JPH0228605B2 - - Google Patents

Info

Publication number
JPH0228605B2
JPH0228605B2 JP55163361A JP16336180A JPH0228605B2 JP H0228605 B2 JPH0228605 B2 JP H0228605B2 JP 55163361 A JP55163361 A JP 55163361A JP 16336180 A JP16336180 A JP 16336180A JP H0228605 B2 JPH0228605 B2 JP H0228605B2
Authority
JP
Japan
Prior art keywords
styrene
butadiene
compound
integer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55163361A
Other languages
Japanese (ja)
Other versions
JPS5787407A (en
Inventor
Yoshito Yoshimura
Noboru Ooshima
Akira Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP16336180A priority Critical patent/JPS5787407A/en
Publication of JPS5787407A publication Critical patent/JPS5787407A/en
Publication of JPH0228605B2 publication Critical patent/JPH0228605B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は転がり摩擦抵抗及び破壊特性の改良さ
れたスチレン―ブタジエン共重合体の製造方法に
関するものである。 従来から炭化水素溶媒中でエーテル化合物又は
第3級アミン化合物の存在下で1,3―ブタジエ
ンとスチレンを有機リチウム化合物を用いて重合
を行うことによつてランダムなスチレン―ブタジ
エン共重合体が得られることはよく知られてい
る。 又スチレン―ブタジエン共重合体をハロゲン化
スズ化合物でカツプリングする方法も公知(特公
昭44−4996号公報)である。しかしながらこの方
法によりカツプリングを行なつたスチレン―ブタ
ジエン共重体は、カツプリングを行わない共重合
体に比べ、破壊特性は改善されるものの転がり摩
擦抵抗特性改善の点では必ずしも十分でない。 本発明者らは、かかる欠点を改善すべく、鋭意
検討した結果、おどろくべきことにカツプリング
直前に共役ジエン化合物を添加してスチレンユニ
ツトと、スズとの結合鎖の生成をおさえることに
よりこれらの欠点を改善できることを見いだし、
本発明に至つた。 本発明は炭化水素溶媒中、エーテル化合物又は
第3級アミン化合物の存在下で1,3―ブタジエ
ンとスチレンを有機リチウム化合物を用いて重合
を行つた後、一般式RxSoZy又はRaZbSo(CH2oSo
RaZb 〔担し、式中Rはアルキル基、アルケニル基、
シクロアルキル基又は芳香族炭化水素基、Zはハ
ロゲン原子、xは0〜2の整数、aは0〜2の整
数、nは1〜10の整数、yは2〜4の整数、bは
1〜3の整数である〕 で表わされるスズ化合物でカツプリングを行うに
際し、カツプリングを行なう直前に共役ジエン化
合物を添加して重合を行うことを特徴とする共役
ジエンユニツト―スズ結合鎖を含むスチレン―ブ
タジエン共重合体の製造方法を提供するものであ
る。 本発明により転がり摩擦抵抗特性及び破壊特性
が改良された、共役ジエン―スズ結合鎖を含むラ
ンダムなスチレン―ブタジエン共重合体を製造す
ることができる。 共役ジエンモノマーユニツトとスズ結合鎖を含
む重合体はスチレン―ブタジエンの共重合反応が
終了しない段階でハロゲン化スズ化合物を添加す
ることによつても得られるが、この方法では未反
応モノマーが残存し、経済的に不利であるばかり
でなく、ハロゲン化スズ化合物の添加時期により
スチレン―ブタジエン共重合体中のスチレン含量
が変るため安定した品質の重合体が得られにく
い。 なお、従来のカツプリングされたスチレン―ブ
タジエン共重合体はスチレンユニツトとスズの結
合鎖を含む共重合であつたことは次のことからも
明らかである。すなわち、有機リチウム触媒を用
いて生成するスチレン―ブタジエン共重合体が実
質的にはランダムなスチレン―ブタジエン共重合
体であつても、このような共重合反応を詳細にみ
ると重合初期では生成共重合体中のスチレン含量
は仕込みモノマー中のスチレン含量より低いが、
重合反応が進むに従い、共重合体中のスチレン含
量は仕込みスチレン含量に近づき、重合終了時直
前にスチレンが共重合体中に急速にとり込まれ、
重合終了時に共重合スチレン含量と仕込みスチレ
ン含量が一致する〔T.A.AntokowiakらのJ.
Polymer &ci.、part A―1Vol10、1319
(1972)〕。 このような共重合反応の挙動は重合系の色相を
観察することによつても容易に知ることができ
る。即ち重合終了直前までは重合系の色相はリビ
ング重合体末端がポリブタジエンリチウムである
ときの黄色であるが、重合終了時はリビング重合
体末端がポリスチリルリチウムの赤〜黄赤色にな
ることから知ることができる。 以下本発明につき詳しく説明する。 本発明にて使用される有機リチウム化合物とし
てたとえばメチルリチウム、エチルリチウム、プ
ロピルリチウム、ブチルリチウム、ペンチルリチ
ウム、オクチルリチウム、1,4―ジリチオブタ
ン、1,5―ジリチオペンタン、1,10―ジリチ
オデカンなどが挙げられる。これら有機リチウム
化合物の使用量はモノマー100グラム当り、0.2〜
20ミリモルの範囲である。また使用されるエーテ
ル化合物としてはたとえばジエチルエーテル、ジ
ブチルエーテル、テトラヒドロフラン、2―メト
キシテトラヒドロフラン、2―メトキシメチルテ
トラヒドロフラン、ジオキサン、エチレングリコ
ールジメチルエーテル、エチレングリコールジエ
チルエーテル、エチレングリコールジブチルエー
テル、ジエチレングリコールジメチルエーテル、
ジエチレングリコールジエチルエーテル、ジエチ
レングリコールジブチルエーテル、トリエチレン
グリコールジメチルエーテルなどがあげられる。
更に第3級アミン化合物としてはたとえばトリエ
チルアミン、トリプロピルアミン、ピリジン、
NNN′N′―テトラメチルエチレンジアミン、
NNN′N′―テトラエチルエチレンジアミン、N
―メチルモルホリンなどが挙げられる。エーテル
化合物及び第3級アミン化合物の使用量は有機リ
チウム化合物1モル当り0.05〜1000モルの範囲で
ある。1,3―ブタジエンとスチレンの共重合反
応におけるモノマー混合物中のスチレン含量は3
〜40重量%好ましくは5〜30重量%である。また
本発明の方法によりポリブタジエン部分のビニル
含量が20〜95%の重合体が得られる。 重合は−20℃〜150℃の温度範囲で行われる。
特に好ましい重合の態様は−20〜60℃の温度で重
合が開始され、最高到達温度と重合開始温度の差
が30℃ないし120℃である上昇温度下で継続され
ることである。重合溶媒としてはブタン、ペンタ
ン、ヘキサン、ヘプタン、オクタンなどの脂肪族
炭化水素溶媒、シクロヘキサン、メチルシクロペ
ンタンなどの脂環族炭化水素溶媒、ベンゼン、キ
シレン、トルエンなどの芳香族炭化水素溶媒から
一種又は二種以上の混合物が用いられる。さらに
重合阻害物質を除去したC4留分なども用いられ
る。溶媒の量はモノマー1重量部に対して0.5〜
20重量部の範囲で用いられる。 本発明におけるハロゲン化スズ化合物によるカ
ツプリングに先だつて添加される共役ジエン化合
物は1,3―ブタジエンとスチレンの共重合にて
スチレンモノマーが全て消費された後、重合系に
添加されることが好ましい。共役ジエン化合物と
してはたとえば1,3―ブタジエン、イソプレ
ン、2,3―ジメチルブタジエン、1,3―ペン
タジエン、2―エチル―1,3―ブタジエン、1
―フエニルブタジエンなどが挙げられ、好ましく
は1,3―ブタジエン、イソプレン、1,3―ペ
ンタジエンなどである。 共役ジエン化合物の量は有機リチウム化合物1
モルに対して0.5〜200モルの範囲好ましくは1〜
50モルの範囲で用いられる。0.5モル未満では本
発明の目的は達せられないし、一方200モルをこ
えると共役ジエン化合物中に含まれる不純物によ
り重合体末端が失活する恐れがあるので好ましく
ない。共役ジエン化合物の添加時の温度は0〜
150℃の範囲で好ましくは重合終了時の温度が使
用される。 本発明において、カツプリングに用いられるハ
ロゲン化スズ化合物は、 一般式 RxSoZy又はRaZbSo(CH2oSoRaZb (式中、R:アルキル基、アルケニル基、シク
ロアルキル基、芳香族基、 Z:ハロゲン原子 x:0〜2の整数、a:0〜2の整数、 n:1〜10の整数、y:2〜4の整数、b:1〜
3の整数、) で表わされるハロゲン化スズ化合物で具体的には
たとえばメチルトリクロロスズ、ジメチルジクロ
ロスズ、テトラクロロスズ、ジクロロスズ、エチ
ルトリクロロスズ、ジエチルジクロロスズ、テト
ラフルオロスズ、ブチルトリクロロスズ、ジブチ
ルジクロロスズ、オクチルトリクロロスズ、ジオ
クチルジクロロスズ、メチルトリブロムスズ、ジ
メチルジブロムスズ、オクチルトリブロムスズ、
テトラブロムスズ、テトラヨードスズ、シクロヘ
キシルトリクロロスズ、フエニルトリクロロス
ズ、1,2ビス(トリクロロスタニル)エタン、
1,2ビス(メチルジクロロスタニル)エタン、
1,4ビス(トリクロロスタニル)ブタン、1,
4ビス(メチルジクロロスタニル)ブタン などが用いられる。 ハロゲン化スズ化合物によるカツプリング反応
は0〜150℃、0.5分〜20時間の範囲で行なわれ
る。 ハロゲン化スズ化合物の添加量は有機リチウム
化合物のリチウム1原子当量当り、ハロゲン化ス
ズ化合物のハロゲン原子を基準にして0.1〜3.0当
量の範囲好ましくは0.2〜1.5当量で用いられ、ハ
ロゲン化スズ化合物の量により共役ジエン―スズ
結合鎮を有する重合体の割合をコントロールする
ことができる。0.1当量より少ないが、あるいは
3.0当量をこえると共役ジエン―スズ結合鎖を含
む重合体の割合が少なく、本発明の目的とする転
がり摩擦抵抗特性および破壊特性の優れた重合体
がえられない。本発明の重合及びカツプリング反
応は窒素又はアルゴンなどの不活性ガス雰囲下で
行なわれる。 本発明のスチレン―ブタジエン共重合体はバツ
チ重合及び槽型反応器、塔型反応器、管型反応器
などを用いる連続重合によつても得られる。 重合体の分子量分布はカツプリング剤の種類、
量ばかりでなく重合方式によつても自由にコント
ロールできる。 本発明の方法によれば結合スチレン含量3〜40
重量%、ポリブタジエン部分のビニル含量20〜95
%、ムーニー粘度(ML100℃ 1+4)10〜150の、共
役ジエンユニツト―スズ結合鎖を有する重合体を
少くとも10%以上、好ましくは20%以上含むラン
ダムなスチレンブタジエン共重合体が容易に得ら
れる。 本発明にて、共役ジエンユニツト―スズ結合鎖
を有する重合体の割合はゲルパーミエーシヨンク
ロマトグラフ(GPC)によつて測定され、バイ
モーダル型又はポリモーダル型の分子量分布から
(1)式で計算される。 共役ジエンユニツト―スズ結合鎮を有する重合体の割
合(%) =(1−最も低分子量部分のピーク面積/全
体のピーク面積)×100……(1) 結合スチレン量は赤外吸収スペクトルの699cm
-1を用いた検量線から求めた。ポリブタジエン部
分のミクロ構造はD.Moreoらの方法chim e
Ind Vol 41 758(1959) により求めた。 転がり摩擦抵抗特性の指標として70℃の反撥弾
性を用いた。70℃の反撥弾性が大きい程、転がり
摩擦によるエネルギーロスが少なく転がり摩擦抵
抗特性の点で優れることを示す。 実施例 1 5のステンレス製反応器にシクロヘキサン
2.25Kg、スチレン125g、1,3―ブタジエン370
g、テトラヒドロフラン8gを仕込み、これら混
合物の温度を50℃に調節した後、n―ブチルリチ
ウム0.32gを添加して50℃等温下で重合を行なつ
た。重合開始後35分で重合転化率100%に達した
が重合体溶液の色はスチリル末端の赤ないし黄赤
色であつた。重合体溶液に1,3―ブタジエン
5.0gを添加するとただちに重合体溶液の色は黄
色に変つた。 5分後にテトラクロロスズ0.196gを添加し、
40℃30分間カツプリング反応を行なつた。重合体
は重合体溶液に3gの2,6―ジターシヤリ―ブ
チル―p―クレゾールを添加後、スチームストリ
ツピングで脱溶媒、100℃で熱ロール乾燥を行な
つて得られた。 重合体の特性値を第1表に示す。 第3表に示す配合処方に従つてブラベンダ―プ
ラストミル及びロールで混練り配合して145℃35
分間加硫を行なつた。 加硫物の性質を第1表に示す。 実施例 2 実施例1にてテトラクロロスズ0.196gの代り
にメチルトリブロムスズ0.375gを用いる以外、
実施例1と同様に行なつた。 結果を第1表に示す。 実施例 3 実施例1にてテトラクロロスズ0.196gの代り
に1,4ビス(トリクロロスタニル)ブタン
0.254gを用いる以外、実施例1と同様に行なつ
た。 結果を第1表に示す。 実施例 4 実施例1にて添加1,3―ブタジエン5.0gの
代りにイソプレン5.0gを用いる以外、実施例1
と同様に行なつた。 結果を第1表に示す。 実施例 5 実施例1にて1,3―ブタジエン450g、スチ
レン50g、テトラヒドロフラン20g、重合温度40
℃で行なう以外実施例1と同様に行なつた。 結果を第1表に示す。 実施例 6 実施例1にてテトラクロロスズ0.196gの代り
に0.098gを用いる以外実施例1と同様に行なつ
た。 結果を第1表に示す。 実施例 7 50ステンレス製反応器にシクロヘキサン25
Kg、スチレン1.25Kg、1,3―ブタジエン3.75
Kg、テトラヒドロフラン70gを仕込み、これら混
合物の温度を35℃に調節した後、n―ブチルリチ
ウム3.25gを添加して重合を開始した。重合開始
後20分で最高重合温度96℃に達し、重合体溶液の
色はスチリルリチウム末端の赤ないし黄赤色であ
つたがさらに10分後にはブタジエニルリチウム末
端の黄色に変つた。重合転化率は100%であつた。 重合体溶液に1,3―ブタジエン50gを添加
後、1分後にテトラクロロスズ2.25gを添加し90
℃、15分間カツプリング反応を行なつた。 重合体は重合体溶液に30gの2,6―ジターシ
ヤリ―ブチル―p―クレゾールを添加後脱溶、乾
燥を行なつて得られた。 実施例1同様、配合、混練して、加硫物を得
た。 結果を第1表に示す。 実施例 9 50反応器にシクロヘキサン25Kg,スチレン
0.85Kg、1,3―ブタジエン4.15Kg、テトラヒド
ロフラン30gを仕込みこれら混合物の温度を35℃
に調節した後、n―ブチルリチウム3.70gを添加
して重合を開始した。重合開始後26分で重合温度
92℃に達し重合体転化率は94%であつた。 重合体溶液に1,3―ブタジエン250gを添加
後、30秒後にテトラクロロスズ2.25gを添加し90
℃、15分間カツプリング反応を行なつた。重合体
は重合体溶液に30gの2,6―ジターシヤリ―ブ
チル―p―クレゾールを添加後、脱溶乾燥を行な
つて得た。 実施例1と同様に配合混練りして加硫物を得
た。 結果を第2表に示す。 実施例 10 実施例5にてテトラヒドロフラン20gの代りに
NNN′N′―テトラメチルエチレンジアミン1.16g
を用い、テトラクロロスズ0.196gの代りにジブ
チルジクロロスズ0.61gを用いる以外、実施例1
と同様に行なつた。 結果を第2表に示す。 比較例 1 実施例1にて重合終了後、新たに1,3―ブタ
ジエン5.0gを添加しない以外、実施例1と同様
に行なつた。結果を第1表に示す。 比較例 2 実施例1にて重合終了後1,3―ブタジエン
5.0gの代りに0.08g(ブタジエン/n―ブチル
リチウムモル比0.3)を用いる以外、実施例1と
同様に行なつた。結果を第1表に示す。 比較例 3 実施例1にてn―ブチルリウム0.32gの代りに
0.27gを用いて重合を行なつた。重合体はカツプ
リング反応を行なわず、脱溶媒、乾燥して実施例
1同様加硫物を得た。結果を第1表に示す。
The present invention relates to a method for producing a styrene-butadiene copolymer with improved rolling friction resistance and fracture properties. Conventionally, random styrene-butadiene copolymers have been obtained by polymerizing 1,3-butadiene and styrene using an organolithium compound in the presence of an ether compound or a tertiary amine compound in a hydrocarbon solvent. It is well known that A method of coupling a styrene-butadiene copolymer with a tin halide compound is also known (Japanese Patent Publication No. 4996/1983). However, although styrene-butadiene copolymers coupled by this method have improved fracture properties compared to copolymers that have not been coupled, they are not necessarily sufficient in improving rolling friction resistance properties. In order to improve these drawbacks, the inventors of the present invention made extensive studies and surprisingly found that these drawbacks were solved by adding a conjugated diene compound immediately before coupling to suppress the formation of bonded chains between styrene units and tin. discovered that it is possible to improve
This led to the present invention. In the present invention, 1,3-butadiene and styrene are polymerized using an organolithium compound in a hydrocarbon solvent in the presence of an ether compound or a tertiary amine compound, and then the general formula R x So Z y or R a Z b So (CH 2 ) o So
R a Z b [supported, in the formula R is an alkyl group, an alkenyl group,
cycloalkyl group or aromatic hydrocarbon group, Z is a halogen atom, x is an integer of 0 to 2, a is an integer of 0 to 2, n is an integer of 1 to 10, y is an integer of 2 to 4, b is 1 is an integer of ~3] When performing coupling with a tin compound represented by 3, a conjugated diene compound is added and polymerized immediately before coupling. A method for producing a polymer is provided. According to the present invention, it is possible to produce a random styrene-butadiene copolymer containing conjugated diene-tin bond chains that has improved rolling friction resistance properties and fracture properties. A polymer containing a conjugated diene monomer unit and a tin bond chain can also be obtained by adding a halogenated tin compound before the styrene-butadiene copolymerization reaction is completed, but with this method, unreacted monomer remains. This is not only economically disadvantageous, but also makes it difficult to obtain a polymer of stable quality because the styrene content in the styrene-butadiene copolymer changes depending on the timing of addition of the tin halide compound. It is clear from the following that the conventional coupled styrene-butadiene copolymer is a copolymer containing a styrene unit and a bonded chain of tin. In other words, even though the styrene-butadiene copolymer produced using an organolithium catalyst is essentially a random styrene-butadiene copolymer, a detailed look at such a copolymerization reaction shows that the copolymer produced is Although the styrene content in the polymer is lower than the styrene content in the monomer charge,
As the polymerization reaction progresses, the styrene content in the copolymer approaches the charged styrene content, and just before the end of polymerization, styrene is rapidly incorporated into the copolymer.
At the end of polymerization, the copolymerized styrene content and the charged styrene content match [TA Antokowiak et al., J.
Polymer & ci., part A-1Vol10, 1319
(1972)]. The behavior of such a copolymerization reaction can also be easily determined by observing the hue of the polymerization system. In other words, the hue of the polymerized system is yellow when the living polymer end is polybutadiene lithium until just before the end of polymerization, but when the polymerization is over, the color of the living polymer end changes from red to yellowish red of polystyryllithium. Can be done. The present invention will be explained in detail below. Examples of the organic lithium compounds used in the present invention include methyllithium, ethyllithium, propyllithium, butyllithium, pentyllithium, octyllithium, 1,4-dilithiobutane, 1,5-dilithiopentane, and 1,10-dilithiodecane. It will be done. The amount of these organolithium compounds used is 0.2 to 100 grams of monomer.
In the range of 20 mmol. Examples of ether compounds that can be used include diethyl ether, dibutyl ether, tetrahydrofuran, 2-methoxytetrahydrofuran, 2-methoxymethyltetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether,
Examples include diethylene glycol diethyl ether, diethylene glycol dibutyl ether, and triethylene glycol dimethyl ether.
Furthermore, examples of tertiary amine compounds include triethylamine, tripropylamine, pyridine,
NNN′N′-tetramethylethylenediamine,
NNN′N′-Tetraethylethylenediamine, N
- Examples include methylmorpholine. The amount of the ether compound and the tertiary amine compound used is in the range of 0.05 to 1000 mol per mol of the organolithium compound. The styrene content in the monomer mixture in the copolymerization reaction of 1,3-butadiene and styrene is 3
-40% by weight, preferably 5-30% by weight. Furthermore, by the method of the present invention, a polymer having a vinyl content of 20 to 95% in the polybutadiene portion can be obtained. Polymerization is carried out at a temperature range of -20°C to 150°C.
A particularly preferred embodiment of the polymerization is that the polymerization is initiated at a temperature of -20°C to 60°C and continued at an elevated temperature where the difference between the maximum temperature reached and the polymerization initiation temperature is 30°C to 120°C. The polymerization solvent may be one or more of aliphatic hydrocarbon solvents such as butane, pentane, hexane, heptane, and octane, alicyclic hydrocarbon solvents such as cyclohexane and methylcyclopentane, and aromatic hydrocarbon solvents such as benzene, xylene, and toluene. A mixture of two or more types is used. Furthermore, a C4 fraction from which polymerization inhibitors have been removed is also used. The amount of solvent is 0.5 to 1 part by weight of monomer.
It is used in a range of 20 parts by weight. The conjugated diene compound added prior to coupling with a tin halide compound in the present invention is preferably added to the polymerization system after all of the styrene monomer is consumed in the copolymerization of 1,3-butadiene and styrene. Examples of conjugated diene compounds include 1,3-butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 2-ethyl-1,3-butadiene, 1
-phenylbutadiene and the like, preferably 1,3-butadiene, isoprene, 1,3-pentadiene and the like. The amount of conjugated diene compound is 1 organolithium compound
Range of 0.5 to 200 moles, preferably 1 to 200 moles
Used in a range of 50 moles. If the amount is less than 0.5 mol, the object of the present invention cannot be achieved, while if it exceeds 200 mol, the terminal of the polymer may be deactivated by impurities contained in the conjugated diene compound, which is not preferable. The temperature when adding the conjugated diene compound is 0~
A temperature in the range of 150° C. is preferably used at the end of the polymerization. In the present invention, the tin halide compound used for coupling has the general formula R x So Z y or R a Z b So (CH 2 ) o So R a Z b (wherein R: alkyl group, alkenyl group, cycloalkyl group, aromatic group, Z: halogen atom x: integer of 0 to 2, a: integer of 0 to 2, n: integer of 1 to 10, y: integer of 2 to 4, b: 1 to
The tin halide compounds represented by the integer 3) include, for example, methyltrichlorotin, dimethyldichlorotin, tetrachlorotin, dichlorotin, ethyltrichlorotin, diethyldichlorotin, tetrafluorotin, butyltrichlorotin, and dibutyldichlorotin. Tin, octyltrichlorotin, dioctyldichlorotin, methyltribromtin, dimethyldibromtin, octyltribromtin,
Tetrabromtin, tetraiodotin, cyclohexyltrichlorotin, phenyltrichlorotin, 1,2 bis(trichlorostannyl)ethane,
1,2 bis(methyldichlorostannyl)ethane,
1,4 bis(trichlorostannyl)butane, 1,
4bis(methyldichlorostannyl)butane and the like are used. The coupling reaction using the tin halide compound is carried out at 0 to 150°C for 0.5 minutes to 20 hours. The amount of the tin halide compound added is in the range of 0.1 to 3.0 equivalents, preferably 0.2 to 1.5 equivalents based on the halogen atom of the tin halide compound, per 1 atomic equivalent of lithium in the organolithium compound. The proportion of the polymer having conjugated diene-tin bonds can be controlled by the amount. less than 0.1 equivalent, or
If the amount exceeds 3.0 equivalents, the proportion of the polymer containing a conjugated diene-tin bond chain will be small, making it impossible to obtain a polymer with excellent rolling friction resistance properties and fracture properties, which are the objectives of the present invention. The polymerization and coupling reactions of the present invention are carried out under an inert gas atmosphere such as nitrogen or argon. The styrene-butadiene copolymer of the present invention can also be obtained by batch polymerization or continuous polymerization using a tank reactor, tower reactor, tube reactor, or the like. The molecular weight distribution of the polymer depends on the type of coupling agent,
Not only the amount but also the polymerization method can be freely controlled. According to the method of the present invention, the bound styrene content is 3 to 40
Weight%, vinyl content of polybutadiene part 20-95
A random styrene-butadiene copolymer containing at least 10% or more, preferably 20% or more of a polymer having a conjugated diene unit-tin bond chain and having a Mooney viscosity (ML100°C 1+4) of 10 to 150% can be easily obtained. In the present invention, the proportion of the polymer having a conjugated diene unit-tin bond chain is measured by gel permeation chromatography (GPC), and is determined from the bimodal or polymodal molecular weight distribution.
Calculated using formula (1). Proportion (%) of polymer having conjugated diene unit-tin bonds = (1 - peak area of lowest molecular weight portion/overall peak area) x 100... (1) The amount of bound styrene is 699cm in the infrared absorption spectrum
It was determined from a calibration curve using -1 . The microstructure of the polybutadiene moiety was determined using the method of D.Moreo et al.
Obtained according to Ind Vol 41 758 (1959). Repulsion elasticity at 70°C was used as an index of rolling friction resistance characteristics. The higher the rebound resilience at 70°C, the lower the energy loss due to rolling friction and the better the rolling friction resistance characteristics. Example 1 Cyclohexane was added to a stainless steel reactor of 5.
2.25Kg, styrene 125g, 1,3-butadiene 370
After adjusting the temperature of the mixture to 50°C, 0.32g of n-butyllithium was added and polymerization was carried out isothermally at 50°C. The polymerization conversion rate reached 100% 35 minutes after the start of polymerization, but the color of the polymer solution was red to yellow-red due to styryl terminals. 1,3-butadiene in polymer solution
Immediately after adding 5.0 g, the color of the polymer solution changed to yellow. After 5 minutes, add 0.196g of tetrachlorotin,
The coupling reaction was carried out at 40°C for 30 minutes. The polymer was obtained by adding 3 g of 2,6-ditertiary-butyl-p-cresol to the polymer solution, removing the solvent by steam stripping, and drying with a hot roll at 100°C. The characteristic values of the polymer are shown in Table 1. According to the formulation shown in Table 3, knead and blend using a Brabender plasto mill and roll at 145℃35.
Vulcanization was carried out for a minute. The properties of the vulcanizate are shown in Table 1. Example 2 Except for using 0.375 g of methyltribrom tin in place of 0.196 g of tetrachlorotin in Example 1,
The same procedure as in Example 1 was carried out. The results are shown in Table 1. Example 3 In Example 1, 1,4 bis(trichlorostannyl)butane was used instead of 0.196 g of tetrachlorotin.
The same procedure as in Example 1 was carried out except that 0.254 g was used. The results are shown in Table 1. Example 4 Example 1 except that 5.0 g of isoprene was used instead of the 5.0 g of 1,3-butadiene added in Example 1.
I did the same thing. The results are shown in Table 1. Example 5 Same as Example 1, 1,3-butadiene 450g, styrene 50g, tetrahydrofuran 20g, polymerization temperature 40
The same procedure as in Example 1 was carried out except that the temperature was 0.degree. The results are shown in Table 1. Example 6 The same procedure as in Example 1 was carried out except that 0.098 g of tetrachlorotin was used instead of 0.196 g. The results are shown in Table 1. Example 7 Cyclohexane 25 in a 50 stainless steel reactor
Kg, styrene 1.25Kg, 1,3-butadiene 3.75
After charging 70 g of tetrahydrofuran and adjusting the temperature of the mixture to 35° C., 3.25 g of n-butyllithium was added to initiate polymerization. The maximum polymerization temperature reached 96° C. 20 minutes after the start of polymerization, and the color of the polymer solution was red to yellow-red due to styryllithium terminals, but after another 10 minutes, it changed to yellow due to butadienyllithium terminals. The polymerization conversion rate was 100%. After 50 g of 1,3-butadiene was added to the polymer solution, 2.25 g of tetrachlorotin was added 1 minute later.
The coupling reaction was carried out at ℃ for 15 minutes. The polymer was obtained by adding 30 g of 2,6-ditertiary-butyl-p-cresol to the polymer solution, removing the solution, and drying. A vulcanizate was obtained by blending and kneading in the same manner as in Example 1. The results are shown in Table 1. Example 9 25 kg of cyclohexane and styrene in a 50 reactor
0.85Kg, 1,3-butadiene 4.15Kg, and tetrahydrofuran 30g were charged and the temperature of the mixture was 35℃.
After adjusting the temperature, 3.70 g of n-butyllithium was added to initiate polymerization. Polymerization temperature reached 26 minutes after the start of polymerization.
The temperature reached 92°C and the polymer conversion rate was 94%. After adding 250 g of 1,3-butadiene to the polymer solution, 2.25 g of tetrachlorotin was added 30 seconds later.
The coupling reaction was carried out at ℃ for 15 minutes. The polymer was obtained by adding 30 g of 2,6-ditertiary-butyl-p-cresol to the polymer solution, followed by drying to remove the solution. A vulcanizate was obtained by blending and kneading in the same manner as in Example 1. The results are shown in Table 2. Example 10 In place of 20g of tetrahydrofuran in Example 5
NNN′N′-Tetramethylethylenediamine 1.16g
Example 1 except that 0.61 g of dibutyldichlorotin was used instead of 0.196 g of tetrachlorotin.
I did the same thing. The results are shown in Table 2. Comparative Example 1 The same procedure as in Example 1 was carried out except that 5.0 g of 1,3-butadiene was not newly added after the completion of the polymerization in Example 1. The results are shown in Table 1. Comparative example 2 1,3-butadiene after completion of polymerization in Example 1
The same procedure as in Example 1 was carried out except that 0.08 g (butadiene/n-butyllithium molar ratio 0.3) was used instead of 5.0 g. The results are shown in Table 1. Comparative Example 3 In place of 0.32g of n-butylurium in Example 1
Polymerization was carried out using 0.27 g. The polymer was subjected to no coupling reaction, but the solvent was removed and dried to obtain a vulcanizate in the same manner as in Example 1. The results are shown in Table 1.

【表】【table】

【表】 * スチレンユニツトスズ結合鎖を含む重合体の割合
[Table] * Percentage of polymers containing styrene units and tin bond chains

【表】【table】

【表】【table】

【表】【table】

【表】 アジルスルフエンアミド
[Table] Azylsulfenamide

Claims (1)

【特許請求の範囲】 1 炭化水素溶媒中、エーテル化合物又は第3級
アミン化合物の存在下で1,3―ブタジエンとス
チレンを有機リチウム化合物を用いて重合を行つ
た後、一般式RxSnZy又はRaZbSn(CH2oSnRaZb [但し、式中Rはアルキル基、アルケニル基、
シクロアルキル基又は芳香族炭化水素基、Zはハ
ロゲン原子、xは0〜2の整数、aは0〜2の整
数、nは1〜10の整数、yは2〜4の整数、bは
1〜3の整数である] で表わされるスズ化合物でカツプリングを行うに
際し、カツプリングを行なう直前に共役ジエン化
合物を添加して重合を行うことを特徴とする共役
ジエンユニツトースズ結合鎖を含むスチレン―ブ
タジエン共重合体の製造方法。 2 上記共役ジエン化合物が1,3―ブタジエ
ン、イソプレンおよび1,3―ペンタジエンから
選ばれる特許請求の範囲第1項記載のスチレン―
ブタジエン共重合体の製造方法。
[Claims] 1. After polymerizing 1,3-butadiene and styrene using an organolithium compound in a hydrocarbon solvent in the presence of an ether compound or a tertiary amine compound, the general formula R x SnZ y or R a Z b Sn(CH 2 ) o SnR a Z b [wherein R is an alkyl group, an alkenyl group,
cycloalkyl group or aromatic hydrocarbon group, Z is a halogen atom, x is an integer of 0 to 2, a is an integer of 0 to 2, n is an integer of 1 to 10, y is an integer of 2 to 4, b is 1 is an integer of ~3] Styrene-butadiene containing a conjugated diene unit-tin bond chain, characterized in that when coupling with a tin compound represented by the following, a conjugated diene compound is added and polymerized immediately before coupling. Method for producing copolymer. 2. The styrene according to claim 1, wherein the conjugated diene compound is selected from 1,3-butadiene, isoprene and 1,3-pentadiene.
A method for producing a butadiene copolymer.
JP16336180A 1980-11-21 1980-11-21 Preparation of styrene-butadiene copolymer Granted JPS5787407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16336180A JPS5787407A (en) 1980-11-21 1980-11-21 Preparation of styrene-butadiene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16336180A JPS5787407A (en) 1980-11-21 1980-11-21 Preparation of styrene-butadiene copolymer

Publications (2)

Publication Number Publication Date
JPS5787407A JPS5787407A (en) 1982-05-31
JPH0228605B2 true JPH0228605B2 (en) 1990-06-25

Family

ID=15772413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16336180A Granted JPS5787407A (en) 1980-11-21 1980-11-21 Preparation of styrene-butadiene copolymer

Country Status (1)

Country Link
JP (1) JPS5787407A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100112A (en) * 1980-12-16 1982-06-22 Asahi Chem Ind Co Ltd Perfectly random styrene-butadiene copolymer rubber
JPS57126807A (en) * 1981-01-30 1982-08-06 Nippon Erasutomaa Kk Butadiene polymer and its composition
JPS62156101A (en) * 1982-03-19 1987-07-11 Japan Synthetic Rubber Co Ltd Production of styrene-butadient copolymer rubber
US4526934A (en) * 1982-03-19 1985-07-02 Bridgestone Tire Company Limited Branched styrene-butadiene copolymers and pneumatic tires using the same
JPS58162605A (en) * 1982-03-24 1983-09-27 Japan Synthetic Rubber Co Ltd Styrene-butadiene copolymer having wide distribution of molecular weight
JPS5924702A (en) * 1982-07-31 1984-02-08 Japan Synthetic Rubber Co Ltd Styrene-butadiene copolymer
JPS5924733A (en) * 1982-07-31 1984-02-08 Bridgestone Corp Tire-tread rubber composition
JPH0610202B2 (en) * 1983-02-03 1994-02-09 旭化成工業株式会社 Method for producing branched polymer
JPS6114214A (en) * 1984-06-29 1986-01-22 Asahi Chem Ind Co Ltd Improved rubber-like polymer
US5064910A (en) * 1986-09-05 1991-11-12 Japan Synthetic Rubber Co., Ltd. Preparation of conjugated diene polymers modified with an organo-tin or germanium halide
JPH02160846A (en) * 1989-11-22 1990-06-20 Asahi Chem Ind Co Ltd Styrene-butadiene copolymer rubber composition
KR100403089B1 (en) 2001-01-03 2003-10-30 금호석유화학 주식회사 A manufacturing method of an end-modified diene copolymer
JP4843917B2 (en) * 2004-08-06 2011-12-21 Jsr株式会社 Method for producing conjugated diene copolymer rubber
SG159475A1 (en) 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer and conjugated diene polymer composition
WO2015098264A1 (en) * 2013-12-27 2015-07-02 日本ゼオン株式会社 Conjugated diene based polymer and process for manufacturing conjugated diene based polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692874A (en) * 1970-09-02 1972-09-19 Ralph C Farrar Process of coupling alkali metal-terminated polymers with silicic compound in presence of conjugated dienes
JPS525071A (en) * 1975-07-01 1977-01-14 Ooizumi Kojo:Kk Improvement in machining of plummer block
JPS5278260A (en) * 1975-11-10 1977-07-01 Phillips Petroleum Co Block copolymers composition
JPS546274A (en) * 1977-06-17 1979-01-18 Nikkiso Plant Kogyo Dust collector of hopper for car
JPS564613A (en) * 1979-05-01 1981-01-19 Phillips Petroleum Co Manufacture of polymer
JPS5773030A (en) * 1980-09-20 1982-05-07 Bridgestone Corp Rubber composition for tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692874A (en) * 1970-09-02 1972-09-19 Ralph C Farrar Process of coupling alkali metal-terminated polymers with silicic compound in presence of conjugated dienes
JPS525071A (en) * 1975-07-01 1977-01-14 Ooizumi Kojo:Kk Improvement in machining of plummer block
JPS5278260A (en) * 1975-11-10 1977-07-01 Phillips Petroleum Co Block copolymers composition
JPS546274A (en) * 1977-06-17 1979-01-18 Nikkiso Plant Kogyo Dust collector of hopper for car
JPS564613A (en) * 1979-05-01 1981-01-19 Phillips Petroleum Co Manufacture of polymer
JPS5773030A (en) * 1980-09-20 1982-05-07 Bridgestone Corp Rubber composition for tire

Also Published As

Publication number Publication date
JPS5787407A (en) 1982-05-31

Similar Documents

Publication Publication Date Title
JPH0228605B2 (en)
JPS6035923B2 (en) Production method of segmented block copolymer
US6462137B2 (en) Star-block interpolymers and preparation of the same
JPS6035922B2 (en) Method for producing segmented block copolymer
CN110591025A (en) Double-lithium-initiated double-end functionalized triblock styrene-diene-styrene polymer and preparation method thereof
CA1194641A (en) Coupling process
Ishizone et al. Anionic polymerization of monomers containing functional groups. 7. Anionic polymerizations of N-alkyl-N-(4-vinylbenzylidene) amines
US7232864B2 (en) Coupled radial anionic polymers
JPH0639484B2 (en) Process for producing polymers of conjugated dienes and optionally monoalkenyl aromatic hydrocarbons
JPH07188360A (en) Preparation of asymmetric radial polymer
CN112759730B (en) Amino multifunctional SEBS thermoplastic elastomer and preparation method thereof
JPH06298881A (en) Production of block copolymer
JPH08231659A (en) Process for producing asymmetric radial block copolymer withmultiple arms
RU2005138032A (en) METHOD FOR PRODUCING BLOCK COPOLIMERS FOR COMPOSITIONS FOR PROTECTORS OF PNEUMATIC TIRE AND SPECIFIED COPOLYMERS
US20040127645A1 (en) Radial copolymer prepared from mixed coupling agent
JP3378605B2 (en) Method for producing polymer
US4238576A (en) Orthoesters as coupling agents for producing novel polymers
KR20210068516A (en) Method for synthesizing a thermoplastic elastomer comprising at least one poly(alpha-methylstyrene) block
JPH03134008A (en) Starlike branched copolymer, hydrogenated product thereof, and coupling agent for living polymer therefrom
CN113912798B (en) Star block copolymer based on DPE derivatives, butadiene, isoprene and styrene monomers and preparation method thereof
US4297464A (en) Orthoesters as coupling agents for producing monovinylarene homopolymers
EP1816149B1 (en) Process for making a coupled low vinyl block copolymer composition and the resulting composition
JP3333045B2 (en) Cyclic diene block copolymer composition
CN117186325A (en) Method for preparing star polymer by using multifunctional macromolecular initiator based on conjugated olefin polymer
CN113912797A (en) DPE derivative, butadiene and styrene star block copolymer and preparation method thereof