JPH0228582B2 - DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO - Google Patents

DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO

Info

Publication number
JPH0228582B2
JPH0228582B2 JP2009085A JP2009085A JPH0228582B2 JP H0228582 B2 JPH0228582 B2 JP H0228582B2 JP 2009085 A JP2009085 A JP 2009085A JP 2009085 A JP2009085 A JP 2009085A JP H0228582 B2 JPH0228582 B2 JP H0228582B2
Authority
JP
Japan
Prior art keywords
substituted
groups
unsubstituted
reaction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009085A
Other languages
Japanese (ja)
Other versions
JPS61180728A (en
Inventor
Shozo Kato
Hidenori Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2009085A priority Critical patent/JPH0228582B2/en
Publication of JPS61180728A publication Critical patent/JPS61180728A/en
Publication of JPH0228582B2 publication Critical patent/JPH0228582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Furan Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Quinoline Compounds (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、特に医農薬あるいは該原料、中間体
として有用である第2級アミン化合物の新規な製
造方法を提供するものである。 (従来の技術及び発明の解決しようとする問題
点) 本発明者らは、長年シツフ塩基化合物を原料と
した第2級アミン化合物及び該アミン化合物を原
料としたN―置換アミド化合物の合成ならびに生
理活性の研究を行なつてきた。 従来、シツフ塩基化合物を原料とする第2級ア
ミン化合物の合成方法としては、触媒存在下での
水素還元及び水素化アルミニウムリチウム等の金
属水素化物を用いた還元による方法が一般的であ
つた。しかしながら前者の水素還元では、高価な
触媒や危険な触媒を使用する必要があり、しかも
立体的に嵩高くなると反応速度が非常に遅くなる
場合が多かつた。また後者の金属水素化物による
還元に於ては、水素化アルミニウムリチウム等の
高価で、取り扱いの困難な化合物を使用しなけれ
ばならないことも大きな難点であつた。 本発明者らは長年、種々の活性を有する有用な
化合物の合成を行なつて来た。例えば、本発明者
らは既に特開昭60−4181に於いて一般式 (但し、Aはハロゲン原子、アルコキシ基、又は
アルキルチオ基であり、R1,R2、及びR3はそれ
ぞれ同種又は異種の水素原子、ハロゲン原子、ア
ルキル基、アルコキシ基、又はアルキルチオ基で
ある。)で示されるN―置換―クロロアセトアニ
リド及び該化合物が除草剤として極めて有用であ
ることを提案した。そして該N―置換―クロロア
セトアニリドは下記式の如く二段反応で合成する
のが一般的であつた。 上記反応式から明らかな様に、一段階目の工程
はシツフ塩の還元反応であり、該還元反応に際し
ては、水素化アルミニウムリチウム等の高価で、
取り扱いの困難な化合物を用いなければいけない
場合もあつた。 (問題を解決するための手段及び効果) 本発明者らは、医農薬あるいは該原料、中間体
として有用な化合物である種々の第2級アミン化
合物の簡易な合成方法について鋭意研究を行なつ
てきた。その結果、シツフ塩基化合物をシラン化
合物と反応させ、次いでプロトン供与体で処理す
ることにより、容易に第2級アミン化合物を合成
し得ることを見い出した。特に本発明者らは従来
の還元剤によつては還元することが極めて困難な
シツフ塩基化合物、例えばC=N結合のまわりに
嵩高い置換基を有するシツフ塩基化合物に於いて
さえも、短時間に収率良く還元反応が進行し、目
的とする第2級アミン化合物が得られるという長
所を有することを見出し、本発明を完成し、提案
するに至つた。 即ち本発明は、 一般式() (但し、R1及びR2は同種又は異種の置換もしく
は非置換アルキル基、置換もしくは非置換アルケ
ニル基、置換もしくは非置換アルキニル基、置換
もしくは非置換アリール基、置換もしくは非置換
ヘテロアリール基、置換もしくは非置換シクロア
ルキル基、置換もしくは非置換シクロアルケニル
基、及び置換もしくは非置換ヘテロシクロアルキ
ル基である。R3は水素原子もしくは前記R1,R2
と同じ基である。)で示されるシツフ塩基化合物
と、 一般式() H2SiXY (但し、X及びYは同種又は異種の水素原子又は
ハロゲン原子である。)で示されるシラン化合物
を反応させ、次いでプロトン供与体で処理するこ
とにより 一般式() (但し、R1,R2、及びR3は上記と同じである。) で示される第2級アミン化合物を製造することを
特徴とする第2級アミン化合物の製造方法であ
る。 本発明に於ける原料の一つであるシツフ塩基化
合物は前記一般式()即ち、
(Industrial Application Field) The present invention provides a novel method for producing a secondary amine compound which is particularly useful as a medicine or agrochemical or its raw material or intermediate. (Problems to be solved by the prior art and the invention) The present inventors have long been involved in the synthesis of secondary amine compounds using Schiff's base compounds as raw materials and N-substituted amide compounds using the amine compounds as raw materials, and I have been conducting research on its activity. Conventionally, methods for synthesizing secondary amine compounds using Schiff base compounds as raw materials have generally involved hydrogen reduction in the presence of a catalyst and reduction using a metal hydride such as lithium aluminum hydride. However, the former hydrogen reduction requires the use of expensive or dangerous catalysts, and the reaction rate often becomes extremely slow when the catalyst becomes sterically bulky. Further, in the latter reduction with metal hydride, it was a major drawback that expensive and difficult-to-handle compounds such as lithium aluminum hydride had to be used. The present inventors have been synthesizing useful compounds having various activities for many years. For example, the present inventors have already published the general formula in JP-A-60-4181. (However, A is a halogen atom, an alkoxy group, or an alkylthio group, and R 1 , R 2 , and R 3 are the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, or alkylthio groups, respectively. It was proposed that the N-substituted-chloroacetanilide and the compound shown in ) are extremely useful as herbicides. The N-substituted-chloroacetanilide was generally synthesized by a two-step reaction as shown in the following formula. As is clear from the above reaction formula, the first step is a reduction reaction of Schiff's salt, and in this reduction reaction, expensive materials such as lithium aluminum hydride,
In some cases, it was necessary to use compounds that were difficult to handle. (Means and Effects for Solving the Problems) The present inventors have conducted intensive research on simple methods for synthesizing various secondary amine compounds, which are compounds useful as pharmaceuticals and agricultural chemicals, raw materials, and intermediates. Ta. As a result, they discovered that a secondary amine compound can be easily synthesized by reacting a Schiff base compound with a silane compound and then treating it with a proton donor. In particular, the present inventors have demonstrated that even in Schiff base compounds that are extremely difficult to reduce with conventional reducing agents, such as Schiff base compounds having bulky substituents around the C=N bond, The present inventors have discovered that the reduction reaction proceeds with good yield and has the advantage that the desired secondary amine compound can be obtained, and have completed and proposed the present invention. That is, the present invention has the general formula () (However, R 1 and R 2 are the same or different substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted alkynyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, substituted or an unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, and a substituted or unsubstituted heterocycloalkyl group. R 3 is a hydrogen atom or the above R 1 , R 2
It is the same group as . ) is reacted with a silane compound represented by the general formula () H 2 SiXY (where X and Y are the same or different hydrogen atoms or halogen atoms), and then reacted with a proton donor. By processing the general formula () (However, R 1 , R 2 , and R 3 are the same as above.) This is a method for producing a secondary amine compound, which is characterized by producing a secondary amine compound represented by the following. The Schiff base compound, which is one of the raw materials in the present invention, has the above general formula (), that is,

【式】 で示される化合物である。上記一般式()中、
R1,R2、及びR3で示される基としては種々の有
機基のものが公知であり、本発明に於いてもこれ
らの公知の有機基が特に限定されず使用出来る。
一般に好適に使用されるR1及びR2は、置換もし
くは非置換のアルキル基、置換もしくは非置換の
アルケニル基、置換もしくは非置換のアルキニル
基、置換もしくは非置換のアリール基、置換もし
くは非置換のヘテロアリール基、置換もしくは非
置換のシクロアルキル基、置換もしくは非置換の
シクロアルケニル基、又は置換もしくは非置換の
ヘテロシクロアルキル基である。また前記R3
水素原子又は上記R1及びR2で示した同じ基が好
適に使用出来る。工業的に広く利用される前記有
機基をより具体的に例示すると次のようなものが
ある。 上記非置換アルキル基としては、メチル、エチ
ル、プロピル、ブチル、ペンチル、ヘキシル、ヘ
プチル、オクチル、ノニル、デシル、ウンデシ
ル、及びドデシル等の直鎖状又は分枝状アルキル
基である。前記置換アルキル基としては、フルオ
ロメチル、トリフルオロメチル、クロロメチル、
トリクロロメチル、クロロエチル、ブロモエチ
ル、フルオロプロピル、クロロプロピル、クロロ
ブチル、ブロモペンチル、クロロヘキシル、及び
フルオロオクチル等の直鎖状又は分枝状ハロアル
キル基;メトキシメチル、メトキシエチル、メト
キシプロピル、メトキシブチル、メトキシペンチ
ル、メトキシヘキシル、エトキシメチル、エトキ
シエチル、エトキシプロピル、エトキシブチル、
プロポキシメチル、プロポキシエチル、プロポキ
シプロピル、プロポキシブチル、ブトキシメチ
ル、ブトキシエチル、ブトキシプロピル、ブトキ
シブチル、及びペントキシエチル等の直鎖状又は
分枝状のアルコキシアルキル基;フエノキシメチ
ル、フエノキシエチル、及びクロロフエノキシプ
ロピル等のフエノキシアルキル基:シアノエチ
ル、シアノプロピル及びシアノブチル等のシアノ
アルキル基;ニトロエチル、ニトロプロピル、及
びニトロヘキシル等のニトロアルキル基;メチル
チオメチル、メチルチオエチル、メチルチオプロ
ピル、エチルチオメチル、エチルチオエチル、エ
チルチオブチル、及びプロピルチオエチル等のア
ルキルチオアルキル基;フエニルメチル、フエニ
ルエチル、フエニルプロピル、及びメチルフエニ
ルメチル等のアリールアルキル基;チエニルメチ
ル、チエニルエチル、メトキシチエニルメチル、
フリルメチル、フリルエチル、クロロフリルメチ
ル、ピロリルメチル、及びピラゾリルメチル等の
ヘテロアリールアルキル基;シクロプロピルメチ
ル、及びシクロヘキシルエチル等のシクロアルキ
ルアルキル基;メトキシカルボニルメチル、メト
キシカルボニルエチル、エトキシカルボニルメチ
ル、エトキシカルボニルエチル、及びエトキシカ
ルボニルプロピル等のアルコキシカルボニルアル
キル基等が挙げられる。 前記非置換アルケニル基としては、エテニル、
プロペニル、ブテニル、ペンテニル、ヘキセニ
ル、及びオクテニル等の各種位置異性体のアルケ
ニル基である。また前記置換アルケニル基として
は、クロロエテニル、フルオロエテニル、ブロモ
プロペニル、クロロブテニル、クロロペテニル、
及びフルオロヘキセニル等のハロアルケニル基;
メトキシエテニル、メトキシプロペニル、エトキ
シブテニル、エトキシヘキセニル、及びプロポキ
シブテニル等のアルコキシアルケニル基;シアノ
エテニル、ニトロプロペニル、ジメチルアミノエ
テニル、及びメチルチオプロペニル等が挙げられ
る。 更に前記非置換のアルキニル基としては、エチ
ニル、プロピニル、ブチニル、ペンチニル、及び
ヘキシニル等のアルキニル基である。また前記置
換アルキニル基としては、クロロプロピニル、ブ
ロモブチニル、メトキシブチニル、シアノプロピ
ニル、及びメチルチオブチニル等が挙げられる。 更にまた前記非置換アリール基としては、フエ
ニル、ナフチル、及びアントラニル、フエナンス
レニル等のアリール基である。また前記置換アリ
ール基としては、メチルフエニル、ジメチルフエ
ニル、エチルフエニル、ジエチルフエニル、プロ
ピルフエニル、ジプロピルフエニル、ブチルフエ
ニル、ペンチルフエニル、ヘキシルフエニル、メ
チル(エチル)フエニル、メチル(プロピル)フ
エニル、及びエチル(プロピル)フエニル等のア
ルキルフエニル基;フルオロフエニル、ジフルオ
ロフエニル、クロロフエニル、ジクロロフエニ
ル、ブロモフエニル、ヨードフエニル、トリクロ
ロフエニル及びクロロ(フルオロ)フエニル等の
ハロフエニル基;メトキシフエニル、ジメトキシ
フエニル、トリメトキシフエニル、エトキシフエ
ニル、ジエトキシフエニル、プロポキシフエニ
ル、及びブトキシフエニル等のアルコキシフエニ
ル基;シアノフエニル、ニトロフエニル、クロロ
(メチル)フエニル、クロロ(エトキシ)フエニ
ル、メチル(メトキシ)フエニル、メチルチオフ
エニル、トリフルオロメチルフエニル、ビス(ク
ロロエチル)アミノフエニル、ニトロ(メチル)
フエニル、及びジフエニル等の置換フエニル基;
メチルナフチル、ジメチルナフチル、エチルナフ
チル、クロロナフチル、ジクロロナフチル、メト
キシナフチル、メチルチオナフチル、ニトロナフ
チル、及びシアノナフチル等の置換ナフチル基等
が挙げられる。 更にまた前記非置換ヘテロアリール基として
は、フリル、チエニル、ピロリル、ピリジル、ピ
リミジル、ベンゾフリル、ベンゾチエニル、イン
ドリル、キノリル、チアゾリル、ピラゾリル、ベ
ンゾチアゾリル、チアジアゾリル、及びオキサゾ
リル等である。前た前記置換ヘテロアリール基と
しては、メチルフリル、ジメチルフリル、エチル
フリル、プロピルフリル、クロロフリル、ブロモ
フリル、メトキシフリル、エトキシフリル、プロ
ポキシフリル、メチルチオフリル、エチルチオフ
リル、及びニトロフリル等の置換フリル基;メチ
ルチエニル、エチルチエニル、プロピルチエニ
ル、ブチルチエニル、フルオロチエニル、クロロ
チエニル、ブロモチエニル、ヨードチエニル、メ
トキシチエニル、エトキシチエニル、プロポキシ
チエニル、メチルチオチエニル、エチルチオチエ
ニル、及びニトロチエニル等の置換チエニル基;
N―メチルピロリル、N―エチルピロリル、メチ
ル―N―メチルピロリル、クロロ―N―エチルピ
ロリル、メトキシ―N―メチルピロリル、メトキ
シプロリル、エチルプロリル、及びクロロプロリ
ル等の置換ピロリル基;メチルピリジル、エチル
ピリジル、クロロピリジル及びメトキシピリジル
等の置換ピリジル基;メチルベンゾフリル、クロ
ロベンゾフリル、エトキシベンゾフリル、及びニ
トロベンゾフリル等の置換ベンゾフリル基;エチ
ルベンゾチエニル、フルオロベンゾチエニル、メ
トキシベンゾチエニル、及びニトロベンゾチエニ
ル等の置換ベンゾチエニル基;メチルキノリル、
エチルキノリル、クロロキノリル、及びメトキシ
キノリル等の置換キノリル基;メチルチアゾリル
基等が挙げられる。 更にまた前記非置換シクロアルキル基として
は、シクロプロピル、シクロブチル、、シクロペ
ンチル、及びシクロヘキシル等のシクロアルキル
基である。また前記置換シクロアルキル基として
は、メチルシクロプロピル、エチルシクロプロピ
ル、プロピルシクロプロピル、クロロシクロプロ
ピル、メトキシシクロプロピル、エトキシシクロ
プロピル、メチルシクロブチル、ブロモシクロブ
チル、メチルチオシクロブチル、クロロシクロペ
ンチル、メチルシクロヘキシル、エチルシクロヘ
キシル、クロロシクロヘキシル、メトキシシクロ
ヘキシル、及びプロポキシシクロヘキシル等が挙
げられる。 非置換シクロアルケニル基としては、シクロブ
テニル、シクロペンテニル、及びシクロヘキセニ
ル等である。また前記置換シクロアルケニル基と
しては、メチルシクロブテニル、クロロシクロペ
ンテニル、メトキシシクロペンテニル、メチルシ
クロヘキセニル、エチルシクロヘキセニル、クロ
ロシクロヘキセニル、メトキシシクロヘキセニ
ル、及びエトキシシクロヘキセニル等が挙げられ
る。 更にまた前記非置換のヘテロシクロアルキル基
としては、テトラヒドロフリル、テトラヒドロチ
エニル、ピロリジル、テトラヒドロピリル、テト
ラヒドロチオピリル、及びピペリジル等である。
また前記置換ヘテロシクロアルキル基としては、
N―メチルピロリジル、N―エチルピロリジル、
N―メチルピペリジル、及びN―エチルピペリジ
ル等が挙げられる。 以上列挙した基を有する化合物には多くの場
合、種々の位置異性体が存在するが、特に限定さ
れず本発明に供することができる。例えばメチル
フエニル基としては、o―メチルフエニル基、m
―メチルフエニル基、及びp―メチルフエニル基
が挙げられ、ブチル基としてはn―ブチル基、
sec―ブチル基、及びtert―ブチル基が挙げられ
る。 更にまた、置換基は以上の具体例に限定される
ものではなく、本発明の製造方法によつて目的物
のアミン化合物が得られるものであれば必要に応
じて適宜選択して使用出来る。 また、前記一般式()H2SiXYで示されるシ
ラン化合物中のX及びYは水素原子又はハロゲン
原子であれば特に限定されず用いられる。一般に
好適に使用される化合物を例示すると、
H2SiCl2,H2SiBr2,H3SiCl,及びH3SiBr等が挙
げられる。 また、プロトン供与体としては、水、鉱酸、有
機酸、アルコール、フエノール及びチオール等プ
ロトン源を有する化合物であれば特に限定されず
用いられる。特に、水、鉱酸及び有機酸は工業的
に好適に使用される。最も一般に好適に使用され
るプロトン供与体を例示すると、水;塩酸、硫
酸、及び硝酸等の鉱酸;ギ酸、酢酸、プロピオン
酸、安息香酸及びシユウ酸等のカルボン酸;エタ
ンスルホン酸、ベンゼンスルホン酸、トルエンス
ルホン酸及びクロルスルホン酸等スルホン酸;オ
ルトリン酸、メタリン酸及びピロリン酸等のリン
酸;メチルアルコール、エチルアルコール、イソ
プロピルアルコール、ベンジルアルコール、アリ
ルアルコール、及びエチレングリコール等のアル
コール;フエノール、クレゾール、及びナフトー
ル等のフエノール;メタンチオール及びエタンチ
オール等のチオール等が挙げられる。 本発明の最大の特徴は、前記一般式()で示
されるシツフ塩基化合物の還元反応に前記一般式
()で示される特定のシラン化合物を用いて反
応させることである。該シツフ塩基化合物とシラ
ン化合物との反応は無溶媒で行なうこともできる
が、一般には溶媒中で行なうことが好ましい。上
記溶媒としては、両化合物と相互作用しない不活
性な有機溶媒であれば特に限定されない。例え
ば、ヘキサン、エーテル、ベンゼン、クロロホル
ム、及びアセトニトリル等が好適に使用される。
該反応に於ける原料の仕込みモル比は特に限定さ
れるものではないが、通常シツフ塩基1モルに対
してシラン化合物を1〜2モルの割合で使用する
のが好ましい。該反応の反応様式は特に限定され
るものではないが、シラン化合物が低沸点である
場合には、該シラン化合物がが反応系外に出ない
方法が好ましい。そのために例えば、ドライアイ
ス冷却器付き反応器、耐圧反応器等を用いると好
適である。さらに該反応は、大気中で行なうこと
もできるが、好ましくはヘリウム、窒素、及びア
ルゴン等不活性気体中で行なうことが好適であ
る。また該反応に於ける反応温度は特に限定され
ず広い温度範囲で選ぶことができるが、原料の反
応性や生成物の安定性等を考慮して好適とする温
度範囲で反応を行なうことが好ましい。例えば−
20℃〜150℃の間が好適である。反応時間は反応
温度によつても異なるが、数分から数日の間、一
般的には10分から30時間の間で選べば良い。 該反応は無触媒でも容易に反応が進行するが、
触媒を用いると反応温度の低下や反応時間の短縮
が可能である。触媒としては、塩化白金酸、過酸
化ベンゾイル、トリエチルアミン、及び三フツ化
ホウ素エーテラート等が好適に使用される。 しかし、活性な触媒を用いると、シツフ塩基化
合物中の二重結合や三重結合に、シラン化合物が
付加する場合もある。従つて触媒を使用するとき
は予め反応性を確認して決定するのがよい。 また該反応の原料であるシツフ塩基化合物は単
離、精製したものでなくても良い。即ち、アミン
とアルデヒド又はケトンとの脱水縮合によりシツ
フ塩基化合物を合成した溶液に、そのままシラン
化合物を加えても良い。 シツフ塩基化合物とシラン化合物とを反応させ
た後のプロトン供与体による処理方法としては、
シツフ塩基化合物とシラン化合物との反応液をそ
のまま又は該反応液から低沸点化合物を留去した
後に、プロトン供与体又はプロトン供与体を不活
性溶媒に溶解した溶液を徐々に添加すれば良い。
該処理の際の反応液の温度は特に限定されず、好
適とする温度範囲で行なえばよい。一般的には−
10℃〜100℃の間が好適である。さらに該処理に
より激しい反応が予想される場合には、−10℃〜
30℃の間で行なうことが好適である。処理時間は
特に制限されないが、一般には数分から数日の
間、例えば5分〜5日の間で選べば良い。 処理後、アミン化合物が固体として得られる時
はロ過すれば良いが、一般には処理溶液に水を加
え有機層を抽出すれば良い。抽出溶媒としては水
と混合しない有機溶媒であれば特に制限されない
が、エーテル、ベンゼン、ヘキサン、クロロホル
ム及び四塩化炭素等が好適である。抽出の際に系
内に塩基を加えてアルカリ性にすると、目的とす
るアミン化合物を効率よく抽出することができ
る。添加する塩基としては、水酸化カリウム、水
酸化ナトリウム、アンモニア、炭酸ソーダ等が好
適に使用される。 また、シラン化合物とシツフ塩基とを反応させ
た後、気体もしくは溶液状態の鉱酸による処理を
行ない目的とするアミンを鉱酸塩として得る方法
も好適に用いられる。アミンの鉱酸塩が固体とし
て沈澱した場合にはロ過、洗浄により精製するこ
とができる。該鉱酸塩が沈澱として得られなかつ
た場合には低沸点物を除去し、得られた固体を洗
浄することにより精製できる。さらに得られた鉱
酸塩を中和することにより目的とするアミン化合
物が得られる。 本発明に於いては、シツフ塩基化合物とシラン
化合物とを反応させた後プロトン供与体で処理す
ることにより容易にアミン化合物を得ることがで
きる。得られたアミン化合物の精製方法は特に限
定されるものではない。一般には、抽出液から抽
出溶媒を留去した後、常圧、減圧もしくは真空蒸
留を行なえば良く、必要に応じて洗浄、再結晶、
又はクロマトグラフによる精製方法を用いること
ができる。 (発明の作用及び効果) 本発明の反応を化学式で示せば、下記の通りで
ある。 上記反応の反応機構は明確ではないが、次のよ
うに推論される。まずシツフ塩基化合物とシラン
化合物が反応して、シラン付加体
It is a compound represented by the formula: In the above general formula (),
Various organic groups are known as the groups represented by R 1 , R 2 , and R 3 , and these known organic groups can be used without particular limitation in the present invention.
Generally, preferably used R 1 and R 2 are substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted alkynyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted A heteroaryl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, or a substituted or unsubstituted heterocycloalkyl group. Further, as R 3 , a hydrogen atom or the same group as shown in R 1 and R 2 above can be suitably used. More specific examples of the organic groups widely used industrially are as follows. Examples of the unsubstituted alkyl group include linear or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, and dodecyl. The substituted alkyl group includes fluoromethyl, trifluoromethyl, chloromethyl,
Straight or branched haloalkyl groups such as trichloromethyl, chloroethyl, bromoethyl, fluoropropyl, chloropropyl, chlorobutyl, bromopentyl, chlorohexyl, and fluorooctyl; methoxymethyl, methoxyethyl, methoxypropyl, methoxybutyl, methoxypentyl , methoxyhexyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl,
Straight or branched alkoxyalkyl groups such as propoxymethyl, propoxyethyl, propoxypropyl, propoxybutyl, butoxymethyl, butoxyethyl, butoxypropyl, butoxybutyl, and pentoxyethyl; phenoxymethyl, phenoxyethyl, and chlorophenoxy Phenoxyalkyl groups such as propyl; cyanoalkyl groups such as cyanoethyl, cyanopropyl, and cyanobutyl; nitroalkyl groups such as nitroethyl, nitropropyl, and nitrohexyl; methylthiomethyl, methylthioethyl, methylthiopropyl, ethylthiomethyl, ethylthio Alkylthioalkyl groups such as ethyl, ethylthiobutyl, and propylthioethyl; arylalkyl groups such as phenylmethyl, phenylethyl, phenylpropyl, and methylphenylmethyl; thienylmethyl, thienylethyl, methoxythienylmethyl,
Heteroarylalkyl groups such as furylmethyl, furylethyl, chlorofurylmethyl, pyrrolylmethyl, and pyrazolylmethyl; cycloalkylalkyl groups such as cyclopropylmethyl and cyclohexylethyl; methoxycarbonylmethyl, methoxycarbonylethyl, ethoxycarbonylmethyl, and ethoxycarbonyl Examples include ethyl and alkoxycarbonylalkyl groups such as ethoxycarbonylpropyl. The unsubstituted alkenyl group includes ethenyl,
Alkenyl groups of various positional isomers such as propenyl, butenyl, pentenyl, hexenyl, and octenyl. Further, the substituted alkenyl group includes chloroethenyl, fluoroethenyl, bromopropenyl, chlorobutenyl, chloropetenyl,
and haloalkenyl groups such as fluorohexenyl;
Alkoxyalkenyl groups such as methoxyethenyl, methoxypropenyl, ethoxybutenyl, ethoxyhexenyl, and propoxybutenyl; cyanoethenyl, nitropropenyl, dimethylaminoethenyl, methylthiopropenyl, and the like. Furthermore, the unsubstituted alkynyl group includes alkynyl groups such as ethynyl, propynyl, butynyl, pentynyl, and hexynyl. Examples of the substituted alkynyl group include chloropropynyl, bromobutynyl, methoxybutynyl, cyanopropynyl, and methylthiobutynyl. Furthermore, the unsubstituted aryl group includes aryl groups such as phenyl, naphthyl, anthranyl, and phenanthrenyl. The substituted aryl groups include methylphenyl, dimethylphenyl, ethylphenyl, diethylphenyl, propylphenyl, dipropylphenyl, butylphenyl, pentylphenyl, hexylphenyl, methyl(ethyl)phenyl, methyl(propyl)phenyl, and Alkylphenyl groups such as ethyl(propyl)phenyl; halophenyl groups such as fluorophenyl, difluorophenyl, chlorophenyl, dichlorophenyl, bromophenyl, iodophenyl, trichlorophenyl and chloro(fluoro)phenyl; methoxyphenyl, dimethoxyphenyl Alkoxyphenyl groups such as enyl, trimethoxyphenyl, ethoxyphenyl, diethoxyphenyl, propoxyphenyl, and butoxyphenyl; cyanophenyl, nitrophenyl, chloro(methyl)phenyl, chloro(ethoxy)phenyl, methyl(methoxy)phenyl , methylthiophenyl, trifluoromethylphenyl, bis(chloroethyl)aminophenyl, nitro(methyl)
Substituted phenyl groups such as phenyl and diphenyl;
Examples include substituted naphthyl groups such as methylnaphthyl, dimethylnaphthyl, ethylnaphthyl, chloronaphthyl, dichloronaphthyl, methoxynaphthyl, methylthionaphthyl, nitronaphthyl, and cyanonaphthyl. Furthermore, the unsubstituted heteroaryl group includes furyl, thienyl, pyrrolyl, pyridyl, pyrimidyl, benzofuryl, benzothienyl, indolyl, quinolyl, thiazolyl, pyrazolyl, benzothiazolyl, thiadiazolyl, and oxazolyl. Examples of the substituted heteroaryl group include substituted furyls such as methylfuryl, dimethylfuryl, ethylfuryl, propylfuryl, chlorofuryl, bromofuryl, methoxyfuryl, ethoxyfuryl, propoxyfuryl, methylthiofuryl, ethylthiofuryl, and nitrofuryl. Groups; Substituted thienyl groups such as methylthienyl, ethylthienyl, propylthienyl, butylthienyl, fluorothienyl, chlorothienyl, bromothienyl, iodothienyl, methoxythienyl, ethoxythienyl, propoxythienyl, methylthiothienyl, ethylthiothienyl, and nitrothienyl ;
Substituted pyrrolyl groups such as N-methylpyrrolyl, N-ethylpyrrolyl, methyl-N-methylpyrrolyl, chloro-N-ethylpyrrolyl, methoxy-N-methylpyrrolyl, methoxyprolyl, ethylprolyl, and chloroprolyl; methylpyridyl, ethylpyridyl, chloropyridyl and methoxy Substituted pyridyl groups such as pyridyl; substituted benzofuryl groups such as methylbenzofuryl, chlorobenzofuryl, ethoxybenzofuryl, and nitrobenzofuryl; substituted benzothienyl such as ethylbenzothienyl, fluorobenzothienyl, methoxybenzothienyl, and nitrobenzothienyl Group; methylquinolyl,
Substituted quinolyl groups such as ethylquinolyl, chloroquinolyl, and methoxyquinolyl; methylthiazolyl groups, and the like. Furthermore, the unsubstituted cycloalkyl group includes cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Examples of the substituted cycloalkyl group include methylcyclopropyl, ethylcyclopropyl, propylcyclopropyl, chlorocyclopropyl, methoxycyclopropyl, ethoxycyclopropyl, methylcyclobutyl, bromocyclobutyl, methylthiocyclobutyl, chlorocyclopentyl, and methylcyclohexyl. , ethylcyclohexyl, chlorocyclohexyl, methoxycyclohexyl, propoxycyclohexyl, and the like. Examples of unsubstituted cycloalkenyl groups include cyclobutenyl, cyclopentenyl, and cyclohexenyl. Examples of the substituted cycloalkenyl group include methylcyclobutenyl, chlorocyclopentenyl, methoxycyclopentenyl, methylcyclohexenyl, ethylcyclohexenyl, chlorocyclohexenyl, methoxycyclohexenyl, and ethoxycyclohexenyl. Furthermore, examples of the unsubstituted heterocycloalkyl group include tetrahydrofuryl, tetrahydrothienyl, pyrrolidyl, tetrahydropyryl, tetrahydrothiopyryl, and piperidyl.
The substituted heterocycloalkyl group is
N-methylpyrrolidyl, N-ethylpyrrolidyl,
Examples include N-methylpiperidyl and N-ethylpiperidyl. Compounds having the groups listed above often exist in various positional isomers, but they can be used in the present invention without particular limitation. For example, the methylphenyl group includes o-methylphenyl group, m
-methylphenyl group, p-methylphenyl group, butyl group includes n-butyl group,
Examples include sec-butyl group and tert-butyl group. Furthermore, the substituents are not limited to the above specific examples, and can be appropriately selected and used as necessary, as long as the desired amine compound can be obtained by the production method of the present invention. Moreover, X and Y in the silane compound represented by the general formula ()H 2 SiXY are not particularly limited as long as they are hydrogen atoms or halogen atoms. Examples of compounds that are generally preferably used include:
Examples include H 2 SiCl 2 , H 2 SiBr 2 , H 3 SiCl, and H 3 SiBr. Further, as the proton donor, any compound having a proton source such as water, mineral acid, organic acid, alcohol, phenol, and thiol can be used without particular limitation. In particular, water, mineral acids and organic acids are preferably used industrially. The most commonly used proton donors include: water; mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, and oxalic acid; ethanesulfonic acid, benzenesulfone acids, sulfonic acids such as toluenesulfonic acid and chlorosulfonic acid; phosphoric acids such as orthophosphoric acid, metaphosphoric acid and pyrophosphoric acid; alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, benzyl alcohol, allyl alcohol, and ethylene glycol; phenols; Phenols such as cresol and naphthol; thiols such as methanethiol and ethanethiol; and the like. The greatest feature of the present invention is that a specific silane compound represented by the general formula () is used for the reduction reaction of the Schiff base compound represented by the general formula (). Although the reaction between the Schiff base compound and the silane compound can be carried out without a solvent, it is generally preferable to carry out the reaction in a solvent. The solvent is not particularly limited as long as it is an inert organic solvent that does not interact with both compounds. For example, hexane, ether, benzene, chloroform, acetonitrile, and the like are preferably used.
Although the molar ratio of the raw materials to be charged in the reaction is not particularly limited, it is usually preferable to use the silane compound in a ratio of 1 to 2 moles per mole of Schiff's base. The reaction mode of the reaction is not particularly limited, but when the silane compound has a low boiling point, a method in which the silane compound does not come out of the reaction system is preferred. For this purpose, it is preferable to use, for example, a reactor equipped with a dry ice cooler, a pressure-resistant reactor, or the like. Furthermore, although the reaction can be carried out in the atmosphere, it is preferably carried out in an inert gas such as helium, nitrogen, or argon. Furthermore, the reaction temperature in this reaction is not particularly limited and can be selected within a wide temperature range, but it is preferable to carry out the reaction in a suitable temperature range taking into consideration the reactivity of the raw materials and the stability of the product. . For example -
A temperature between 20°C and 150°C is suitable. The reaction time varies depending on the reaction temperature, but can be selected from several minutes to several days, generally from 10 minutes to 30 hours. The reaction progresses easily even without a catalyst, but
When a catalyst is used, it is possible to lower the reaction temperature and shorten the reaction time. As the catalyst, chloroplatinic acid, benzoyl peroxide, triethylamine, boron trifluoride etherate, etc. are preferably used. However, when an active catalyst is used, the silane compound may be added to the double bond or triple bond in the Schiff base compound. Therefore, when using a catalyst, it is best to check its reactivity beforehand. Furthermore, the Schiff base compound that is the raw material for the reaction does not need to be isolated or purified. That is, the silane compound may be directly added to a solution in which a Schiff base compound is synthesized by dehydration condensation of an amine and an aldehyde or ketone. As a treatment method using a proton donor after reacting a Schiff base compound and a silane compound,
The proton donor or a solution of the proton donor in an inert solvent may be gradually added to the reaction solution of the Schiff base compound and the silane compound as it is or after distilling off the low-boiling point compounds from the reaction solution.
The temperature of the reaction solution during this treatment is not particularly limited, and may be carried out within a suitable temperature range. Generally -
A temperature between 10°C and 100°C is suitable. Furthermore, if a violent reaction is expected due to the treatment, -10℃~
It is preferable to carry out the reaction at a temperature between 30°C. Although the processing time is not particularly limited, it may generally be selected from several minutes to several days, for example, from 5 minutes to 5 days. If the amine compound is obtained as a solid after treatment, it may be filtered, but generally water may be added to the treatment solution to extract the organic layer. The extraction solvent is not particularly limited as long as it is an organic solvent that is immiscible with water, but ether, benzene, hexane, chloroform, carbon tetrachloride, and the like are suitable. By adding a base to the system to make it alkaline during extraction, the target amine compound can be efficiently extracted. As the base to be added, potassium hydroxide, sodium hydroxide, ammonia, soda carbonate, etc. are preferably used. Also preferably used is a method in which a silane compound and a Schiff base are reacted and then treated with a mineral acid in a gas or solution state to obtain the desired amine as a mineral acid salt. If the amine mineral salt precipitates as a solid, it can be purified by filtration and washing. If the mineral acid salt is not obtained as a precipitate, it can be purified by removing low-boiling substances and washing the obtained solid. Further, the desired amine compound can be obtained by neutralizing the obtained mineral acid salt. In the present invention, an amine compound can be easily obtained by reacting a Schiff base compound and a silane compound and then treating the reaction with a proton donor. The method for purifying the obtained amine compound is not particularly limited. In general, after distilling off the extraction solvent from the extract, it is sufficient to perform normal pressure, reduced pressure, or vacuum distillation, and if necessary, washing, recrystallization,
Alternatively, a chromatographic purification method can be used. (Operations and Effects of the Invention) The chemical formula of the reaction of the present invention is as follows. Although the reaction mechanism of the above reaction is not clear, it is inferred as follows. First, a Schiff base compound and a silane compound react to form a silane adduct.

【式】が生成し、幹付加体がプ ロトン供与体と反応することにより目的とするア
ミン化合物が生成すると考えられる。 本発明によつて得られる第2級アミン化合物
は、例えば、除草剤、殺虫剤、及び殺菌剤等の農
薬あるいは医薬品等に有用である。またこれらの
原料中間体としても非常に有用な物質である。 以上のように、本発明は、医農薬あるいは該原
料中間体として有用である第2級アミン化合物
を、対応するシツフ塩基化合物から温和な条件で
収率よく合成することができる優れた方法であ
る。さらに反応終了後の生成物の単離精製も容易
に行なうことができる。従つて本発明は、工業的
にも極めて優れたものであると言える。 (実施例) 以下に、本発明を具体的に説明するために実施
例を挙げるが、本発明はこれらの実施例に限定さ
れるものではない。 実施例 1 100mlのガラス製オートクレーブに、N―〔2
―(3―メトキシ)―チエニルメチリデン〕―
2′,6′―ジメチルアニリン(2.4g)の乾燥ベンゼ
ン(15ml)溶液を入れ、窒素下、−78℃に冷却し
た。次いでジクロロシラン(2.81g)をオートク
レーブ中に導入した後、閉管した。オートクレー
ブを室温に戻した後、50℃で8時間加熱撹拌し
た。反応容器を室温まで冷却し、窒素下開封し、
反応溶液を取り出した。反応液を10℃に冷却し、
撹拌しながら、KOH―メタノール水溶液を徐々
に加え塩基性とした。室温にて2時間撹拌した
後、水を加え、有機層をエーテルで抽出し、抽出
液を無水硫酸ナトリウムで乾燥した。エーテルを
除去し残渣であるかつ色液体(2.33g)を蒸留す
ることにより沸点122℃/0.15mmHgのN―〔2
―(3―メトキシ)―チエニルメチル〕―2′,
6′―ジメチルアニリンを得た。 実施例 2 ドライアイス冷却器を備えた3つ口フラスコ
に、N―〔2―(3―メトキシ)―チエニルメチ
リデン〕―2′,6′―ジメチルアニリン(5.02g)、
乾燥アセトニトリル(20ml)、及びジクロロシラ
ン(6.11g)を入れた。室温にて1時間撹拌した
後、油浴中(65℃)にて5時間加熱撹拌した。室
温まで冷却した反応液を永水中に徐々に滴下し、
滴下終了後炭酸ナトリウムを加えて塩基性にし2
時間撹拌した。水を加えて有機層をエーテルで抽
出した。抽出液を無水硫酸ナトリウムで乾燥した
後エーテルを除去し、N―〔2―(3―メトキ
シ)―チエニルメチル〕―2′,6′―ジメチルアニ
リン(4.60g)を赤かつ色液体として得た。 実施例 3 100mlのガラス製オートクレーブに、n―ペン
チリデン―エチルアミン(3.05g)の乾燥ベンゼ
ン(15ml)溶液を入れ、窒素下、−78℃に冷却し
た。次いでジクロロシラン(5.30g)をオートク
レーブ中に導入した後、閉管した。オートクレー
ブを室温に戻した後、40℃にて6時間加熱撹拌し
た。室温まで冷却した後、窒素下開封し反応溶液
を取り出した。反応液を10℃に冷却し、撹拌しな
がらHClガスを導入した。生成した固体をロ過
し、ベンゼンで洗浄することにより、融点196℃
の(N―エチル)―n―ペンチルアミン塩酸塩
(3.40g)を白色固体として得た。 実施例 4 実施例1〜3に記載した方法と同様に、シラン
化合物としてジクロロシランを用いて、各種アミ
ン化合物の合成を行なつた。得られたアミン化合
物の構造式、及び物性を第1表に記載した。
[Formula] is formed, and the desired amine compound is thought to be formed by reacting the stem adduct with a proton donor. The secondary amine compound obtained by the present invention is useful, for example, as agrochemicals such as herbicides, insecticides, and fungicides, or as pharmaceuticals. It is also a very useful substance as an intermediate for these raw materials. As described above, the present invention is an excellent method for synthesizing secondary amine compounds useful as pharmaceuticals and agrochemicals or raw material intermediates from the corresponding Schiff base compounds in good yield under mild conditions. . Furthermore, the product can be easily isolated and purified after the reaction is completed. Therefore, it can be said that the present invention is extremely excellent from an industrial perspective. (Examples) Examples are given below to specifically explain the present invention, but the present invention is not limited to these Examples. Example 1 In a 100ml glass autoclave, N-[2
-(3-methoxy)-thienylmethylidene]-
A solution of 2',6'-dimethylaniline (2.4 g) in dry benzene (15 ml) was added, and the mixture was cooled to -78°C under nitrogen. Next, dichlorosilane (2.81 g) was introduced into the autoclave, and the autoclave was then closed. After the autoclave was returned to room temperature, it was heated and stirred at 50°C for 8 hours. The reaction vessel was cooled to room temperature, opened under nitrogen,
The reaction solution was taken out. Cool the reaction solution to 10°C,
While stirring, a KOH-methanol aqueous solution was gradually added to make it basic. After stirring at room temperature for 2 hours, water was added, the organic layer was extracted with ether, and the extract was dried over anhydrous sodium sulfate. By removing the ether and distilling the residual colored liquid (2.33 g), N-[2
-(3-methoxy)-thienylmethyl]-2',
6′-dimethylaniline was obtained. Example 2 N-[2-(3-methoxy)-thienylmethylidene]-2',6'-dimethylaniline (5.02 g) was placed in a three-necked flask equipped with a dry ice cooler.
Dry acetonitrile (20 ml) and dichlorosilane (6.11 g) were added. After stirring at room temperature for 1 hour, the mixture was heated and stirred in an oil bath (65°C) for 5 hours. The reaction solution cooled to room temperature was gradually dropped into permanent water.
After dropping, add sodium carbonate to make it basic 2
Stir for hours. Water was added and the organic layer was extracted with ether. After drying the extract over anhydrous sodium sulfate, the ether was removed to obtain N-[2-(3-methoxy)-thienylmethyl]-2',6'-dimethylaniline (4.60 g) as a red colored liquid. . Example 3 A solution of n-pentylidene-ethylamine (3.05 g) in dry benzene (15 ml) was placed in a 100 ml glass autoclave and cooled to -78°C under nitrogen. Next, dichlorosilane (5.30 g) was introduced into the autoclave, and the autoclave was then closed. After the autoclave was returned to room temperature, it was heated and stirred at 40°C for 6 hours. After cooling to room temperature, the container was opened under nitrogen and the reaction solution was taken out. The reaction solution was cooled to 10° C., and HCl gas was introduced while stirring. By filtering the formed solid and washing with benzene, the melting point is 196℃.
(N-ethyl)-n-pentylamine hydrochloride (3.40 g) was obtained as a white solid. Example 4 Similar to the methods described in Examples 1 to 3, various amine compounds were synthesized using dichlorosilane as the silane compound. The structural formula and physical properties of the obtained amine compound are listed in Table 1.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 5 種々のシツフ塩基化合物、種々のシラン化合
物、及び種々のプロトン供与体を用いて、アミン
化合物の合成を行なつた。構造式を第2表に記載
した。
[Table] Example 5 Amine compounds were synthesized using various Schiff base compounds, various silane compounds, and various proton donors. The structural formula is shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式() (但し、R1及びR2は同種又は異種の置換もしく
は非置換アルキル基、置換もしくは非置換アルケ
ニル基、置換もしくは非置換アルキニル基、置換
もしくは非置換アリール基、置換もしくは非置換
ヘテロアリール基、置換もしくは非置換シクロア
ルキル基、置換もしくは非置換シクロアルケニル
基、及び置換もしくは非置換ヘテロシクロアルキ
ル基である。R3は水素原子もしくは前記R1,R2
と同じ基である。)で示されるシツフ塩基化合物
と、 一般式() H2SiXY (但し、X及びYは同種又は異種の水素原子又は
ハロゲン原子である。)で示されるシラン化合物
を反応させ、次いでプロトン供与体で処理するこ
とにより 一般式() (但し、R1,R2、及びR3は上記と同じである。) で示される第2級アミン化合物を製造することを
特徴とする第2級アミン化合物の製造方法。
[Claims] 1 General formula () (However, R 1 and R 2 are the same or different substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted alkynyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, substituted or an unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, and a substituted or unsubstituted heterocycloalkyl group. R 3 is a hydrogen atom or the above R 1 , R 2
It is the same group as . ) is reacted with a silane compound represented by the general formula () H 2 SiXY (where X and Y are the same or different hydrogen atoms or halogen atoms), and then reacted with a proton donor. By processing the general formula () (However, R 1 , R 2 , and R 3 are the same as above.) A method for producing a secondary amine compound, characterized by producing a secondary amine compound represented by the following.
JP2009085A 1985-02-06 1985-02-06 DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO Expired - Lifetime JPH0228582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085A JPH0228582B2 (en) 1985-02-06 1985-02-06 DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085A JPH0228582B2 (en) 1985-02-06 1985-02-06 DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS61180728A JPS61180728A (en) 1986-08-13
JPH0228582B2 true JPH0228582B2 (en) 1990-06-25

Family

ID=12017406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085A Expired - Lifetime JPH0228582B2 (en) 1985-02-06 1985-02-06 DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0228582B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747424A (en) * 1989-09-11 1998-05-05 Rhone-Poulenc Agriculture Ltd. Herbicidal 4-substituted isoxazol
US5650533A (en) * 1989-09-11 1997-07-22 Rhone-Poulenc Agriculture Ltd. Intermediates to herbicidal 4-substituted isoxazoles
US5656573A (en) * 1989-09-11 1997-08-12 Rhone-Poulenc Agriculture Ltd. Herbicidal 4-substituted isoxazoles
US6162944A (en) * 1996-07-22 2000-12-19 Ihara Chemical Industry Co., Ltd. Process for production of N-cyclopropylanilines and intermediates therefor
JP4028913B2 (en) * 1996-07-22 2008-01-09 イハラケミカル工業株式会社 Process for producing N-cyclopropylanilines and intermediates therefor
FR2833944A1 (en) * 2001-12-20 2003-06-27 Rhodia Chimie Sa Production of amines by reacting imines with a silane reducing agent comprises using a catalyst selected from triflate or carboxylate salts, zinc or cobalt halides or alkoxides
US20100016621A1 (en) * 2006-09-28 2010-01-21 Yugen Zhang Hydrosilylation
CN109206333A (en) * 2018-10-16 2019-01-15 河南师范大学 A kind of synthetic method and application of the benzocainum monosubstituted derivative with antibacterial activity

Also Published As

Publication number Publication date
JPS61180728A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
US7759497B2 (en) Synthesis of diaryl pyrazoles
JP4681617B2 (en) Synthesis of himbacine analogs
KR20180003610A (en) Process for preparing 4-amino-pyridazines
Carman et al. Regiospecific synthesis of aryl (2-furyl) iodonium tosylates, a new class of iodonium salts, from [hydroxy (tosyloxy) iodo] arenes and 2-(trimethylsilyl) furans in organic solvents
JPH04504261A (en) Urea-based lipoxygenase inhibitor compounds
JPH0228582B2 (en) DAI2KYUAMINKAGOBUTSUNOSEIZOHOHO
JP2004527577A5 (en)
KR100423188B1 (en) Process for preparing 1,4-dihydropyridine compounds
EP1636200A2 (en) Inhibitors of papilloma virus
CN106146419A (en) Xanthine oxidase inhibitor
KR100788529B1 (en) 3-1-Hydroxy-Pentylidene-5-Nitro-3H-Benzofuran-2-One, a Process for the Preparation thereof and the Use thereof
JPH0259806B2 (en)
CN112521323B (en) Method for synthesizing thioamide compound
ES2619711T3 (en) Procedure for the preparation of aminoaryl- and aminoheteroarylboronic acids and esters
JP3246712B2 (en) Method for producing ethenylamide compound
JPS5838242A (en) Manufacture of n-substituted methacrylamide and acrylamide
US9174934B2 (en) Aryl tetrafluorosulfanyl compounds
Song et al. Highly Chemoselective Trichloroacetimidate-Mediated Alkylation of Ascomycin: A Convergent, Practical Synthesis of the Immunosuppressant L-733,725
US20060135787A1 (en) Process for obtaining enantiomers of thienylazolylalcoxyethanamines
KR100586671B1 (en) Process for producing 5-substituted oxazole compounds and 5-substituted imidazole compounds
KR20160086725A (en) Method for synthesizing azomethin ylide derivatives having excellent stability and method for synthesizing 1,4-diazepine derivatives using multicomponent [5+2] cycloaddition reaction
JP4280464B2 (en) Process for producing 4-trifluoromethylnicotinic acid or a salt thereof
JP4216042B2 (en) Method for producing cyclopropylacetonitrile
Ma et al. Copper (II) acetate-catalysed conversion of aldoximes to amides under mild conditions
JP4222671B2 (en) Method for producing hydrazine derivative

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees