JPH02285027A - Water circulating device - Google Patents

Water circulating device

Info

Publication number
JPH02285027A
JPH02285027A JP1106938A JP10693889A JPH02285027A JP H02285027 A JPH02285027 A JP H02285027A JP 1106938 A JP1106938 A JP 1106938A JP 10693889 A JP10693889 A JP 10693889A JP H02285027 A JPH02285027 A JP H02285027A
Authority
JP
Japan
Prior art keywords
water
space
cooling water
nozzle
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1106938A
Other languages
Japanese (ja)
Other versions
JP2858011B2 (en
Inventor
Hiroshi Kaneda
金田 博志
Shusaku Ueda
周作 上田
Hidehisa Yoshizako
秀久 吉廻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1106938A priority Critical patent/JP2858011B2/en
Publication of JPH02285027A publication Critical patent/JPH02285027A/en
Application granted granted Critical
Publication of JP2858011B2 publication Critical patent/JP2858011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To effectively cool the weld zone even when bubbles are generated in a space by providing a water injection pump above the open side of the space for circulating cooling water and injecting water from the closed side of the space toward the open side. CONSTITUTION:A cooling water pipe 8 is fixed to a recirculation inlet nozzle 1 of the water circulating device through stoppers 14a and 14b. The water injection pump 10 is connected to the cooling water pipe 8, and an injection nozzle 7 is formed at the tip opening of the pipe. When water is injected from the nozzle 7, the water in a cylindrical space 6 is sucked from a suction pipe 11 provided at the closed side of the space 6, mixed with the water supplied from the cooling water pipe 8 at a throat 12 and discharged via a diffuser 13. The weld zone 2 and its vicinity are heated by a heater 9 while cooling water flows in the space 6 to produce a specified temp. distribution, and residual stress is effectively improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水循環装置に係り、特に二重金属管等の残留応
力を改善するために狭い空間部に水を循環させ、冷却さ
せるための装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a water circulation device, and more particularly to a device for circulating and cooling water in a narrow space in order to improve residual stress in a double metal pipe or the like. .

〔従来の技術〕[Conventional technology]

圧力容器に配置されるノズルのようにサーマルスリーブ
によって狭い空間が形成された二重金属管の残留応力を
改善する場合、狭い空間内に水を循環させ、溶接部内面
を冷却しながら溶接部外部を加熱し、溶接部及びその付
近に所定の温度差分布をつける必要がある。
When improving the residual stress of a double metal pipe with a narrow space formed by a thermal sleeve, such as a nozzle placed in a pressure vessel, water is circulated within the narrow space to cool the inside of the weld while cooling the outside of the weld. It is necessary to heat the weld and create a predetermined temperature difference distribution in and around the weld.

この種の従来の水循環装置の例を第9図及び第1O図に
示す、第9図において、lは再循環水入口ノズル、2は
溶接部、3はセーフエンド、4は基部溶接部、5はサー
マルスリーブ、6は空間部(狭あい部)、9は加熱手段
、18は冷却水噴出ノズル、19は冷却水パイプである
。この水循環装置では空間部6の開放側に設置された冷
却噴水ノズル18から空間部16内に水を噴出させるこ
とによって、空間部6の閉塞側まで達する定常流れを生
じさせた後、例えば誘導加熱等の加熱手段9によって溶
接部6の外部を加熱する方式(以下、吹き込み方式とい
う)である、(特開昭63−143221号公報) また、第10図において、冷却水バイブ19が分岐され
、一方が空間部6内に水を噴出する冷却水噴出ノズル1
8を構成し、他方は吸引ノズル20を構成している点で
第9図の水循環装置と異なっている。この水循環装置で
は、冷却水噴出ノズク18と吸引ノズル20によって空
間部6内における定常流れを図る方式(以下、吹き込み
十吸い出し方式という)である、(特開昭63−132
397号公報) 〔発明が解決しようとする課題〕 上記した方式による従来の水循環装置では、空間部6内
での気泡発生に基づく上昇流に対する配慮が十分でない
ために気泡発生時に大量の冷却水を空間部6内に流入し
なければならないという問題があった。
Examples of conventional water circulation devices of this type are shown in Figures 9 and 1O, in which l is the recirculating water inlet nozzle, 2 is the weld, 3 is the safe end, 4 is the base weld, 5 1 is a thermal sleeve, 6 is a space (narrow part), 9 is a heating means, 18 is a cooling water jet nozzle, and 19 is a cooling water pipe. In this water circulation device, water is jetted into the space 16 from a cooling fountain nozzle 18 installed on the open side of the space 6 to generate a steady flow reaching the closed side of the space 6, and then, for example, induction heating is performed. (hereinafter referred to as the blowing method) is a method of heating the outside of the welding part 6 by a heating means 9 such as (Japanese Patent Application Laid-open No. 143221/1982). In addition, in FIG. 10, the cooling water vibrator 19 is branched, Cooling water spout nozzle 1, one of which spouts water into space 6
8 and the other constitutes a suction nozzle 20, which is different from the water circulation apparatus shown in FIG. This water circulation device uses a method (hereinafter referred to as a blow-in and suction method) in which a steady flow is achieved in the space 6 by means of a cooling water jet nozzle 18 and a suction nozzle 20.
Publication No. 397) [Problems to be Solved by the Invention] In the conventional water circulation device using the above-mentioned method, sufficient consideration is not given to the upward flow caused by the generation of air bubbles in the space 6, and therefore a large amount of cooling water is used when air bubbles are generated. There was a problem in that the liquid had to flow into the space 6.

大量の冷却水を空間部6内に流入する場合、第9図に示
す水循環装置では、冷却水噴出ノズル18から噴出する
水の運動量が大きいためにその反作用として冷却水バイ
ブ19が空間部6から遠ざかるような力を受ける。した
がって、接近作業が困難な場所に設置されたノズルの場
合、冷却水噴出ノズル18の固定が容易でなく、冷却水
噴出ノズル18が移動して効果的な冷却操作が困難にな
るという問題があった。
When a large amount of cooling water flows into the space 6, in the water circulation system shown in FIG. Receive a force that moves you away. Therefore, in the case of a nozzle installed in a place where access is difficult, there is a problem in that it is difficult to fix the cooling water jet nozzle 18, and the cooling water jet nozzle 18 moves, making it difficult to perform an effective cooling operation. Ta.

第10図に示す水循環装置では、吸引ノズル20の設置
によって空間部6への水噴出時における冷却水噴出ノズ
ル1日の移動の問題は軽減する。
In the water circulation system shown in FIG. 10, the installation of the suction nozzle 20 alleviates the problem of movement of the cooling water jet nozzle during one day when water is jetted into the space 6.

しかしながら、冷却水噴出ノズル18から注入された冷
却水が基部溶接部4に到達することなく、シッートパス
し、吸引ノズル20に向かって流れるために効果的な冷
却が困難となる。
However, the cooling water injected from the cooling water jetting nozzle 18 does not reach the base welded portion 4, but instead passes through the seat and flows toward the suction nozzle 20, making effective cooling difficult.

本発明の目的は、上記した従来技術の課題を解決し、空
間部内に気泡が発生した場合にも、少ない注入量で溶接
部の冷却を効果的に行うことができ、しかも冷却水噴出
ノズルの固定が不要な水循環装置を提供することにある
An object of the present invention is to solve the above-mentioned problems of the prior art, to be able to effectively cool a welded part with a small amount of injection even when air bubbles are generated in a space, and to make it possible to effectively cool a welded part with a small amount of injection. The object of the present invention is to provide a water circulation device that does not require fixing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、冷却水を循環させる空間部(狭あい部)の
開放側上部に、狭あい部の外部、すなわち空間部の閉塞
側から開放側に向かう方向に水を噴射する水噴射ポンプ
を設けることによって達成される。
The above purpose is to provide a water injection pump at the upper part of the open side of the space (narrow part) in which cooling water is circulated, which injects water in the direction from the outside of the narrow part, that is, from the closed side of the space to the open side. This is achieved by

〔作用〕[Effect]

空間部の開放側上部に設置された水噴射ポンプからの冷
却水は、空間部(狭あい部)の閉塞側から開放側に向か
って噴射され、開放側下部から閉塞側下部を経て閉塞側
上部に上昇し、開放側上部に流れる。この結果、冷却水
の流れと水中の気泡の浮力方向が一致し、発生した気泡
を空間部から抜き出すのに必要な冷却水量は低減される
Cooling water from the water injection pump installed at the upper part of the open side of the space is injected from the closed side of the space (narrow part) toward the open side, from the lower part of the open side to the lower part of the closed side, and then to the upper part of the closed side. and flows to the upper part of the open side. As a result, the direction of the buoyancy of the bubbles in the water matches the flow of the cooling water, and the amount of cooling water required to extract the generated bubbles from the space is reduced.

空間部に注入される冷却水量が低減されるので水の運動
量が小さく、且つ、水噴射ポンプからの冷却水は空間部
の閉塞側から開放側に噴射されるために、水の運動量に
基づく水噴射ポンプの受ける反作用は、空間部の開放側
から閉塞側に向かう方向となり、噴射ノズルの固定を特
に要しない。
Since the amount of cooling water injected into the space is reduced, the momentum of the water is small, and since the cooling water from the water injection pump is injected from the closed side of the space to the open side, the amount of water is reduced based on the momentum of the water. The reaction that the injection pump receives is in the direction from the open side of the space toward the closed side, and there is no particular need to fix the injection nozzle.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の水循環装置の一実施例を示す断面図、
第2図は第1図における水噴射ポンプを拡大して示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of the water circulation device of the present invention;
FIG. 2 is an enlarged sectional view of the water injection pump in FIG. 1.

セーフエンド3と再循環水入口ノズル1は溶接部2を介
して接続され、セーフエンド3とサーマルスリーブ5は
基部溶接部4を介して接続されており、再循環水入口ノ
ズル1とサーマルスリーブ5との間に筒状の空間部(狭
あい部)6が形成されている。再循環入口ノズル1には
サーマルスリーブ5の外周面と平行する面に対して直交
する面に移動防止台14a、14bを介して、冷却水バ
イブ8が固定されている。
The safe end 3 and the recirculating water inlet nozzle 1 are connected through a weld 2, the safe end 3 and the thermal sleeve 5 are connected through a base weld 4, and the recirculating water inlet nozzle 1 and the thermal sleeve 5 are connected through a base weld 4. A cylindrical space (narrow part) 6 is formed between the two. A cooling water vibrator 8 is fixed to the recirculation inlet nozzle 1 on a surface perpendicular to a surface parallel to the outer peripheral surface of the thermal sleeve 5 via movement prevention stands 14a and 14b.

この冷却水バイブ8の先端開口部に水噴射ポンプ14が
接続されている。
A water injection pump 14 is connected to the opening at the tip of the cooling water vibrator 8 .

水噴射ポンプ14は、第2図に示すように冷却水バイブ
8に接続され、管部の先端開口部に噴出ノズル7が形成
され、噴出ノズル7の水噴出方向側に咽部12を有する
デイフユーザ13が移動防止台14cを介してサーマル
スリーブ5の外周面に固定されている。デイフユーザ1
3からの水噴出方向と反対方向側、すなわち空間部6の
閉塞側に吸い込み管11が設けられ、吸い込み管11の
管内流路はデイフユーザ13の咽部12に連通している
The water injection pump 14 is connected to a cooling water vibrator 8 as shown in FIG. 13 is fixed to the outer peripheral surface of the thermal sleeve 5 via a movement prevention stand 14c. Deaf user 1
A suction pipe 11 is provided on the side opposite to the direction in which water is ejected from the space 6 , that is, on the closed side of the space 6 , and an internal flow path of the suction pipe 11 communicates with the throat 12 of the diffuser 13 .

上記のような構成からなる水循環装置において、噴出ノ
ズル7から水が噴出すると筒状空間部6内の水が吸い込
み管11より吸い込まれ、咽部12で冷却水バイブ8よ
り供給された水と混合され、デイフユーザ13を通って
排出される。空間部6に冷却水の流れが生じている状態
で加熱手段(例えば、誘導加熱)9により溶接部2及び
その付近を加熱して所定の温度分布をつけることによっ
て残留応力を改善する。この場合、加熱によって空間部
6内の水中に気泡が発生する。
In the water circulation device configured as described above, when water is ejected from the ejection nozzle 7, water in the cylindrical space 6 is sucked in through the suction pipe 11 and mixed with water supplied from the cooling water vibrator 8 in the throat 12. and is discharged through the diff user 13. Residual stress is improved by heating the welded part 2 and its vicinity by heating means (for example, induction heating) 9 while cooling water is flowing in the space 6 to create a predetermined temperature distribution. In this case, air bubbles are generated in the water within the space 6 due to the heating.

そこで、以下第3図〜第8図を基に従来例と本実施例に
おける空間部6内の状態を対比しつつ、説明する。
Therefore, the conditions inside the space 6 in the conventional example and this embodiment will be explained while comparing them based on FIGS. 3 to 8.

第3図は第9図に示す従来の水循環装置の空間部(狭あ
い部)6内の流動状態を調べるために、空間部6のみを
取り出し、空間部6の位置にA。
In order to investigate the flow state in the space (narrow part) 6 of the conventional water circulation system shown in FIG. 9, FIG.

B、C,D、Hの符号をつけた図である。ここでAの位
置に示すO印は第9図に示す噴出ノズル7の位置を表す
、この空間部6は通常、直径に比べて隙間が非常に小さ
いため、加熱による気泡発生がない場合には空間部6を
流れる流体にとっては空間部6の曲率を無視できると考
えられる。また、A、B、D、E面に対する流れを左右
対称と仮定すれば、空間部6内の流れを二次元的に解析
できる。
It is a diagram with symbols B, C, D, and H. Here, the O mark shown at position A represents the position of the jet nozzle 7 shown in FIG. It is considered that the curvature of the space 6 can be ignored for the fluid flowing through the space 6. Further, if it is assumed that the flow in planes A, B, D, and E is symmetrical, the flow in the space 6 can be analyzed two-dimensionally.

第41!lは、解析の結果得られた非加熱時の速度ベク
トルを示すものである。第4図から、空間部6の隙間が
小さ(ても、Aより注入された冷却水はBの閉塞部まで
到達した後、BからC,Dの下部に向かって流れ、空間
部(狭あい部)6の開放側下部Eから流出する。このよ
うな流れが生じる冷却法は、加熱により気泡発生がない
場合は、全(問題がない、しかしながら、気泡が発生す
る状態の場合、第5図に示すように、加熱部17におけ
る冷却水の流れ16は実線で示すように上から下の方向
であるのに対して、気泡による浮力15の方向は破線で
示すように下から上方向で、全く逆向きとなる。したが
って、冷却水の注入量が少ないと発生した気泡を十分に
除去できないため、加熱部17の上部に気泡がたまるよ
うになり、膜沸騰状態が生じ所定の温度分布が達成でき
なくなる。膜沸騰を避けるためには、気泡発生による浮
力にうち勝つに十分な大量の冷却水を注入する必要があ
る。
41st! l indicates the velocity vector in the non-heating state obtained as a result of the analysis. From Figure 4, even if the gap in the space 6 is small (the cooling water injected from A reaches the closed part of B, it flows from B to the lower part of C and D, and the cooling water flows through the space (narrow gap). Part) 6 flows out from the lower part E of the open side.The cooling method that generates this type of flow is suitable for cooling when no air bubbles are generated due to heating. As shown in , the flow 16 of cooling water in the heating section 17 is from the top to the bottom as shown by the solid line, whereas the direction of the buoyant force 15 due to the bubbles is from the bottom to the top as shown by the broken line. Therefore, if the amount of cooling water injected is small, the generated air bubbles cannot be removed sufficiently, and the air bubbles will accumulate in the upper part of the heating section 17, resulting in a film boiling state and achieving a predetermined temperature distribution. In order to avoid film boiling, it is necessary to inject a large amount of cooling water sufficient to overcome the buoyancy caused by the generation of bubbles.

一方、本実施例の冷却法の場合の速度ベクトル解析結果
を第6図に示す、この冷却法の場合、第1図、第2図に
示すように空間部6の開放側上部に水噴射ポンプ10を
設置し、空間部6の閉塞部側から吸引して開放部側に向
かって水を噴射するため、第2図及び第6図の矢印で示
すように開放部下部Eから流体が入りり、C,B、Aへ
と流れが生じる。したがって、気泡が発生する状態の場
合、第7図に示すように、加熱部17における冷却水の
流れ16と気泡による浮力15の方向は完全に一致する
ため、発生した気泡を抜き出すために必要な冷却水量は
わずかで良い、でた、冷却水の噴射方向が空間部6の閉
塞側から開放側であるため、噴出する水の運動量に基づ
く水噴射ポンプlOの受ける反作用は、空間部6の開放
側から閉塞側に向う方向となり、噴射ポンプ10の固定
のために特殊な工夫を要しない。
On the other hand, the velocity vector analysis results for the cooling method of this embodiment are shown in FIG. 6. In the case of this cooling method, as shown in FIGS. 10 is installed to suck water from the closed side of the space 6 and inject water toward the open side, so fluid enters from the lower part E of the open side as shown by the arrows in FIGS. 2 and 6. , C, B, A flow occurs. Therefore, when air bubbles are generated, as shown in FIG. 7, the direction of the cooling water flow 16 in the heating section 17 and the buoyant force 15 due to the air bubbles are completely the same, so that the direction necessary to extract the air bubbles is Only a small amount of cooling water is required.Since the injection direction of the cooling water is from the closed side of the space 6 to the open side, the reaction that the water injection pump IO receives based on the momentum of the ejected water is due to the opening of the space 6. The direction is from the side to the closed side, and no special measures are required to fix the injection pump 10.

なお、上記した速度ベクトルの解析結果は、プラスチッ
クモデルを用いた計測値と比較し、その妥当性を確認し
ている。
The velocity vector analysis results described above were compared with measured values using a plastic model to confirm their validity.

第8図は溶接部2付近の空間部6における沸騰状態を水
循環装置を変えて実験的に調べ、噴出ノズル7からの水
噴射量と加熱手段9からの投入熱量の関係で表したもの
である。縦軸は残留応力改善に要する温度分布形成に必
要な入熱量(g −p )で無次元化した入熱量、横軸
は本実施例の水循環装置(吸い出し方式)で水循環させ
た時、g 6%を印加して水噴射量を変化させ核沸騰か
ら膜沸騰に遷移する際の水噴射量g (Illで無次元
化した水噴射量である。ここで調べた水循環装置は水循
環方式で区別しており、従来装置に用いられている吹き
込み方式を実線の曲IF、吹き込°み十吸い出し方式を
一点鎖線の曲線G、本発明になる上部吸い出し方式を破
線の曲線Hで表している。なお、従来の吹き込み方式の
場合、噴出ノズルを確実に固定して実験を行った時の結
果である。これらの曲線F、G、Hで示すように上では
膜沸騰状態、下では核沸騰あるいは沸騰の発生していな
い状態である。
FIG. 8 shows the boiling state in the space 6 near the welding part 2, which was experimentally investigated by changing the water circulation device, and is expressed in terms of the relationship between the amount of water jetted from the jet nozzle 7 and the amount of heat input from the heating means 9. . The vertical axis is the heat input (g-p) required to form the temperature distribution required to improve the residual stress, which is rendered dimensionless, and the horizontal axis is the g 6 when water is circulated using the water circulation device (suction method) of this example. % is applied to change the water injection amount and the water injection amount changes from nucleate boiling to film boiling. The blowing method used in the conventional device is represented by a solid line curve IF, the blowing and suctioning method is represented by a dashed line curve G, and the upper suction method of the present invention is represented by a broken line curve H. In the case of the conventional blowing method, these are the results of experiments conducted with the jet nozzle securely fixed.As shown by these curves F, G, and H, the upper part shows film boiling, and the lower part shows nucleate boiling or boiling. This is a state that has not occurred.

この第8図から、供給熱量が大きい程、また水噴射量が
少ない程膜沸騰状態になりやすいことがわかるが、従来
方式に比べて本発明になる水循環装置では、従来装置の
1八〜2への水噴射量で膜沸騰状態を防止できることが
わかる。
From FIG. 8, it can be seen that the larger the amount of heat supplied and the smaller the amount of water injection, the easier it is to reach a film boiling state. It can be seen that film boiling can be prevented by changing the amount of water injected into the tank.

本装置の場合、水噴射は空間部6の閉塞側から開放側に
向けて行うため、水噴射ポンプ10はその反対方向、す
なわち空間部6側に動こうとするが、移動防止台14C
によりその動きが拘束されているので、安定した水循環
が継続される。
In the case of this device, since the water injection is performed from the closed side to the open side of the space 6, the water injection pump 10 tries to move in the opposite direction, that is, toward the space 6, but the movement prevention table 14C
Since its movement is restricted, stable water circulation continues.

なお、上記した効果を得るためには、吸い込み管11の
内径(d)と空間部6の隙間(1)の比率(d/t)を
0.3〜0.7に設定すれば良いことを実験的に見出し
た。
Note that in order to obtain the above effect, the ratio (d/t) of the inner diameter (d) of the suction pipe 11 and the gap (1) of the space 6 should be set to 0.3 to 0.7. Found out experimentally.

〔発明の効果〕 以上のように本発明によれば、加熱による気泡が発生し
ても冷却水中からの気泡の抜き出しが容易で膜沸騰発生
の防止に必要な水噴射量を従来装置の場合よりも1へ〜
8八程度に低減でき、また、水噴射ノズルの固定が容易
で安定な水循環作用を確保することによって効率的な残
留応力の改善を図ることができる。
[Effects of the Invention] As described above, according to the present invention, even if bubbles are generated due to heating, it is easy to extract the bubbles from the cooling water, and the water injection amount necessary to prevent film boiling can be reduced compared to the conventional device. Also to 1~
The residual stress can be reduced to about 88, and the residual stress can be efficiently improved by easily fixing the water injection nozzle and ensuring stable water circulation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水循環装置の一実施例を示す断面図、
第2図は第1図の要部拡大断面図、第3図は空間部(狭
あい部)の各位置に名称をつけた説明図、第4図は従来
装置による狭あい部内の流動状態を数値解析により求め
た計算結果を示す1第5図は従来装置による狭あい部内
の流動方向と浮力の働く方向の関係を示す図、第6図は
、本発明の水循環装置における狭あい部内の流動状態を
数値解析により求めた計算結果を示す図、第7図は本発
明の水循環装置における狭あい部内の流動方向と浮力の
働く方向の関係を示す図、第8図は噴出ノズルからの水
噴射量と投入熱量の関係で沸騰状態を判定するための特
性図、第9図及び第1O図は従来の水循環装置を示す断
面図である。 1・・・・・・再循環水人口ノズル、2・・・・・・溶
接部、3・・・・・・セーフエンド、4・・・・・・基
部溶接部、5・・・・・・サーマルスリーブ、6・・・
・・・空間部(狭あい部)、7・・・・・・噴出ノズル
、8・・・・・・冷却水パイプ、9・・・・・・加熱手
段、10・・・・・・水噴射ポンプ、11・・・・・・
吸い込み管、12・・・・・・咽部、13・・・・・・
デイフユーザ、14a、14b、14c・・・・・・移
動防止台。 第1図 第2図 代理人  弁理士  西 元 勝 − 第3 図 第4図 第5図 第6 図 第7図 第9図 第10図 +9
FIG. 1 is a sectional view showing an embodiment of the water circulation device of the present invention;
Fig. 2 is an enlarged cross-sectional view of the main part of Fig. 1, Fig. 3 is an explanatory diagram with names given to each position in the space (narrow part), and Fig. 4 shows the flow state in the narrow part by the conventional device. Figure 5 shows the calculation results obtained by numerical analysis.1 Figure 5 is a diagram showing the relationship between the flow direction in the narrow part and the direction in which buoyancy acts in the conventional device, and Figure 6 shows the flow in the narrow part in the water circulation device of the present invention. Figure 7 shows the relationship between the direction of flow in the narrow space and the direction of buoyancy in the water circulation device of the present invention, and Figure 8 shows the results of calculations obtained by numerically analyzing the state. Figure 8 shows the water jet from the jet nozzle. Characteristic diagrams for determining the boiling state based on the relationship between the amount of water and the amount of heat input, FIG. 9 and FIG. 1O are cross-sectional views showing a conventional water circulation device. 1... Recirculation water artificial nozzle, 2... Welded part, 3... Safe end, 4... Base welded part, 5...・Thermal sleeve, 6...
... Space (narrow part), 7 ... Spout nozzle, 8 ... Cooling water pipe, 9 ... Heating means, 10 ... Water Injection pump, 11...
Suction tube, 12... Throat, 13...
Diff user, 14a, 14b, 14c...Movement prevention stand. Figure 1 Figure 2 Agent Masaru Nishimoto - Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 +9

Claims (3)

【特許請求の範囲】[Claims] (1)一端部が閉塞され、他端部が開放された空間部に
水を循環させるものにおいて、前記空間部の開放側上部
に前記空間部の閉塞側から開放側に向かう方向に水を噴
出する水噴射ポンプを設けたことを特徴とする水循環装
置。
(1) In a device that circulates water in a space that is closed at one end and open at the other end, water is spouted at the upper part of the open side of the space in a direction from the closed side to the open side of the space. A water circulation device characterized by being equipped with a water injection pump.
(2)前記水噴射ポンプに連通し、その水噴出作用に基
づいて水を吸引する吸い込み管の吸い込み口を前記空間
部の閉塞側に向けて設置したことを特徴とする水循環装
置。
(2) A water circulation device characterized in that a suction port of a suction pipe that communicates with the water injection pump and sucks water based on the water jet action thereof is installed toward the closed side of the space.
(3)前記吸い込み管の内径(d)と、前記空間部の隙
間(t)との比率(d/t)が0.3〜0.7であるこ
とを特徴とする請求項(2)記載の水循環装置。
(3) A ratio (d/t) between an inner diameter (d) of the suction pipe and a gap (t) of the space is 0.3 to 0.7. Water circulation device.
JP1106938A 1989-04-25 1989-04-25 Water circulation device Expired - Fee Related JP2858011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106938A JP2858011B2 (en) 1989-04-25 1989-04-25 Water circulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106938A JP2858011B2 (en) 1989-04-25 1989-04-25 Water circulation device

Publications (2)

Publication Number Publication Date
JPH02285027A true JPH02285027A (en) 1990-11-22
JP2858011B2 JP2858011B2 (en) 1999-02-17

Family

ID=14446331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106938A Expired - Fee Related JP2858011B2 (en) 1989-04-25 1989-04-25 Water circulation device

Country Status (1)

Country Link
JP (1) JP2858011B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189983A (en) * 2007-02-02 2008-08-21 Hitachi-Ge Nuclear Energy Ltd Method for reducing residual stress in small diameter piping
US8514998B2 (en) 2005-01-31 2013-08-20 Hitachi-Ge Nuclear Energy, Ltd. Induction heating stress improvement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514998B2 (en) 2005-01-31 2013-08-20 Hitachi-Ge Nuclear Energy, Ltd. Induction heating stress improvement
JP2008189983A (en) * 2007-02-02 2008-08-21 Hitachi-Ge Nuclear Energy Ltd Method for reducing residual stress in small diameter piping

Also Published As

Publication number Publication date
JP2858011B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
JP4931577B2 (en) Bath equipment
JP2007289903A (en) Micro-bubble generating device and bath system
KR20080026208A (en) Boiler system for use with a steaming device
KR100736867B1 (en) Do mixing chapter for bathtub
KR100881868B1 (en) Device for desolving fluid
TW522069B (en) Wire electric discharge machine
JPH02285027A (en) Water circulating device
CN204185680U (en) A kind of liquid circulated dyeing machine
JP4837550B2 (en) Bath equipment
JP2008246311A (en) Fine bubble generation apparatus and fine bubble generation method
JP2023054000A (en) Micro-bubble generator and clothing processing device
JP4395497B2 (en) Bath cooling device
JP2017140065A (en) Bathtub washing device and bath hot water supply system
JP2009000689A (en) Electromagnetic pump for molten metal and operation method therefor
JP3479949B2 (en) Water extraction device for artificial warm bath
JP2007268245A (en) Mixing device for bathtub
JP2020139737A (en) Ph detector with calibration function, ph measuring device and calibration method of ph measuring device
JP2002233320A (en) Boiling pot and method for defoaming
JPH053278Y2 (en)
JPS58149760A (en) Jet stream bath apparatus
JPS5967955A (en) Jet stream bath apparatus
KR20080031845A (en) Mixing device for tub
CN212075044U (en) Printing ink storage device
JPH0725754Y2 (en) Water circulation device
JP2007143569A (en) Hot bath apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees