JPH02285050A - High hardness free-cutting die steel - Google Patents

High hardness free-cutting die steel

Info

Publication number
JPH02285050A
JPH02285050A JP10618689A JP10618689A JPH02285050A JP H02285050 A JPH02285050 A JP H02285050A JP 10618689 A JP10618689 A JP 10618689A JP 10618689 A JP10618689 A JP 10618689A JP H02285050 A JPH02285050 A JP H02285050A
Authority
JP
Japan
Prior art keywords
steel
free
hardness
cutting
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10618689A
Other languages
Japanese (ja)
Inventor
Hidetaka Chiba
千葉 秀隆
Ryota Yamaba
山場 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10618689A priority Critical patent/JPH02285050A/en
Publication of JPH02285050A publication Critical patent/JPH02285050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the high hardness free-cutting die steel having good mirror finishing properties, polishability, etc., by preparing a steel contg. specified ratios of C, Si, Mn, Cr, Ni, sol Al and N as essential components and contg. specified ratios of B, Ca and P as free-cutting elements. CONSTITUTION:A steel contg., by weight, 0.10 to 1.00% C, 0.05 to 1.50% Si, 0.10 to 2.00% Mn, 2.00 to 9.50% Cr, 0.25 to 5.00% Ni, 0.60 to 1.5% sol Al and 0.0015 to 0.060% N as essential components, contg. one or more kinds from the group of free cutting elements among 0.0003 to 0.01% B, 0.0005 to 0.050% Ca and 0.005 to 0.10% P and the balance Fe with inevitable impurities is refined and cast. Preferably, the steel is reheated, is rolled or forged, is thereafter heated to about 850 to 1100 deg.C, is subjected to water or oil quenching and is tempered at about 150 to 700 deg.C. In this way, the high hardness free-cutting die steel having about 50 to 70 class Hs hardness can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス樹脂入りプラスチック射出成形用やプ
レス用等の金型に用いられる鏡面加工性層き加工性・疲
労特性・熱疲労特性の良好な硬さがHsで50〜70級
の高硬度快削金型用鋼に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides improvements in mirror workability, layer workability, fatigue properties, and thermal fatigue properties used in molds for glass resin-containing plastic injection molding, press molds, etc. This relates to a high-hardness free-cutting mold steel with good hardness of Hs class 50 to 70.

〔従来の技術〕[Conventional technology]

Hsで50〜70級のプラスチック金型用鋼としては、
JISの5KD61(0,4Cl5i−5Cr  1.
25Mo−IV)や5KDII(1,5C12Cr−I
Mo −0,4V)相当材があるが、これらの金型用鋼
は高硬度であり、一般に切削性が低い。
As Hs grade 50-70 steel for plastic molds,
JIS 5KD61 (0,4Cl5i-5Cr 1.
25Mo-IV) and 5KDII (1,5C12Cr-I
Although there are materials equivalent to Mo -0.4V, these mold steels have high hardness and generally have low machinability.

この種類の鋼材で、所定の切削効率を得るには、■硫化
物やpbを用いて鋼材自身に快削性を付与する方法(特
公昭63−66384号公報)、■切削後、金属間化合
物、Cu合金相の析出熱処理を施す方法(特開昭61−
163248号公報)、■セラミックスやサーメットの
ような高グレード切削工具を使用する方法、 等があるが、必ずしも、鋼材自身が高硬度・快削性・鏡
面加工性・磨き加工性・疲労特性・熱疲労特性を十分に
満足するとは言えない。
In order to obtain a specified cutting efficiency with this type of steel material, there are two methods: 1) Adding free machinability to the steel itself using sulfide or PB (Japanese Patent Publication No. 63-66384), 2) Adding intermetallic compounds after cutting. , method of applying precipitation heat treatment of Cu alloy phase
163248), ■ Methods using high-grade cutting tools such as ceramics and cermets, etc. However, the steel material itself does not necessarily have high hardness, free machinability, mirror workability, polishing workability, fatigue properties, and thermal properties. It cannot be said that the fatigue properties are fully satisfied.

このため、鏡面加工性・磨き加工性・疲労特性・熱疲労
特性の良好な硬さがHsで50〜70級の高硬度快削金
型用鋼の開発が望まれている。
Therefore, it is desired to develop a high-hardness free-cutting mold steel having a hardness of Hs class 50 to 70 and having good specular workability, polishing workability, fatigue properties, and thermal fatigue properties.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このため本発明は、従来のJIS SKD 61 (0
,4clsi−5Cr−1,25Mo−IV)やSKD
 11 (1,5C−12Cr −lMo−0,4V)
等に代わッテ、鏡面加工性・磨き加工性・疲労特性・熱
疲労特性の良好な硬さがHsで50〜70級の高硬度快
削金型用鋼を提供することを目的とする。
For this reason, the present invention complies with the conventional JIS SKD 61 (0
,4clsi-5Cr-1,25Mo-IV) and SKD
11 (1,5C-12Cr-1Mo-0,4V)
It is an object of the present invention to provide a high-hardness free-cutting mold steel having a hardness of Hs class 50 to 70 and having good mirror finish workability, polishing workability, fatigue properties, and thermal fatigue properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、このような問題点を有利に解決するためにな
されたものであり、その要旨とするところは、下記のと
おりである。
The present invention has been made to advantageously solve these problems, and the gist thereof is as follows.

(1)重量比で C:0.10〜1.00% Si:0.05〜1.50% Mn:0.10〜2.00% Cr  : 2.00〜9.50% Ni:0.25〜5.00% sob、 Al : 0.60〜1.5%N   :0
.0015〜0.060%を基本成分として、快削性元
素群 B  :O,0003〜0.01% Ca  : 0.0005〜0.050%P  :o、
oos〜0.10% のうち1種又は2種以上を含有し、残部Feおよび不可
避不純物からなる高硬度快削金型用鋼。
(1) Weight ratio: C: 0.10-1.00% Si: 0.05-1.50% Mn: 0.10-2.00% Cr: 2.00-9.50% Ni: 0. 25-5.00% sob, Al: 0.60-1.5%N: 0
.. Free-machining element group B: O, 0003-0.01% Ca: 0.0005-0.050% P: o,
A high-hardness free-cutting mold steel containing one or more of oos to 0.10%, with the balance being Fe and inevitable impurities.

(2)重量比で C:0.10〜1.00% Si:0.05〜1.50% Mn  : 0.10〜2.00% Cr:2.00〜9.50% Ni:0.25〜5.00% sol、A1 : 0.60〜1.5%N  :O,0
015〜0.060% を基本成分として、快削性元素群 B   :0.0003〜0.01% Ca  : 0.0005〜0.050%P   :0
.005〜0.10% のうち1種又は2種以上を含有し、更に硬さ向上元素群 Mo  : 0.05〜3.00% W:0.05〜2.00% V:0.010〜2.00% Nb:0.005〜0.50% Co  : 0.25〜3.00% のうち1種又は2種以上を含有し、残部Feおよび不可
避不純物からなる高硬度快削金型用鋼。
(2) Weight ratio: C: 0.10-1.00% Si: 0.05-1.50% Mn: 0.10-2.00% Cr: 2.00-9.50% Ni: 0. 25-5.00% sol, A1: 0.60-1.5% N: O, 0
Free-machining element group B: 0.0003-0.01% Ca: 0.0005-0.050% P: 0
.. 005-0.10%, and further hardness improving element group Mo: 0.05-3.00% W: 0.05-2.00% V: 0.010- 2.00% Nb: 0.005 to 0.50% Co: 0.25 to 3.00% Contains one or more of the following, and the balance is Fe and inevitable impurities for high hardness free-cutting molds steel.

〔作用〕[Effect]

快削性を向上するには、一般に切削時に被削体において 1)応力集中源となるか構成刃先を形成する介在物によ
る脆化作用、 2)変形抵抗の小さい介在物が工具の潤滑材として働く
潤滑作用、 3)低融点化合物が切削時に二部溶融して刃先を固溶体
が保護する工具保護作用、 の増加が必要である。
In order to improve free machinability, generally speaking, during cutting, the workpiece is embrittled by 1) inclusions that act as a stress concentration source or form a built-up cutting edge, and 2) inclusions with low deformation resistance act as lubricants for the tool. It is necessary to increase the lubrication effect that occurs, and 3) the tool protection effect in which the low melting point compound melts in two parts during cutting and the solid solution protects the cutting edge.

本発明者らは、金型用鋼に対して、快削性を付与しつつ
、高硬度および良好な鏡面加工性・磨き加工性・疲労特
性・熱疲労特性を得るために介在物や析出物に関して詳
細な調査を行った。その結果、Bおよび硼化物、Caお
よびカルシウム化合物、Pおよびリン化物が有効である
ことを知見し、これらの介在物や析出物を用いて、鏡面
加工性・磨き加工性・疲労特性・熱疲労特性の良好な高
硬度快削冷型用鋼の開発に成功したものである。
The present inventors have investigated inclusions and precipitates in order to obtain high hardness and good mirror workability, polishing workability, fatigue characteristics, and thermal fatigue characteristics while imparting free machinability to steel for molds. A detailed investigation was conducted regarding the As a result, we found that B and borides, Ca and calcium compounds, P and phosphides are effective, and using these inclusions and precipitates, we can improve mirror workability, polishing workability, fatigue properties, and thermal fatigue. This was a successful development of a high-hardness free-cutting cold mold steel with good properties.

B、CaおよびPの含有量とドリル穿孔加工時の周方向
の力であるスラスト力との関係を第1図、第2図および
第3図に示す。被削材は、いづれも焼戻しマルテンサイ
トを主体として一部ペイナイトからなるミクロ組織を呈
し、その硬さはHsで57〜61である。第1図、第3
図より、BおよびPは、それぞれ重量比で0.010%
以下、0.10%以下では、含有量の増加に伴シ1スラ
スト力すなわち切削抵抗が低下して切削性が向上してい
る。
The relationships between the contents of B, Ca, and P and the thrust force, which is the force in the circumferential direction during drilling, are shown in FIGS. 1, 2, and 3. All of the workpiece materials exhibit a microstructure consisting mainly of tempered martensite and a portion of paynite, and have a hardness of 57 to 61 in Hs. Figures 1 and 3
From the figure, B and P are each 0.010% by weight
Hereinafter, when the content is 0.10% or less, as the content increases, the thrust force, that is, the cutting resistance decreases, and the machinability improves.

一方、この含有量を超えると、Bの場合には、粒界強度
の向上のために切削性が低くなり、Pの場合には、固溶
体硬化のために切削性が低くなる。
On the other hand, when the content exceeds this, in the case of B, the machinability decreases due to improvement in grain boundary strength, and in the case of P, the machinability decreases due to solid solution hardening.

さらに、窒化リン、リン化カルシウム等のリン化物や炭
化硼素、窒化硼素等の硼化物は、低融点の微細な非晶質
系析出物であるので、切削時に一部溶融して潤滑材とし
て働くとともに、刃先を覆い工具を保護する。また、こ
れらの析出物は、高硬度金属間化合物や高硬度合金相の
析出核ともなる。
Furthermore, phosphides such as phosphorus nitride and calcium phosphide and borides such as boron carbide and boron nitride are fine amorphous precipitates with low melting points, so they partially melt during cutting and act as lubricants. At the same time, it protects the tool by covering the cutting edge. In addition, these precipitates also serve as precipitation nuclei for high-hardness intermetallic compounds and high-hardness alloy phases.

また、第2図よりCaの添加は、含有量の増加に伴いス
ラスト力すなわち切削抵抗が低下して切削性が向上して
いる。但し、過度のCaの添加は、次に述べるように、
鏡面加工性・磨き加工性・疲労特性・熱疲労特性を劣化
せしめるので、Caも上限規制が必要になる。尚、前記
のリン化物、硼化物およびカルシウム化合物は鋳造時に
生成するものである。
Moreover, as shown in FIG. 2, the addition of Ca reduces thrust force, that is, cutting resistance, and improves machinability as the content increases. However, excessive addition of Ca will cause
Since Ca deteriorates mirror workability, polishing workability, fatigue properties, and thermal fatigue properties, an upper limit regulation is also required for Ca. Incidentally, the above-mentioned phosphides, borides, and calcium compounds are generated during casting.

鏡面加工性・磨き加工性は、精密なプラスチック用金型
用鋼の表面性状に関して重要な特性である。
Mirror workability and polishing workability are important characteristics regarding the surface quality of steel for precision plastic molds.

鏡面仕上げ加工とは、面切削後#1200までペーパー
研磨し、その後、径がIn以下のダイヤモンドペースト
粉で磨き、鋼材表面を鏡のように仕上げる。この加工性
の評価は、鏡面の表面での粗さの程度と写る像の歪み具
合でなされる。鏡面性を満足するには、介在物を減少し
かつ微細化する必要がある。
Mirror finishing refers to polishing the surface with paper to #1200 after surface cutting, and then polishing with diamond paste powder with a diameter of In or less to finish the steel surface like a mirror. The processability is evaluated based on the degree of roughness on the mirror surface and the degree of distortion of the reflected image. In order to satisfy specularity, inclusions must be reduced and made finer.

磨き加工の場合には、最終仕上げ研磨時のダイヤモンド
ペースト粉の径が鏡面仕上げの時に比べ粗く数μm〜十
数μmである。磨き加工とは、鋼材表面を磨いた後に、
プラスチックを射出してプラスチック表面に、鋼材の磨
き面を転写することである。鋼材の磨き面が良好であっ
ても、介在物があると、介在物の圧縮塑性変形能が鋼材
の値より高いために、プラスチック表面に凸ができる。
In the case of polishing, the diameter of the diamond paste powder during final polishing is coarser than that during mirror finishing, ranging from several μm to more than ten μm. Polishing is the process after polishing the surface of steel.
This involves injecting plastic and transferring the polished surface of steel onto the plastic surface. Even if the polished surface of the steel material is good, if there are inclusions, the plastic surface will have convexities because the compression plastic deformability of the inclusions is higher than that of the steel material.

この凸が、目視または20倍程度の拡大鏡観察で検出さ
れないことが必要であり、介在物を減少しかつ微細化す
る必要がある。
It is necessary that this convexity is not detected by visual inspection or observation using a magnifying glass of about 20 times, and it is necessary to reduce and miniaturize inclusions.

成形と離形時の応力差による疲労亀裂や成形→冷却→離
形→成形の熱サイクルによる熱亀裂は、プラスチック表
面に凸に転写される。このため、金型でも、疲労特性と
熱疲労特性が要求される。
Fatigue cracks caused by stress differences during molding and mold release, and thermal cracks caused by the thermal cycle of molding, cooling, mold release, and molding are transferred to the plastic surface in convex shapes. For this reason, molds are also required to have good fatigue properties and thermal fatigue properties.

疲労特性に関しては、介在物を少なくし微細化すること
が有効であり、また熱疲労特性に関しては介在物や炭化
物を少なくし微細化することが有効である。
Regarding fatigue properties, it is effective to reduce inclusions and make them fine, and regarding thermal fatigue properties, it is effective to reduce inclusions and carbides and make them fine.

次に、本発明における成分限定理由は以下の通りである
Next, the reasons for limiting the ingredients in the present invention are as follows.

Cは、マルテンサイト中に固溶し又は炭化物として析出
し、鋼の硬さを上昇させる効果がある。
C dissolves in martensite or precipitates as a carbide, and has the effect of increasing the hardness of steel.

本効果を発揮させるには、0.10%以上の含有が必要
であるが、1.00%を超えると金型の補修溶接性を損
なうため、含有量を0.10〜1.00%に限定した。
In order to exhibit this effect, the content must be 0.10% or more, but if it exceeds 1.00%, the repair weldability of the mold will be impaired, so the content should be reduced to 0.10-1.00%. Limited.

Siは、安価に鋼の硬さを上昇させる元素である。Si is an element that inexpensively increases the hardness of steel.

本効果を発揮させるには、0.05%以上の含有が必要
であるが、1.50%を超えると靭性を低下させるため
含有量を0.05〜1.50%に限定した。
In order to exhibit this effect, the content is required to be 0.05% or more, but if it exceeds 1.50%, the toughness decreases, so the content is limited to 0.05 to 1.50%.

Mnは、安価に鋼の硬さと靭性を向上させる効果があり
、このためには、0.10%以上の含有が必要である。
Mn has the effect of improving the hardness and toughness of steel at low cost, and for this purpose, it must be contained in an amount of 0.10% or more.

一方、2.00%を超えて含有すると、巨大なMnSの
形成により溶接性が損なわれる。このため、含有量を0
. l O〜2.00%に限定した。
On the other hand, if the content exceeds 2.00%, weldability will be impaired due to the formation of huge MnS. For this reason, the content is reduced to 0.
.. It was limited to lO~2.00%.

Crは焼入性向上元素として必要であり、この効果を得
るには2.00%が必要である。一方、9.50%の含
有上限量を超えて含有させても、その作用効果が飽和す
る。このため、含有量を2.00〜9.50%に限定し
た。
Cr is necessary as an element to improve hardenability, and 2.00% is required to obtain this effect. On the other hand, even if the content exceeds the upper limit of 9.50%, the effect will be saturated. For this reason, the content was limited to 2.00 to 9.50%.

sol、AIは厚鋼板の製造時に脱酸元素として必要で
あるばかりでなく金属間化合物形成元素として必要であ
り、この効果を得るには0.60%以上が必要である。
Sol and AI are not only necessary as deoxidizing elements during the production of thick steel plates, but also as intermetallic compound forming elements, and in order to obtain this effect, 0.60% or more is required.

一方1.5%を超える含有では鋼板の清浄度が著しく低
下する。このためsol、klは、含有量を0.60〜
1.5%に限定した。
On the other hand, if the content exceeds 1.5%, the cleanliness of the steel plate will decrease significantly. Therefore, the content of sol and kl is 0.60~
It was limited to 1.5%.

Nは厚鋼板の製造時にAfNとして析出し、オーステナ
イト粒の粗大化を防止する。細粒化に必要なNの量とし
て、0.0015%以上が必要である。一方、0.06
0%を超える含有では、巨大A7Nが析出し靭性を低下
する。このため、Nの含有量は0.0015〜0.06
0%に限定した。
N precipitates as AfN during the production of thick steel plates and prevents austenite grains from becoming coarser. The amount of N required for grain refinement is 0.0015% or more. On the other hand, 0.06
If the content exceeds 0%, giant A7N precipitates and reduces toughness. Therefore, the N content is 0.0015 to 0.06
It was limited to 0%.

Niは硬度と靭性を確保するために必要であり、この効
果を得るには0.25%が必要である。一方、5.00
%の含有上限量を超えて含有させても、その作用効果が
飽和し経済的でない。このため、Niの含有量は、0.
25〜5.00%に限定した。
Ni is necessary to ensure hardness and toughness, and 0.25% is required to obtain this effect. On the other hand, 5.00
Even if it is contained in an amount exceeding the upper limit of %, the effect becomes saturated and it is not economical. Therefore, the Ni content is 0.
It was limited to 25-5.00%.

次に、快削性元素群として添加するB、Ca、Pについ
て述べる。
Next, B, Ca, and P, which are added as free-machining elements, will be described.

これらの成分は鋼の切削性を向上させるという均等的作
用をもつので添加されるが、前記作用に所望の効果を確
保するためには、それぞれの含有量の下限量として、B
 : 0.0003%、Ca:0、0005%、P:0
.005%が必要である。
B
: 0.0003%, Ca: 0, 0005%, P: 0
.. 005% is required.

しかし、それぞれB:0.01%、Ca:0.050%
、P:0.10%の含有上限量を超えて含有させても、
その作用効果が飽和したり、靭性やシボ加工性・磨き加
工性及び溶接性を損なうために、それぞれの含有量を以
上のとおりに定めた。
However, B: 0.01% and Ca: 0.050%, respectively.
, P: Even if the content exceeds the upper limit of 0.10%,
In order to avoid saturation of their effects or impair toughness, graining workability, polishing workability, and weldability, the respective contents were determined as described above.

更に、請求項2記載の発明において硬さ向上元素群とし
て添加するMo、 W、  v、 Nb、 Coについ
て述べる。これらの成分は、鋼の硬さを向上させるとい
う均等的作用をもつので添加されるが、前記作用に所望
の効果を確保するためには、それぞれの含有量の下限量
として、Mo:0.05%、W:0.05%、V:0.
010%、Nb:0.005%。
Furthermore, Mo, W, v, Nb, and Co added as hardness improving element groups in the invention according to claim 2 will be described. These components are added because they have the uniform effect of improving the hardness of steel, but in order to ensure the desired effect on the above effect, the lower limit of each content should be Mo: 0. 05%, W: 0.05%, V: 0.
010%, Nb: 0.005%.

Go : 0.25%が必要である。Go: 0.25% is required.

しかし、それぞれ、Mo:3.00%、W:2.00%
、v:2.oo%、Nb:0.50%、Co:3.00
%の含有上限量を超えて含有させても、その作用効果が
飽和するため、それぞれの含有量を以上の通りに定めた
However, Mo: 3.00%, W: 2.00%, respectively.
, v:2. oo%, Nb: 0.50%, Co: 3.00
Even if the content exceeds the upper limit of %, the effect will be saturated, so each content was determined as above.

溶製するに際しては、電気炉、転炉のいずれであっても
良く、鋳造する際には普通造塊法、連続鋳造法、一方向
凝固法のいずれであっても良い。
For melting, either an electric furnace or a converter may be used, and for casting, any of the ordinary ingot method, continuous casting method, and unidirectional solidification method may be used.

再加熱し圧延または鍛造した後に850〜1100°C
に加熱後水または油に焼入れし、150〜700°Cに
て焼戻しを施すのが好ましい。尚、850〜1100°
Cに加熱復燐ならしを施し、必要に応じて150〜70
0°Cにて焼戻すことも可能である。
850-1100°C after reheating and rolling or forging
It is preferable to quench in water or oil after heating, and then temper at 150 to 700°C. In addition, 850~1100°
C is subjected to heating rephosphorization, and if necessary, the temperature is 150 to 70.
It is also possible to temper at 0°C.

〔実施例〕〔Example〕

本発明実施例と比較例の板厚、化学組成を第1表に示し
、この鋼の機械的性質を第2表に示す。
Table 1 shows the plate thickness and chemical composition of the inventive examples and comparative examples, and Table 2 shows the mechanical properties of this steel.

尚、鋼の溶製後、通常の方法によりスラブとなし、各ス
ラブを1050〜1250°Cに再加熱後圧延を行った
。さらに、880〜1070°Cに加熱後焼入れし、3
00〜650°Cにて焼戻しを行った。
After melting the steel, it was made into slabs by a normal method, and each slab was reheated to 1050 to 1250°C and then rolled. Furthermore, it is heated to 880-1070°C and then quenched.
Tempering was performed at 00 to 650°C.

注1)硬さHB (3000Kgf)は、Hultgr
en球(10mm球、荷重3000Kgf)を用いた時
の板厚中心の値。
Note 1) Hardness HB (3000Kgf) is Hultgr
The value at the center of the plate thickness when using an en ball (10 mm ball, load 3000 Kgf).

Hs−50〜70を満足するには、1IB=341〜5
17が必要である。
To satisfy Hs-50~70, 1IB=341~5
17 is required.

2)シャルピー試験片はJIS 5号(5rrtm U
ノツチ)。採取位置は、板厚中心部のC方向。
2) The Charpy test piece is JIS No. 5 (5rrtm U
Notsuchi). The sampling location is in the C direction at the center of the plate thickness.

uE+20°Cは+20°Cの衝撃値。単位はkgfm
/cffl。
uE+20°C is the shock value of +20°C. Unit is kgfm
/cffl.

3)耐工具磨耗性、鏡面加工性、磨き加工性、疲労特性
、熱疲労特性の記号は、 ◎極めて良好、○良好、X不良 を示す。
3) Symbols for tool wear resistance, mirror workability, polishing workability, fatigue properties, and thermal fatigue properties indicate: ◎Very good, ○Good, and X: Poor.

4)耐工具磨耗性は2枚方エンドミルの逃げ面摩耗幅で
判定した。
4) Tool wear resistance was determined by the flank wear width of the two-sided end mill.

切削諸元は、工具径φ10.2mm、工具材種超硬、水
溶性切削液、回転数69Orpm、送り速度69ffI
Il/1lin1切削速度26m/min。
The cutting specifications are: tool diameter φ10.2mm, tool material carbide, water-soluble cutting fluid, rotation speed 69Orpm, feed rate 69ffI.
Il/1lin1 cutting speed 26m/min.

評価指標は最大磨耗幅が0.2胴になるまでの切削時間
が、180m1n超を◎、120〜180IlinをO
130min未満を×で示す。
The evaluation index is that the cutting time until the maximum wear width becomes 0.2 cylinder is ◎ when it exceeds 180 m1n, and O when it is 120 to 180 Ilin.
Less than 130 min is indicated by x.

5)鏡面加工性は174μmまでダイヤモンド粉で研磨
後研摩面を目視または20倍の拡大鏡観察で調査し、そ
の後表面粗さを調査した。
5) Mirror workability was examined by polishing the polished surface to 174 μm with diamond powder, visually or by observing with a 20x magnifying glass, and then examining the surface roughness.

◎、O1×の評価基準を下表に示す。The evaluation criteria for ◎ and O1× are shown in the table below.

6)磨き加工性は3μmまでダイヤモンド粉で研磨後研
摩面およびプラスチック表面を目視または20倍の拡大
鏡観察で調査した。評価はシボムラの有無で行った。
6) Polishing workability was examined by visual observation or observation using a 20x magnification of the polished surface and plastic surface after polishing with diamond powder to a depth of 3 μm. Evaluation was made based on the presence or absence of grain unevenness.

20倍の拡大鏡にてシボムラなしを◎、目視ではシボム
ラないが20倍の拡大鏡にてシボムラが若干有りを○、
目視にてはシボムラ有りを×で示す。
◎: There is no grain unevenness when viewed with a 20x magnifying glass, ○: There is no grain unevenness when visually inspected, but there is some grain unevenness when viewed with a 20x magnifying glass.
Visually, the presence of grain unevenness is indicated by an x.

7)疲労試験は、ASTM E8134ζ準じたITC
T試験片(機械切欠き付)を用いた。
7) Fatigue test is ITC based on ASTM E8134ζ
A T test piece (with a mechanical notch) was used.

疲労寿命の判定は、荷重5 TONで切欠き先端からの
疲労亀裂長さが0.2鴫になるまでの繰返し数がN=3
の最小値で、3X10’回超を◎、lXl0’〜3X1
0’回をO11×lO4回未満を×で示す。
To determine fatigue life, the number of repetitions until the fatigue crack length from the notch tip becomes 0.2 mm at a load of 5 TON is N = 3.
The minimum value of 3X10' times is ◎, lXl0'~3X1
0' times are O11 x l O Less than 4 times are indicated by x.

8)熱疲労試験はASTM E8131TCT試験片(
機械切欠き付)を用いた。
8) Thermal fatigue test was performed using ASTM E8131TCT specimen (
(with mechanical notch) was used.

30°Cと400°Cとを60秒間隔で各30秒保持し
、機械切欠き先端からの熱亀裂の発生・進展を観察。3
X10’回超を◎、lX10’〜3X10’回を○、l
Xl0’回未満を×で示す。
The temperature was maintained at 30°C and 400°C for 30 seconds at 60-second intervals, and the occurrence and development of thermal cracks from the tip of the mechanical notch was observed. 3
More than X10' times ◎, lX10' to 3X10' times ○, l
Less than Xl0' times is indicated by x.

第2表から明らかなように、本発明によるものは、耐工
具磨耗性が良好であり、かつ、鏡面加工性、磨き加工性
、疲労特性、熱疲労特性がいずれも良好なレベルを示し
ている。これに対して、比較例のものは、これらの特性
をすべて満足するものはない。
As is clear from Table 2, the tool according to the present invention has good tool wear resistance, and shows good levels of mirror workability, polishing workability, fatigue properties, and thermal fatigue properties. . On the other hand, none of the comparative examples satisfy all of these characteristics.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べた通り、B、Ca、Pとその化合物を用
いることによって、鏡面加工性、磨き加工性、疲労特性
、熱疲労特性がいずれも優れた硬さがHsで50〜70
級の高硬度快削金型用鋼が得られる。
As described in detail above, by using B, Ca, P and their compounds, the hardness is 50 to 70 Hs with excellent mirror workability, polishing workability, fatigue properties, and thermal fatigue properties.
A high-grade, high-hardness, free-cutting mold steel can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ドリル試験のスラスト力に及ぼすBの含有量
の影響を示す図、第2図は、ドリル試験のスラスト力に
及ぼすCaの含有量の影響を示す図、第3図は、ドリル
試験のスラスト力に及ぼすP含有量の影響を示す図であ
る。 第1図 第2図
Figure 1 is a diagram showing the influence of B content on thrust force in a drill test, Figure 2 is a diagram showing the influence of Ca content on thrust force in a drill test, and Figure 3 is a diagram showing the influence of Ca content on thrust force in a drill test. It is a figure showing the influence of P content on thrust force of a test. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)重量比で C:0.10〜1.00% Si:0.05〜1.50% Mn:0.10〜2.00% Cr:2.00〜9.50% Ni:0.25〜5.00% sol.Al:0.60〜1.5% N:0.0015〜0.060% を基本成分として、快削性元素群 B:0.0003〜0.01% Ca:0.0005〜0.050% P:0.005〜0.10% のうち1種又は2種以上を含有し、残部Feおよび不可
避不純物からなる高硬度快削金型用鋼。
(1) Weight ratio: C: 0.10-1.00% Si: 0.05-1.50% Mn: 0.10-2.00% Cr: 2.00-9.50% Ni: 0. 25-5.00% sol. The basic components are Al: 0.60-1.5% N: 0.0015-0.060%, free-machining element group B: 0.0003-0.01% Ca: 0.0005-0.050% A high-hardness free-cutting mold steel containing one or more of P: 0.005 to 0.10%, with the balance being Fe and inevitable impurities.
(2)重量比で C:0.10〜1.00% Si:0.05〜1.50% Mn:0.10〜2.00% Cr:2.00〜9.50% Ni:0.25〜5.00% sol.Al:0.60〜1.5% N:0.0015〜0.060% を基本成分として、快削性元素群 B:0.0003〜0.01% Ca:0.0005〜0.050% P:0.005〜0.10% のうち1種又は2種以上を含有し、更に硬さ向上元素群 Mo:0.05〜3.00% W:0.05〜2.00% V:0.010〜2.00% Nb:0.005〜0.50% Co:0.25〜3.00% のうち1種又は2種以上を含有し、残部Feおよび不可
避不純物からなる高硬度快削金型用鋼。
(2) Weight ratio: C: 0.10-1.00% Si: 0.05-1.50% Mn: 0.10-2.00% Cr: 2.00-9.50% Ni: 0. 25-5.00% sol. The basic components are Al: 0.60-1.5% N: 0.0015-0.060%, free-machining element group B: 0.0003-0.01% Ca: 0.0005-0.050% Contains one or more of P: 0.005 to 0.10%, further hardness improving element group Mo: 0.05 to 3.00% W: 0.05 to 2.00% V: Contains one or more of the following: 0.010-2.00% Nb: 0.005-0.50% Co: 0.25-3.00%, with the balance consisting of Fe and inevitable impurities. Steel for cutting dies.
JP10618689A 1989-04-26 1989-04-26 High hardness free-cutting die steel Pending JPH02285050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10618689A JPH02285050A (en) 1989-04-26 1989-04-26 High hardness free-cutting die steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10618689A JPH02285050A (en) 1989-04-26 1989-04-26 High hardness free-cutting die steel

Publications (1)

Publication Number Publication Date
JPH02285050A true JPH02285050A (en) 1990-11-22

Family

ID=14427177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10618689A Pending JPH02285050A (en) 1989-04-26 1989-04-26 High hardness free-cutting die steel

Country Status (1)

Country Link
JP (1) JPH02285050A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123986A1 (en) * 2000-02-10 2001-08-16 Nsk Ltd Rolling bearing
US7655101B2 (en) * 2006-10-27 2010-02-02 Boehler Edelstahl Gmbh Steel alloy for cutting tools
CN104561802A (en) * 2015-01-23 2015-04-29 宝钢特钢有限公司 High-hardness high-toughness cold work die steel as well as preparation method thereof
CN107523754A (en) * 2017-06-30 2017-12-29 太仓旺美模具有限公司 A kind of mold materials of wear-resisting heat conduction
CN107523753A (en) * 2017-06-30 2017-12-29 太仓旺美模具有限公司 A kind of mould steel
CN111041347A (en) * 2019-11-20 2020-04-21 长沙金铎机械有限公司 Continuous rolling roller and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123986A1 (en) * 2000-02-10 2001-08-16 Nsk Ltd Rolling bearing
US6602360B2 (en) 2000-02-10 2003-08-05 Nsk Ltd. Rolling bearing
US7655101B2 (en) * 2006-10-27 2010-02-02 Boehler Edelstahl Gmbh Steel alloy for cutting tools
EP1918401A3 (en) * 2006-10-27 2012-05-30 Böhler Edelstahl GmbH & Co KG Steel alloy for machining tools
CN104561802A (en) * 2015-01-23 2015-04-29 宝钢特钢有限公司 High-hardness high-toughness cold work die steel as well as preparation method thereof
CN107523754A (en) * 2017-06-30 2017-12-29 太仓旺美模具有限公司 A kind of mold materials of wear-resisting heat conduction
CN107523753A (en) * 2017-06-30 2017-12-29 太仓旺美模具有限公司 A kind of mould steel
CN111041347A (en) * 2019-11-20 2020-04-21 长沙金铎机械有限公司 Continuous rolling roller and preparation method thereof

Similar Documents

Publication Publication Date Title
US10370747B2 (en) Nitrided component
EP2770073B1 (en) Roll surface-layer material for hot rolling with excellent fatigue resistance produced by centrifugal casting, and composite roll for hot rolling produced through centrifugal casting
WO2012046779A1 (en) Case hardened steel and method for producing the same
CN109563578B (en) Steel for induction hardening
KR20130125816A (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP6652019B2 (en) Machine structural steel and induction hardened steel parts for induction hardening
US10597765B2 (en) Steel, carburized steel component, and method for manufacturing carburized steel component
CN109477179B (en) Steel for induction hardening
US20180347025A1 (en) Steel, carburized steel component, and method for manufacturing carburized steel component
KR20190035834A (en) Rolled roll outer material and rolled composite roll
KR20190028757A (en) High frequency quenching steel
KR20170128553A (en) Steel for soft nitriding, components, and method for manufacturing same
JP4793298B2 (en) Non-tempered steel and manufacturing method thereof
CN110290880B (en) Composite roll for rolling and method for manufacturing same
JPH08100239A (en) Alloy tool steel
JP2004183016A (en) Steel bar for induction hardening
JPH02285050A (en) High hardness free-cutting die steel
CN107429359B (en) Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material
CN112204161B (en) Steel material for steel piston
KR20180056748A (en) Steel and High Frequency Shaking Steel Parts for Mechanical Structures
JPH02285049A (en) Free-cutting die steel
WO2020138432A1 (en) Steel material
JP6669109B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
CN109790604B (en) Cold forging steel and method for producing same
JP6794043B2 (en) Steel for plastic molding dies with excellent workability and mirror surface