf −ns )/ (nr+ns ) 
 ■の関係がある(フレネルの式)。
The amplitude reflectance rl and refractive index are rl = (1-nf') / <1+nf)
■Amplitude reflectance r2 and refractive index are r2 = (nf - ns)/ (nr+ns)
■There is a relationship (Fresnel's equation).

従来の膜厚測定においては、離散的または連続的な波長
値に対して強度反射率Rを実測し、薄膜の屈折率nf’
が既知であるという前提で、この実測カーブを、薄膜の
屈折率nf’と、基板の屈折率ns  (nsは既知で
あってもよくまたは実測で求めてもよい)とから理論的
に予測される強度反射率Rの波長特性カーブにフィツト
させることによって求めていた。
In conventional film thickness measurement, the intensity reflectance R is actually measured for discrete or continuous wavelength values, and the refractive index nf' of the thin film is calculated.
is known, this measured curve can be theoretically predicted from the refractive index nf' of the thin film and the refractive index ns of the substrate (ns may be known or determined by actual measurement). It was determined by fitting the wavelength characteristic curve of the intensity reflectance R.

〈発明が解決しようとする課題〉 ところが、上記の方法は、基板が単一の光学的性質を持
っている時には適用できるが、基板が多層膜であって、
基板内の6膜からの反射が無視できないときには適用で
きない。基板が多層膜であることは、例えば半導体基板
の上にブレーナ技術で複数の膜を順次形成していく時と
か、透明ラミネートフィルムの上にさらに膜を形成する
時等に起こり得ることである。
<Problems to be Solved by the Invention> However, the above method can be applied when the substrate has a single optical property, but when the substrate is a multilayer film,
This cannot be applied when reflections from the six films within the substrate cannot be ignored. The fact that the substrate is a multilayer film can occur, for example, when a plurality of films are sequentially formed on a semiconductor substrate using the brainer technique, or when an additional film is formed on a transparent laminate film.

この場合には、電磁場の境界条件を用いた複雑な理論式
に当てはめて解く必要があり、大きなコンピュータが必
要になり、計算時間がかかるという問題がある。
In this case, it is necessary to solve the problem by applying a complex theoretical formula using boundary conditions of the electromagnetic field, which requires a large computer and takes a long calculation time.

そこで、本発明は多層膜基板の上に膜を形成した場合で
あっても、簡単な計算法で容易に膜厚を求めることので
きる最上層膜厚測定方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for measuring the thickness of the top layer that can easily determine the film thickness using a simple calculation method even when the film is formed on a multilayer film substrate.

く課題を解決するための手段〉 上記の目的を達成するための請求項1記載の最上層膜厚
測定方法は、複数の波長の光に対して、各波長ごとに、
以下の手順にしたがって最上層膜厚を得るものである。
Means for Solving the Problem> The method for measuring the thickness of the top layer according to claim 1 for achieving the above object includes the following steps for each wavelength of light of a plurality of wavelengths:
The thickness of the top layer is obtained according to the following procedure.

(1)最上層膜のない、光学的構造が不明なサンプルの
反射率特性を測定する。
(1) Measure the reflectance characteristics of a sample with no top layer film and whose optical structure is unknown.

(2)上記手順により1lll定した反射率特性を用い
て等価的な屈折率を求める。
(2) Find an equivalent refractive index using the reflectance characteristics determined by the above procedure.

(3)当該サンプル上に形成された最上層膜の反射率特
性を測定する。
(3) Measure the reflectance characteristics of the top layer film formed on the sample.

(4)単一の光学的性質を有する基板に形成された最上
層膜の膜厚を決定する計算式に、(2)の手順で得られ
たサンプルの屈折率特性を当てはめて、各膜厚に対応し
た最上層膜の反射率特性を推定する。
(4) Applying the refractive index characteristics of the sample obtained in step (2) to the calculation formula for determining the thickness of the top layer film formed on a substrate with a single optical property, each film thickness is Estimate the reflectance characteristics of the top layer film corresponding to

(5)上記(3)の手順で得られた反射率特性が、(4
)の手順で得られたいずれかの反射率特性と最も合致す
る場合に、当該合致する反射率特性に対応する膜厚を最
上層の膜厚として決定する。
(5) The reflectance characteristics obtained in the procedure (3) above are (4
), the film thickness corresponding to the matching reflectance property is determined as the film thickness of the uppermost layer.

く作用〉 上記の手順によれば、まず、サンプルの反射率特性を測
定することによって、既知の式により基板の等価的な屈
折率を導くことかできる。
Effect> According to the above procedure, by first measuring the reflectance characteristics of the sample, it is possible to derive the equivalent refractive index of the substrate using a known formula.

そして、この等価的な屈折率により最上層膜の膜厚をパ
ラメータとする反射率特性を理論的に導いておく。
Using this equivalent refractive index, the reflectance characteristics using the thickness of the top layer film as a parameter are theoretically derived.

当該サンプル上に形成された最上層膜の反射率特性を測
定し、理論的に導かれた上記特性との比較をすることに
より、最上層膜の膜厚を推定することができる。
The film thickness of the top layer film can be estimated by measuring the reflectance characteristics of the top layer film formed on the sample and comparing it with the theoretically derived characteristics.

なお、上記の方法によれば、最上層膜のないサンプルが
光吸収性であるときにも適用できる。この場合、(1)
で得られ・た最上層膜のないサンプルの反射率特性は、
光吸収性をその中に反映したものとなっている。したが
って、こうして得られた反射率特性を用いて最上層の膜
厚を決定すれば、その決定された膜厚は、光吸収性のサ
ンプルの上に形成された最上層の膜厚を正確に測定した
ものになる。
Note that the above method can also be applied when the sample without the top layer film is light absorbing. In this case, (1)
The reflectance characteristics of the sample without the top layer obtained in
The light absorption property is reflected in it. Therefore, if the thickness of the top layer is determined using the reflectance characteristics obtained in this way, the determined thickness will accurately measure the thickness of the top layer formed on the light-absorbing sample. It becomes what it is.

〈実施例〉 以下実施例を示す添付図面によって詳細に説明する。<Example> Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments.

第1図は、本発明の最上層膜厚測定方法を実施する測定
装置のブロック図であり、 ・波長600 nm−1000nn+の同時測定が可能
な分光光度計(1)、 ・白色光源(2)とそれに備え付けられるバランシング
フィルタ(21)、 ・表示器(31)を備えたパーソナルコンピュータ(3
)、・バランシングフィルタ(21)を通して白色光源
(2)の光を導く光ファイバ(52) (82) (7
2)、・分光光度計(1)に光を導く光ファイバ(51
)、(61)。
FIG. 1 is a block diagram of a measuring device that implements the method for measuring the top layer film thickness of the present invention, including: - A spectrophotometer (1) capable of simultaneous measurement of wavelengths of 600 nm-1000 nm+; - White light source (2) and a balancing filter (21) attached thereto, - a personal computer (3) equipped with a display (31);
), ・Optical fiber (52) (82) (7) that guides the light from the white light source (2) through the balancing filter (21)
2), Optical fiber (51) that guides light to the spectrophotometer (1)
), (61).

(71)、 ・光ファイバ(51)(52)の先端に取り付けられた
投受光器(5)、 ・光ファイバ(91) (82)の先端に取り付けられ
た投受光器(6)、 ・光ファイバ(71)(72)の先端に取り付けられた
投受光器q)、 等からなる。
(71), - Light emitter/receiver (5) attached to the tip of the optical fiber (51) (52), - Light emitter/receiver (6) attached to the tip of the optical fiber (91) (82), - Light It consists of a light emitter/receiver q) attached to the tips of fibers (71) (72), etc.

投受光器(5)には、シャッタB)を介して反射ミラー
(9)が対向し、投受光器(6)には、最上層がない(
D−0)基板のみのサンプル(lO)が対向し、投受光
器(力には基板上に最上層が形成されたサンプル(11
)が対向する。
A reflecting mirror (9) faces the light emitter/receiver (5) via a shutter B), and the light emitter/receiver (6) has no uppermost layer (
D-0) A sample with only a substrate (lO) faces the emitter/receiver (a sample with the top layer formed on the substrate (11)
) are facing each other.

上記装置を用いて最上層の膜厚を測定するには、まずバ
ランシングフィルタ(21)、投受光器(5)、光ファ
イバ(51)(52)、反射ミラー(9)を含む光学系
の分光強度補正を行っておく。
To measure the film thickness of the top layer using the above device, first, the optical system including the balancing filter (21), light emitter/receiver (5), optical fibers (51) (52), and reflection mirror (9) is subjected to spectroscopy. Perform strength correction.

次に、光ファイバ(51)を通して得られる反射ミラー
(9)の反射強度を基準として、基板のみのサンプル(
10)の反射強度を測定する。この反射強度は、基板の
みのサンプル(10)が光吸収性をもっていれば、この
光吸収度を反映できるものである。ここで得られた反射
率Rを使って、フレネルの式%式% から、サンプル(10)を単一の基板と考えたときの屈
折率nsを求める。
Next, using the reflection intensity of the reflection mirror (9) obtained through the optical fiber (51) as a reference, a sample of only the substrate (
10) Measure the reflection intensity. This reflection intensity can reflect the light absorption if the substrate-only sample (10) has light absorption. Using the reflectance R obtained here, the refractive index ns when considering the sample (10) as a single substrate is determined from Fresnel's formula % formula %.

一方、最上層の屈折率nr  (既知)を使って反射率 r2  =  (1−nr  )  /  (1+nl
’  )      ■を求める。
On the other hand, using the refractive index nr (known) of the top layer, the reflectance r2 = (1-nr) / (1+nl
') Find ■.

上記手順は、光の波長を変えて行う必要があるが、本実
施例では、白色光を用いて全波長を同時測定し、そのデ
ータを使って上記処理をリアルタイムで行う。
The above procedure needs to be performed by changing the wavelength of light, but in this embodiment, all wavelengths are simultaneously measured using white light, and the above processing is performed in real time using the data.

そして、これらの屈折率を前出■■■式に代入して、最
上層膜厚りをパラメータとした反射率Rの波長分布理論
曲線をパーソナルコンピュータ(3)で求め、そのデー
タを記憶しておく。このデータは必要により読出して表
示器(31)に表示させることができる。この表示され
た理論曲線の例を第2図に示す。
Then, by substituting these refractive indexes into the above formula, a theoretical curve of wavelength distribution of reflectance R with the thickness of the top layer as a parameter is obtained using a personal computer (3), and the data is stored. put. This data can be read out and displayed on the display (31) if necessary. An example of this displayed theoretical curve is shown in FIG.

次に、基板のみのサンプル(10)の反射強度をリファ
レンスとして、最上層が形成されたサンプル(11)の
反射率を幾つかの波長に対して求める。求めた反射率デ
ータはパーソナルコンピュータ(3)の記録部に記録さ
れ、必要により読出され表示器(31)に魚群状に表示
される。
Next, using the reflection intensity of the sample (10) containing only the substrate as a reference, the reflectance of the sample (11) on which the top layer is formed is determined for several wavelengths. The obtained reflectance data is recorded in the recording section of the personal computer (3), read out if necessary, and displayed in the shape of a school of fish on the display (31).

オペレータは、魚群状に表示された反射率を理論曲線に
重ね合わせ、第2図に示すように、最もカーブフィツト
する理論曲線を捜し出し、当該理論曲線に対応する膜厚
りを最上層の膜厚とする。
The operator superimposes the reflectance displayed in the shape of a school of fish on the theoretical curve, searches for the theoretical curve that best fits the curve as shown in Figure 2, and calculates the film thickness corresponding to the theoretical curve as the film thickness of the top layer. shall be.

以上のようにして、基板の光学的構造が分からなくとも
、複雑な計算式を使わずに、短時間で最上層の膜厚を知
ることができる。特に、基板のみのサンプル(10)が
光吸収性をもっていても、その吸収性を考慮した上で、
膜厚を正確に測定できる。
As described above, even if the optical structure of the substrate is not known, the thickness of the top layer can be determined in a short time without using complicated calculation formulas. In particular, even if the sample (10) consisting only of a substrate has light absorption properties, considering the absorption properties,
Film thickness can be measured accurately.

上記実施例では、複数波長の光を用いて複数個のデータ
を得、カーブフィツトさせることにより膜厚を決定した
。しかし、測定対象とする膜厚の範囲か初めから限定で
きるならば、カーブフィツトさせなくとも、理論式に直
接当てはめるだけで膜厚を決定できる。例えば、第4図
に示すように、膜厚をDlからD2に限定するならば、
膜厚DlからD2の間では、■式により求める理論的な
反射率Rの値は一意的であるから、多数の波長の光を使
わなくとも、単一の波長を用いて基板の等価的な屈折率
と最上層膜の反射率をn1定し、理論式に当てはめるこ
とにより膜厚を求めることが可能となる。
In the above example, the film thickness was determined by obtaining a plurality of pieces of data using light of a plurality of wavelengths and performing curve fitting. However, if the range of film thickness to be measured can be defined from the beginning, the film thickness can be determined by directly applying it to a theoretical formula without curve fitting. For example, if the film thickness is limited from Dl to D2 as shown in FIG.
Between the film thicknesses Dl and D2, the value of the theoretical reflectance R determined by formula By setting the refractive index and the reflectance of the top layer film as n1 and applying it to a theoretical formula, the film thickness can be determined.

なお、本発明は上記の実施例に限定されるものではなく
、第1図の測定装置において、反射ミラー(9)を省略
し、光源〔2)から直接分光光度計(1)に光を供給す
ることも可能であり、投受光器(6)を省略し、基板の
みのサンプル(10)と最上層が形成されたサンプル(
11)とを適宜取り替えることにより測定することも可
能である。その池水発明の要旨を変更しない範囲内にお
いて、種々の変更を施すことが可能である。
Note that the present invention is not limited to the above-mentioned embodiment, and in the measuring device shown in FIG. 1, the reflecting mirror (9) is omitted and light is directly supplied from the light source [2] to the spectrophotometer (1). It is also possible to omit the emitter/receiver (6) and create a sample with only the substrate (10) and a sample with the top layer formed (
It is also possible to measure by replacing 11) as appropriate. Various changes can be made without changing the gist of the Ikensui invention.

〈発明の効果〉 以上のように、本発明の最上層膜厚測定方法によれば、
基板の光学的構造が未知の場合でも、等価的に単一の光
学的性質を有する基板と見なすことにより、既知の計算
式を用いて短時間で簡単に最上層膜厚を測定できる。
<Effects of the Invention> As described above, according to the method for measuring the thickness of the top layer of the present invention,
Even if the optical structure of the substrate is unknown, the thickness of the top layer can be easily measured in a short time using a known calculation formula by considering the substrate as equivalently having a single optical property.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の最上層膜厚i’l1lJ定方法を実施
する測定装置のブロック図、 第2図は理論曲線と、測定点との一致を示すグラフ、 第3図は基板に形成された最上膜の反射を説明する図、 第4図は波長を一定とした時の、膜厚対反射率の理論カ
ーブを示すグラフである。 (10)・・・最上層膜を形成していない状態のサンプ
ル、(11)・・・最上層膜を形成後のサンプル第4図 ID2
Figure 1 is a block diagram of a measuring device that implements the method for determining the top layer film thickness i'l1lJ of the present invention, Figure 2 is a graph showing the correspondence between the theoretical curve and the measurement points, and Figure 3 is the FIG. 4 is a graph showing a theoretical curve of film thickness versus reflectance when the wavelength is constant. (10)...Sample without the top layer film formed (11)...Sample after the top layer film is formed Fig. 4 ID2

Claims (1)

【特許請求の範囲】 1、複数の波長の光に対して、最上層膜を 形成していない状態の、かつ、光学的構 造が未知のサンプルの反射率特性を測定 する第1の手順と、上記手順により測定 した反射率特性を用いてサンプルの等価 的な屈折率を求める第2の手順と、当該 サンプル上に形成された最上層膜の反射 率特性を測定する第3の手順と、単一の 光学的性質を有する基板に形成された最 上層膜の膜厚を決定する計算式に、第2 の手順で得られたサンプルの等価的な屈 折率を当てはめて、最上層膜の各膜厚に 対応した最上層膜の反射率特性を推定す る第4の手順と、第3の手順で得られた 反射率特性が、第4の手順で得られたい ずれかの反射率特性と最も合致する場合 に、当該合致する反射率特性に対応する 膜厚を最上層の膜厚として決定する第5 の手順とを採用することを特徴とする最 上層膜厚測定方法。 2、単一の波長の光に対して、最上層膜が 未形成であって、かつ、光学的構造が未 知のサンプルの反射率特性を測定する第 1の手順と、上記手順により測定した反 射率特性を用いて等価的な屈折率を求め る第2の手順と、当該サンプル上に形成 された最上層膜の反射率特性を測定する 第3の手順と、単一の光学的性質を有す る基板に形成された最上層膜の膜厚を決 定する計算式に、第2の手順で得られた サンプルの等価的な屈折率と、第3の手 順で得られた最上層膜の反射率特性とを 当てはめて、最上層膜の膜厚を決定する 第4の手順とを採用することを特徴とす る最上層膜厚測定方法。[Claims] 1. The top layer film is resistant to light of multiple wavelengths. Unformed and optical structure Measuring reflectance characteristics of samples with unknown structure Measure using the first step and the above steps. The equivalent reflectance characteristics of the sample are The second step of determining the refractive index and the Reflection of the top layer film formed on the sample A third step to measure the rate characteristics and a single An optical fiber formed on a substrate with optical properties. In the calculation formula for determining the thickness of the upper layer film, the second Equivalent bending of the sample obtained by the procedure Apply the refractive index to each thickness of the top layer film. Estimate the reflectance characteristics of the corresponding top layer film. The fourth step is to The reflectance characteristics should be obtained in the fourth step. When it most closely matches the reflectance characteristics of either corresponds to the matching reflectance characteristic. Fifth, determining the film thickness as the thickness of the top layer The best method characterized by adopting Upper layer thickness measurement method. 2. The top layer film is sensitive to light of a single wavelength. unformed and without optical structure. The first step is to measure the reflectance properties of the sample. 1 and the reaction measured by the above procedure. Find the equivalent refractive index using emissivity characteristics The second step is to Measuring the reflectance characteristics of the top layer film with a third step and a single optical property Determine the thickness of the top layer film formed on the substrate. The calculation formula obtained in the second step is Equivalent refractive index of sample and third hand The reflectance characteristics of the top layer film obtained in the following order are Apply it to determine the thickness of the top layer film. It is characterized by adopting the fourth procedure. Top layer thickness measurement method.
JP10823189A 1989-04-27 1989-04-27 Top layer film thickness measurement method Expired - Lifetime JPH0690012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10823189A JPH0690012B2 (en) 1989-04-27 1989-04-27 Top layer film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10823189A JPH0690012B2 (en) 1989-04-27 1989-04-27 Top layer film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH02287106A true JPH02287106A (en) 1990-11-27
JPH0690012B2 JPH0690012B2 (en) 1994-11-14

Family

ID=14479385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10823189A Expired - Lifetime JPH0690012B2 (en) 1989-04-27 1989-04-27 Top layer film thickness measurement method

Country Status (1)

Country Link
JP (1) JPH0690012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440141A (en) * 1993-08-20 1995-08-08 Dainippon Screen Mfg. Co., Ltd. Method of measuring a thickness of a multilayered sample using ultraviolet light and light with wavelengths longer than ultraviolet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440141A (en) * 1993-08-20 1995-08-08 Dainippon Screen Mfg. Co., Ltd. Method of measuring a thickness of a multilayered sample using ultraviolet light and light with wavelengths longer than ultraviolet

Also Published As

Publication number Publication date
JPH0690012B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
Arndt et al. Multiple determination of the optical constants of thin-film coating materials
Amra et al. Role of interface correlation in light scattering by a multiplayer
US6091485A (en) Method and apparatus for optically determining physical parameters of underlayers
US6172752B1 (en) Method and apparatus for simultaneously interferometrically measuring optical characteristics in a noncontact manner
CN103743349B (en) Method and device for measuring nano film
Joerger et al. Influence of incoherent superposition of light on ellipsometric coefficients
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
Sandström et al. Visual detection of organic monomolecular films by interference colors
CN102243065A (en) Back compensation-based transparent substrate film thickness measurement system
Netterfield Refractive indices of zinc sulfide and cryolite in multilayer stacks
US3645771A (en) Multilayer blooming process including precoating of the substrate used for monitoring
JP3941432B2 (en) Film thickness measurement method
JPH02287106A (en) Uppermost layer film thickness measring method
US9019484B2 (en) Combining normal-incidence reflectance and transmittance with non-normal-incidence reflectance for model-free characterization of single-layer films
JP2006242798A (en) Film thickness and calculation method of optical constant
Beléndez et al. Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances
Filippov Method of the ratio of envelopes of the reflection spectrum for measuring optical constants and thickness of thin films
RU2415378C2 (en) Method of measuring thickness and refractivity index of thin transparent substrate coats
Poitras et al. Simple method for determining slowly varying refractive-index profiles from in situ spectrophotometric measurements
JP3578620B2 (en) Optical constant measuring method and optical constant measuring device
Osovitskii An Integral approach to measurement of surface roughness parameters from light scattering in dielectric waveguides
JPS63140940A (en) Measuring method for refractive index and film thickness
Hodgkinson The change in thickness and other optical properties of ultraviolet irradiated silicon oxide films
SU1107033A1 (en) Method of determination of complex refraction index of film structures on base
JP2522480B2 (en) Refractive index measurement method