JPH02284902A - Production of moisture-absorbing resin fine particles - Google Patents

Production of moisture-absorbing resin fine particles

Info

Publication number
JPH02284902A
JPH02284902A JP10598789A JP10598789A JPH02284902A JP H02284902 A JPH02284902 A JP H02284902A JP 10598789 A JP10598789 A JP 10598789A JP 10598789 A JP10598789 A JP 10598789A JP H02284902 A JPH02284902 A JP H02284902A
Authority
JP
Japan
Prior art keywords
water
absorbing resin
fine particles
aqueous solution
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10598789A
Other languages
Japanese (ja)
Other versions
JP2597402B2 (en
Inventor
Kinya Nagasuna
欣也 長砂
Norisuke Suminaga
憲資 角永
Kazumasa Kimura
和正 木村
Tadao Shimomura
下村 忠生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1105987A priority Critical patent/JP2597402B2/en
Publication of JPH02284902A publication Critical patent/JPH02284902A/en
Application granted granted Critical
Publication of JP2597402B2 publication Critical patent/JP2597402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions

Abstract

PURPOSE:To obtain the title fine particles of high dispersion and high water absorption speed by adding under stirring an inert hydrophobic organic solvent containing a dispersant to an aqueous solution of a water soluble monomer to form an oil-in-water type suspension, then reversing it into the water-in-oil type suspension and polymerizing the monomer. CONSTITUTION:A polymerization-inert hydrophobic organic solvent such as cyclohexane containing a dispersant such as sorbitan monostearate is added under stirring to an aqueous solution of a water-soluble ethylenically unsaturated monomer such as sodium acrylate to form an oil-in-water type suspension. Additionally, the hydrophobic solvent is added to cause phase reversion into the water-in-oil type suspension. The suspension is heated up to 60 deg.C to polymerize the monomer whereby the subject fine particles of a water-absorption resin is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸水性樹脂微粒子の製造方法に関するもので
ある。更に詳しくは、各種加工時の分散性や吸水速度に
すぐれた微粒子状の吸水性樹脂を、複雑な工程を経ず効
率的に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing water-absorbing resin fine particles. More specifically, the present invention relates to a method for efficiently producing particulate water-absorbing resin that has excellent dispersibility and water absorption speed during various processing operations without going through complicated steps.

(従来の技術) 近年、自重の数十〜数百倍もの水を吸収する吸水性樹脂
が開発され、生理用品や使いすて紙おむつ等の吸収剤と
して、あるいは農園芸用の保水剤、汚泥の凝固剤、建材
の結露防止剤、土木用止水剤、乾燥剤等として用途開発
が進められている。
(Conventional technology) In recent years, water-absorbing resins that absorb tens to hundreds of times their own weight in water have been developed, and are used as absorbents for sanitary products and disposable diapers, as water retention agents for agriculture and horticulture, and for sludge removal. It is being developed for use as a coagulant, anti-condensation agent for building materials, water stopper for civil engineering, desiccant, etc.

このような吸水性樹脂としては、たとえばデンプン−ア
クリロニトリルグラフト重合体の加水分解物(特公昭4
9−43395号)、デンプンアクリル酸グラフト重合
体の中和物(特開昭51125468号)、酢酸ビニル
−アクリル酸エステル共重合体のケン化物(特開昭52
−14689号)、アクリロニトリル共重合体もしくは
アクリルアミド共重合体の加水分解物(特公昭5315
959号)、またはこれらの架橋体やポリアクリル酸部
分中和物架橋体く特開昭55−84304号)等が知ら
れている。
Examples of such water-absorbing resins include, for example, hydrolysates of starch-acrylonitrile graft polymers (Japanese Patent Publication No. 4
9-43395), neutralized product of starch acrylic acid graft polymer (JP-A-51125468), saponified product of vinyl acetate-acrylic acid ester copolymer (JP-A-52
-14689), hydrolyzate of acrylonitrile copolymer or acrylamide copolymer (Japanese Patent Publication No. 5315
No. 959), crosslinked products thereof, and partially neutralized polyacrylic acid crosslinked products (Japanese Patent Application Laid-open No. 84304/1983) are known.

また、吸水性樹脂をゴムあるいはポリウレタン等の軟質
樹脂に混合して、ゴムや軟質樹脂に水膨潤性や吸湿性等
を付与し、止水材や結露防止材等を得る技術も数多く開
発されている。
In addition, many technologies have been developed to mix water-absorbing resins with rubber or soft resins such as polyurethane to impart water-swelling and hygroscopic properties to rubber and soft resins, thereby producing water-stopping materials and anti-condensation materials. There is.

そこで、吸水性樹脂をゴムや軟質樹脂等の基材に混合す
る際の基材への分散性や均一混合性および得られた止水
材や結露防止材等の吸水性等を高めるために、吸水性樹
脂の粒子径はできるだけ細かいものとする努力がなされ
てきた。
Therefore, in order to improve the dispersibility and uniform mixing properties of water-absorbing resins into base materials such as rubber and soft resins, and the water absorption of the resulting water-stopping materials and anti-condensation materials, Efforts have been made to make the particle size of water absorbent resin as fine as possible.

粒子径の比較的細かい吸水性樹脂を効率的に得る方法と
して、重合により吸水性樹脂を形成する水溶性エチレン
性不飽和単量体を疎水性有機溶剤中で逆相懸濁重合する
方法(例えば特開昭53−46389号)が提案されて
いる。しかしながら、この方法では、粒子径が通常50
〜1000μm程度の吸水性樹脂しか得られず、吸水性
樹脂を基材に混合した際の前記問題点を解消することは
できなかった。
As a method for efficiently obtaining a water-absorbing resin with a relatively small particle size, a method of reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer that forms a water-absorbing resin by polymerization in a hydrophobic organic solvent (e.g. JP-A No. 53-46389) has been proposed. However, in this method, the particle size is usually 50
Only a water-absorbing resin with a thickness of about 1,000 μm was obtained, and the above-mentioned problems when mixing a water-absorbing resin with a base material could not be solved.

したがって、50〜1000μm程度の粒子径の吸水性
樹脂を再び粉砕して微粒子を分級してから使用すること
が行なわれてきた。しかし、このような方法では、粉砕
に要するコストや分級の収率を考えると、経済的・工業
的にも非常に不利であった。
Therefore, the practice has been to re-pulverize water-absorbing resins having a particle size of about 50 to 1000 μm and classify the fine particles before use. However, such a method is economically and industrially disadvantageous considering the cost required for pulverization and the yield of classification.

そこで、これらの問題を解決する方法として、ケン化に
より吸水性樹脂となる重合体を形成する疎水性車端体を
水中に懸濁させ、高瑣撹拌機やホモミキサーやコロイド
ミル等の強力な剪断力を用いて該単量体の液滴径を所望
の大きさに調整した侵、懸濁重合を行ない、得られた重
合体をケン化することによって吸水性樹脂の微粒子を得
る方法(特開昭63−186751号)が提案されてい
る。しかし、この方法は、10μm程度の微粒子を得る
ためにホモミキサー等を用いた機械的な剪断力を注意深
く規制することが必要であり、操作が煩雑でプロセス的
にもまだまだ満足する方法とはいい難く、また使用でき
る疎水性単量体にも制限があって充分な吸水性を有する
吸水性樹脂微粒子を得難いという問題点もあった。
Therefore, as a method to solve these problems, a hydrophobic car end body that forms a polymer that becomes a water-absorbing resin by saponification is suspended in water, and a powerful A method of obtaining microparticles of water-absorbing resin by carrying out immersion and suspension polymerization in which the droplet size of the monomer is adjusted to a desired size using shearing force, and saponifying the obtained polymer (a special method). 63-186751) has been proposed. However, this method requires careful control of the mechanical shearing force using a homomixer, etc. in order to obtain fine particles of about 10 μm, and the operation is complicated, so the method is still unsatisfactory from a process standpoint. Moreover, there are also limitations on the hydrophobic monomers that can be used, making it difficult to obtain water-absorbing resin fine particles with sufficient water-absorbing properties.

(発明が解決しようとする課題) 本発明は、吸水性樹脂を基材に混合する際の前記した問
題点を解決するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems when mixing a water-absorbing resin with a base material.

したがって、本発明の目的は、基材への分散性や均一混
合性にすぐれた平均粒子径が数μm程度の細かい吸水性
樹脂微粒子を簡便な操作で収率よく製造することである
Therefore, an object of the present invention is to produce fine water-absorbing resin microparticles with an average particle diameter of several micrometers, which are excellent in dispersibility and uniform mixing properties in a substrate, with a simple operation and in good yield.

(課題を解決するための手段および作用)本発明者らは
、上記実情に鑑み鋭意研究を重ねた結果、逆相懸濁重合
法で吸水性樹脂を製造するに際し、予め分散剤を含む疎
水性有機溶剤を水溶性エチレン性不飽和単m体の水溶液
中に添加して一旦水中油型懸濁液を形成させた後さらに
疎水性有機溶剤を加えて転相を行なっておくことによっ
て、粒子径分布の狭い吸水性樹脂微粒子が反応器側壁等
への付着も非常に少なく安定かつ工業的にも容易に得ら
れることを見い出し、本発明を完成するに至った。
(Means and effects for solving the problem) As a result of extensive research in view of the above circumstances, the present inventors have discovered that when producing a water-absorbing resin using a reversed-phase suspension polymerization method, a hydrophobic resin containing a dispersant is prepared in advance. By adding an organic solvent to an aqueous solution of a water-soluble ethylenically unsaturated monomer to form an oil-in-water suspension, and then adding a hydrophobic organic solvent to perform phase inversion, the particle size can be adjusted. The present inventors have discovered that water-absorbing resin fine particles with a narrow distribution have very little adhesion to the side walls of a reactor, are stable, and can be easily obtained industrially, and have completed the present invention.

即ち、本発明は、水溶性エチレン性不飽和単吊体の水溶
液中に、分散剤を含む重合不活性な疎水性有償溶剤を撹
拌下に添加して、水中油型懸濁液を形成したのち引き続
いて水中油型懸濁液を油中水型懸濁液に転相を行ない、
懸濁状態下で該単量体を重合させることを特徴とする吸
水性樹脂微粒子の製造方法に関するものである。
That is, in the present invention, a polymerization-inactive hydrophobic paid solvent containing a dispersant is added to an aqueous solution of a water-soluble ethylenically unsaturated monohung material under stirring to form an oil-in-water suspension. Subsequently, the oil-in-water suspension is phase inverted to a water-in-oil suspension,
The present invention relates to a method for producing water-absorbing resin fine particles, which comprises polymerizing the monomer in a suspended state.

本発明に用いられる水溶性エチレン性不飽和単ω体とし
ては、重合により吸水性樹脂を形成する水溶性単量体で
あれば特に制限なく、例えばアクリル酸、メタクリル酸
、クロトン酸、(無水)マレイン酸、フマル酸、イタコ
ン酸、2−(メタ)アクリロイルエタンスルホン酸、2
−(メタ)アクリロイルプロパンスルホン酸、2−(メ
タ)アクリルアミド−2−メチルプロパンスルホン酸、
ビニルスルホン酸、スチレンスルボン酸等の如きアニオ
ン性単母体やその塩:N、N−ジメチルアミノエチル(
メタ)アクリレート、N、N−ジメチルアミンプロピル
(メタ)アクリレート、N。
The water-soluble ethylenically unsaturated monomer used in the present invention is not particularly limited as long as it is a water-soluble monomer that forms a water-absorbing resin by polymerization, such as acrylic acid, methacrylic acid, crotonic acid, (anhydrous) Maleic acid, fumaric acid, itaconic acid, 2-(meth)acryloylethanesulfonic acid, 2
-(meth)acryloylpropanesulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid,
Anionic monobases such as vinyl sulfonic acid, styrene sulfonic acid, etc. and their salts: N,N-dimethylaminoethyl (
meth)acrylate, N,N-dimethylaminepropyl(meth)acrylate, N.

N−ジメチルアミノプロピル(メタ)アクリルアミド等
の如きカチオン性単渚体やその4級化物:(メタ)アク
リルアミド、N−置換(メタ)アクリルアミド、2−ヒ
ドロキシエチル(メタ)アクリレート、2−ヒドロキシ
プロピル(メタ)アクリレート、ポリエチレングリコー
ルモノ(メタ)アクリレート、メ1へキシポリエチレン
グリコール(メタ)アクリレ−1〜等の如きノニオン性
親木基含有単帛体等を挙げることができ、これらの一種
又は二種以上を用いることができる。中でも、アクリル
酸、メタクリル酸、2−(メタ)アクリロイルエタンス
ルホン酸、2−(メタ)アクリルアミド−2−メチルプ
ロパンスルホン酸、及びそれらの塩、N、N−ジメチル
アミノエチル(メタ)アクリレート及びその4級化物、
メトキシポリエチレングリコール(メタ)アクリレート
並びに(メタ)アクリルアミドからなる群より選ばれた
1種又は2種以上が好ましい。
Cationic monomers such as N-dimethylaminopropyl (meth)acrylamide and their quaternized products: (meth)acrylamide, N-substituted (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl ( Examples include nonionic parent wood group-containing monolayers such as meth)acrylate, polyethylene glycol mono(meth)acrylate, meth-hexypolyethylene glycol(meth)acrylate-1 and the like, and one or two of these The above can be used. Among them, acrylic acid, methacrylic acid, 2-(meth)acryloylethanesulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, and salts thereof, N,N-dimethylaminoethyl (meth)acrylate and its quaternary compound,
One or more selected from the group consisting of methoxypolyethylene glycol (meth)acrylate and (meth)acrylamide are preferred.

また、本発明で吸水性樹脂を得るに際しては、架橋剤を
使用せずに上記水溶性単量体を重合して自己架橋型の吸
水性樹脂としてもよく、また架橋剤の存在下に重合して
吸水性樹脂を得てもよい。
In addition, when obtaining a water-absorbing resin in the present invention, the water-soluble monomer may be polymerized without using a cross-linking agent to obtain a self-crosslinking type water-absorbing resin, or it may be polymerized in the presence of a cross-linking agent. A water-absorbing resin may also be obtained.

このような架橋剤としては、水溶性エチレン性不飽和単
囚体のもつ官能基と反応しうる反応性官能基や重合性不
飽和基を分子内に2個以上右する化合物があり、例えば
N、N’ −メチレンビス(メタ)アクリルアミド、N
−メチロール(メタ)アクリルアミド、(ポリ)エチレ
ングリコールジ(メタ)アクリレート、(ポリ)プロピ
レングリコールジ(メタ)アクリレート、グリセリント
リ〈メタ)アクリレート、グリセリンジ(メタ)アクリ
レート、(メタ)アクリル酸多価金属塩、トリメヂロー
ルプロパントリ(メタ)アクリレート、トリアリルアミ
ン、トリアリルシアヌレート、トリアリルイソシアヌレ
ート、トリアリルホスフェート、グリシジル(メタ)ア
クリレート、エチレングリコールジグリシジルエーテル
、グリセリンジグリシジルエーテル、グリセリントリグ
リシジルエーテル、ポリエチレングリコールジグリシジ
ルエーテル等を挙げることができ、これらの1種又は2
種以上を使用することができる。
Examples of such crosslinking agents include compounds that have two or more reactive functional groups or polymerizable unsaturated groups in the molecule that can react with the functional groups of the water-soluble ethylenically unsaturated single prisoner. , N'-methylenebis(meth)acrylamide, N
- Methylol (meth)acrylamide, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, glycerin tri(meth)acrylate, glycerin di(meth)acrylate, (meth)acrylic acid polyhydric Metal salts, trimedylolpropane tri(meth)acrylate, triallylamine, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, glycidyl (meth)acrylate, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl Examples include ether, polyethylene glycol diglycidyl ether, etc. One or two of these
More than one species can be used.

また、架橋剤の使用量は、水溶性エチレン性不飽和単量
体に対して一般に0.001〜5モル%程度が好ましい
Further, the amount of the crosslinking agent used is generally preferably about 0.001 to 5 mol% based on the water-soluble ethylenically unsaturated monomer.

水溶性エチレン性不飽和単量体水溶液の濃度は、工業的
生産性からみて30重量%〜飽和濃度の範囲が好ましい
。30重量%よりもi11度が低いと、単位反応容積あ
たりの生産性が下がり、また乾燥工程等にも長時間を要
するので、工業的観点から好ましくない。
The concentration of the water-soluble ethylenically unsaturated monomer aqueous solution is preferably in the range of 30% by weight to saturated concentration in terms of industrial productivity. If the i11 degree is lower than 30% by weight, the productivity per unit reaction volume will decrease and the drying process will take a long time, which is not preferred from an industrial standpoint.

本発明において水溶性エヂレン性不飽和11 H)体を
重合させて吸水性樹脂を形成するために、従来公知の水
溶性重合開始剤が使用されるが、この水溶性重合開始剤
は、水溶性エヂレン性不飽和甲吊体の水溶液中に予め溶
解しておいてもよく、また該単量体水溶液に疎水性有機
溶剤を添加して(9られる水中油型懸濁液に添加して用
いてもよい。
In the present invention, a conventionally known water-soluble polymerization initiator is used to form a water-absorbing resin by polymerizing the water-soluble ethylenically unsaturated 11H). The monomer may be dissolved in advance in an aqueous solution, or a hydrophobic organic solvent may be added to the monomer aqueous solution (9) and added to an oil-in-water suspension. Good too.

水溶性重合開始剤としては、当該分野に常用されるもの
であれば制限なく使用することができ、例えば過硫酸カ
リウム、過硫酸ナトリウム、過硫酸アンモニウム等の過
硫酸塩;過酸化水素、tブチルハイドロパーオキサイド
、クメンハイドロパーオキサイド等のハイドロバーオキ
サイド;2゜2′−アゾビス−2−アミジノプロパンニ
塩酸塩等のアゾ化合物等があげられる。これらの重合開
始剤は2種以上混合して使用することも可能であリ、更
には亜硫酸塩、1−アスコルビン酸、第2鉄塩等の還元
剤との組み合わせによるレドックス系開始剤として用い
てもよい。
As the water-soluble polymerization initiator, any one commonly used in the field can be used without restriction, such as persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate; hydrogen peroxide, t-butylhydrochloride, etc. Hydroperoxides such as peroxide and cumene hydroperoxide; azo compounds such as 2°2'-azobis-2-amidinopropane dihydrochloride; and the like. These polymerization initiators can be used as a mixture of two or more, and can also be used as a redox initiator in combination with a reducing agent such as sulfite, 1-ascorbic acid, or ferric salt. Good too.

また、本発明において、水溶性エチレン性不飽和単吊体
水溶液中に必要により界面活性剤を溶解あるいは分散し
て含有させてもよい。この界面活性剤を単量体水溶液中
に含有させることによって、疎水性有機溶剤の添加に伴
う転相がより均一に起こり、最終的に得られる吸水性樹
脂の粒子径分布がより狭くなる場合がある。
Further, in the present invention, a surfactant may be dissolved or dispersed and contained in the water-soluble ethylenically unsaturated monohung body aqueous solution, if necessary. By including this surfactant in the monomer aqueous solution, the phase inversion accompanying the addition of the hydrophobic organic solvent may occur more uniformly, resulting in a narrower particle size distribution of the final water absorbent resin. be.

これらの界面活性剤の例としては、ポリオキシエチレン
アルキルエーテル、ポリオキシエチレンアルキルフェノ
ールエーテル、ポリオキシエチレンアシルエステル、ソ
ルビタン脂肪酸エステル、ポリオキシエチレンソルビタ
ン脂肪酸エステル、ショ糖脂肪酸エステル等の非イオン
系界面活性剤や、高級アルコール硫酸エステル塩、アル
キルナフタレンスルホン酸塩、アルキルポリオキシエチ
レンサルフェート塩、ジアルキルスルホコハク酸塩等の
アニオン系界面活性剤等の中から一種又は二種以上を選
択して用いることができる。中でもHLBが8以上の非
イオン系界面活性剤又はアニオン系界面活性剤が好まし
い。
Examples of these surfactants include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene acyl ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and sucrose fatty acid ester. or anionic surfactants such as higher alcohol sulfate ester salts, alkylnaphthalene sulfonates, alkyl polyoxyethylene sulfate salts, and dialkyl sulfosuccinates. . Among these, nonionic surfactants or anionic surfactants with an HLB of 8 or more are preferred.

本発明において疎水性有機溶剤に溶解あるいは分散して
使用される分散剤としては、例えばソルビタン脂肪酸エ
ステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エス
テル、ポリグリセリン脂肪酸エステル等の非イオン系界
面活性剤;セルロースエステル、セルロースエーテル等
の繊維素誘導体;α−オレフィンと無水マレイン酸の共
重合体又はそれらの誘導体等のカルボキシル基含有高分
子等をあげることができ、それらの1種又は2種以上を
使用することができる。用いる分散剤の種類によっては
二重エマルション等が生成し、転相が均一に行なえない
場合もあるが、中でもHLB2〜7の非イオン系界面活
性剤、さらに好ましくはHLB2〜7のソルビタン脂肪
酸エステルは、そのような心配がなく且つ粒子径のより
小さい吸水性樹脂が得られるので望ましい。
In the present invention, examples of the dispersant used by dissolving or dispersing in a hydrophobic organic solvent include nonionic surfactants such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, and polyglycerin fatty acid ester; cellulose ester; , cellulose derivatives such as cellulose ether; carboxyl group-containing polymers such as copolymers of α-olefin and maleic anhydride or derivatives thereof; one or more of these may be used. I can do it. Depending on the type of dispersant used, a double emulsion etc. may be formed and phase inversion may not be performed uniformly, but nonionic surfactants with an HLB of 2 to 7, and more preferably sorbitan fatty acid esters with an HLB of 2 to 7, are preferred. This is desirable because there is no such concern and a water-absorbing resin with a smaller particle size can be obtained.

分散剤の使用量は、一般に水溶性エチレン性不飽和単量
体に対し0,05〜10重量%、好ましくは0.5〜5
重量%である。
The amount of dispersant used is generally 0.05 to 10% by weight, preferably 0.5 to 5% by weight based on the water-soluble ethylenically unsaturated monomer.
Weight%.

本発明で使用される疎水性有機溶剤としては、単量体水
溶液と混和せず二相を形成するものであれば特に制限な
く、例えばn−ペンタン、n−ヘキサン、n−へブタン
、n−オクタン等の脂肪族炭化水素類;シクロヘキサン
、シクロオクタン、メチルシクロヘキサン、デカリン等
の置換基を有してもよい脂環族炭化水素類;ベンゼン、
エチルベンゼン、トルエン、キシレン等の置換基を有し
てもよい芳香族炭化水素類等があげられ、これらの1種
または2種以上の混合物を使用できる。特に好ましくは
n−ヘキサン、n−へブタン、シクロヘキサン、メチル
シクロヘキサン、トルエンまたはキシレンである。
The hydrophobic organic solvent used in the present invention is not particularly limited as long as it is immiscible with the aqueous monomer solution and forms two phases, such as n-pentane, n-hexane, n-hebutane, n- Aliphatic hydrocarbons such as octane; alicyclic hydrocarbons that may have substituents such as cyclohexane, cyclooctane, methylcyclohexane, and decalin; benzene,
Examples include aromatic hydrocarbons which may have substituents such as ethylbenzene, toluene, and xylene, and one type or a mixture of two or more of these can be used. Particularly preferred are n-hexane, n-hebutane, cyclohexane, methylcyclohexane, toluene or xylene.

本発明では、水溶性エチレン性不飽和単量体水溶液中に
分散剤を含む疎水性有機溶剤を撹拌下に添加することに
より、単量体水溶液中に疎水性有機溶剤が懸濁した水中
油型懸濁液が先ず形成された後、引き続いて該水中油型
懸濁液から有機溶剤中に単量体水溶液が!!濁した油中
水型懸濁液の状態へ転相がおこる。
In the present invention, by adding a hydrophobic organic solvent containing a dispersant to a water-soluble ethylenically unsaturated monomer aqueous solution while stirring, an oil-in-water type in which a hydrophobic organic solvent is suspended in a monomer aqueous solution is produced. A suspension is first formed and then an aqueous monomer solution in an organic solvent is subsequently formed from the oil-in-water suspension! ! A phase inversion occurs to a cloudy water-in-oil suspension.

このような転相を経由することによって、均一かつ細か
い単量体水溶液の液滴が安定に形成される。この場合、
分散剤の種類や吊、撹拌条件を選ぶことにより、液滴の
平均粒子径や粒子径分布を所望のものにコントロールす
ることができる。特に、転相を均一に行なわせるために
、疎水性有機溶剤と単量体水溶液の比率は3:2〜4:
1種度が好ましい。また転相終了後、新たに分散剤や疎
水性有機溶剤を加えてもよい。
Through such phase inversion, uniform and fine droplets of the monomer aqueous solution are stably formed. in this case,
By selecting the type of dispersant, suspension, and stirring conditions, the average particle size and particle size distribution of the droplets can be controlled to a desired value. In particular, in order to uniformly perform phase inversion, the ratio of the hydrophobic organic solvent to the monomer aqueous solution is 3:2 to 4:
Uniformity is preferred. Further, after the phase inversion is completed, a dispersant or a hydrophobic organic solvent may be newly added.

本発明では、転相を行なった後は通常の逆相懸濁重合と
同様の操作で加熱することにより懸濁状態下で該単量体
の重合を完結させ、共沸脱水等の乾燥工程を経て、吸水
性樹脂を凝集のない一次微粒子として取りだすことがで
きる。
In the present invention, after phase inversion, the monomer polymerization is completed in a suspended state by heating in the same manner as in normal reversed-phase suspension polymerization, and a drying process such as azeotropic dehydration is then carried out. After that, the water-absorbing resin can be taken out as primary fine particles without agglomeration.

こうして得られた吸水性樹脂微粒子は、転相時に用いた
分散剤の種類や吊あるいは転相時の撹拌条件等によって
も異なるが、平均粒子径が30μm以下、好ましくは1
0μ雇以下の非常に細かい微粒子であり、その粒子径分
布も狭いものである。
The water-absorbing resin fine particles thus obtained have an average particle diameter of 30 μm or less, preferably 1 μm or less, although this varies depending on the type of dispersant used during phase inversion and the stirring conditions during suspension or phase inversion.
They are very fine particles with a diameter of less than 0μ, and their particle size distribution is also narrow.

さらに、このようにして得られた吸水性樹脂微粒子は、
その表面部分を公知の方法で架橋してママコの生成を防
いだり吸水速度をはやめたりすることができ、また特定
の溶剤中に分散させ吸水性樹脂のスラリーとして用いる
こともできる。
Furthermore, the water-absorbing resin fine particles obtained in this way are
The surface portion can be crosslinked by a known method to prevent the formation of mako and to slow down the water absorption rate, and it can also be dispersed in a specific solvent and used as a slurry of water absorbent resin.

(発明の効果) このようにして本発明の製造方法により得られた吸水性
樹脂微粒子は、粒子径が従来のものに比べ非常に細かく
、その粒子径分布も非常に狭いものである。そのため、
ゴム、プラスチック、塗料用ビヒクル等の基材と複合す
る場合の基材への分散性が良好であり、複合して得られ
た止水材等の製品の吸水速度も速いものとなりうる。
(Effects of the Invention) The water-absorbing resin fine particles thus obtained by the production method of the present invention have a much finer particle size than conventional ones, and a very narrow particle size distribution. Therefore,
When composited with base materials such as rubber, plastic, paint vehicles, etc., the dispersibility in the base material is good, and the water absorption rate of products such as water stop materials obtained by composite can be high.

また、本発明によれば、機械的粉砕や分級等の煩雑な操
作を一切必要とせずども凝集のない一次微粒子として吸
水性樹脂が安定に得られ、しかも重合中に反応容器側壁
等への付着物もほとんどみられず、経済的・工業的にも
非常に効率よく吸水性樹脂微粒子が一′l造できる。
Furthermore, according to the present invention, water-absorbing resin can be stably obtained as primary fine particles without agglomeration without any complicated operations such as mechanical crushing or classification, and moreover, it is possible to obtain the water-absorbing resin stably as primary fine particles without any agglomeration, and moreover, it does not adhere to the side wall of the reaction vessel during polymerization. Kimono is hardly seen, and water-absorbing resin fine particles can be produced very economically and industrially efficiently.

(実 施 例) 以下、実施例により本発明の詳細な説明するが、本発明
の範囲が、これらの実施例にのみ限定されるものではな
い。
(Examples) Hereinafter, the present invention will be explained in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

また、得られた吸水性樹脂の平均粒子径および粒径分布
は、島津レーザー回折式粒度分布測定装置を用いて求め
た。
In addition, the average particle size and particle size distribution of the obtained water absorbent resin were determined using a Shimadzu laser diffraction particle size distribution analyzer.

実施例 1 撹拌機、還流冷fJl器、温度計、窒素ガス導入管およ
び滴下ロートを付した21の四つロフラスコ中にアクリ
ル酸ナトリウム84.6g、アクリル酸21.6(lお
よびN、、N’ −メチレンビスアクリルアミド0.0
74gからなる単岳体混合物をイオン交換水197gに
溶解した水溶液を仕込み、そこへ界面活性剤としてポリ
オキシエチレンノニルフェニルエーテル(HL、 B 
= 12.3)0.5qおよび重合開始剤として過硫酸
カリウム0.16!Jを加えて溶解させた後、窒素ガス
を吹きこんで溶存酸素を追いだした。
Example 1 84.6 g of sodium acrylate, 21.6 g of acrylic acid (1 and N, N, '-methylenebisacrylamide 0.0
An aqueous solution prepared by dissolving 74 g of a monomer mixture in 197 g of ion-exchanged water was charged, and polyoxyethylene nonylphenyl ether (HL, B) was added as a surfactant.
= 12.3) 0.5q and 0.16 potassium persulfate as polymerization initiator! After adding J and dissolving it, nitrogen gas was blown in to drive out dissolved oxygen.

別のフラスコ中にシクロヘキサン11をとり、そこへ分
散剤としてソルビタンモノステアレート(HLB=4.
7 ) 4.20を溶解し、窒素ガスを吹きこんで溶存
酸素を追いだした後、これを滴下ロートに仕込んだ。
Take cyclohexane 11 in another flask and add sorbitan monostearate (HLB=4.
7) After dissolving 4.20 and blowing nitrogen gas to drive out dissolved oxygen, this was charged into a dropping funnel.

滴下ロート内のシクロヘキサン溶液のうち60m1を上
記四つロセパラブルフラスコに23 Orpmで撹拌下
に滴下することにより、シクロヘキサン溶液を単旦体水
溶液中に分散して水中油型懸濁液を得た。さらにシクロ
ヘキサン溶液を加え続けて300−を滴下した頃に転相
がおこり、油中水型懸濁液が得られた。
By dropping 60 ml of the cyclohexane solution in the dropping funnel into the four separable flasks with stirring at 23 Orpm, the cyclohexane solution was dispersed in the monomer aqueous solution to obtain an oil-in-water suspension. . Further, the cyclohexane solution was continued to be added, and around the time when 300- was added dropwise, a phase inversion occurred and a water-in-oil suspension was obtained.

シクロヘキサン溶液を全最加えたのち、浴温を60℃に
昇温して重合反応を開始させ、2時間この温度に保持し
て重合を完了した。
After the cyclohexane solution was completely added, the bath temperature was raised to 60°C to start the polymerization reaction, and this temperature was maintained for 2 hours to complete the polymerization.

重合終了後にシクロヘキサンとの共沸脱水により含水ゲ
ル中の水を留去した後、・80℃で減圧乾燥し、平均粒
子径6.3μmで粒子径分布1〜15μmの吸水性樹脂
微粒子(1)を得た。なお、四つロフラスコ側壁への付
着物は全く認められなかった。
After the completion of polymerization, the water in the hydrous gel was distilled off by azeotropic dehydration with cyclohexane, and then dried under reduced pressure at 80°C to obtain water-absorbing resin fine particles (1) with an average particle size of 6.3 μm and a particle size distribution of 1 to 15 μm. I got it. Note that no deposits were observed on the side walls of the four-loaf flask.

実施例 2 実施例1において、分散剤のソルビタンモノステアレー
トをシミ糖脂肪酸エステル(HL B、 =6.0)4
.0!I+に代えた他は同様の操作を行ない、平均粒子
径10,3μmで粒子径分布3〜25μmの吸水性樹脂
微粒子(2)を得た。なお、四つロフラスコ側壁への付
着物は全く認められなかった。
Example 2 In Example 1, the dispersant sorbitan monostearate was replaced with simi sugar fatty acid ester (HL B, =6.0)4
.. 0! The same operation was performed except that I+ was used to obtain water-absorbing resin fine particles (2) having an average particle diameter of 10.3 μm and a particle size distribution of 3 to 25 μm. Note that no deposits were observed on the side walls of the four-loaf flask.

実施例 3 実施例1において、単良体水溶液中に界面活性剤のボリ
エヂレンノニルフェニルエーテルを加えない伯は同様の
操作を行ない、平均粒子径8,7μmで粒子径分布2〜
25μmの吸水性樹脂微粒子(3)を得た。なお、四つ
ロフラスコ側壁にわずかの付着物が認められた。
Example 3 In Example 1, the surfactant polyethylene nonyl phenyl ether was not added to the monomer aqueous solution.
Water-absorbing resin fine particles (3) of 25 μm were obtained. In addition, a slight amount of deposit was observed on the side wall of the four-loaf flask.

比較例 1 撹拌機、還流冷却器、温度計、窒素ガス導入管および滴
下ロートを付した21の四つロセパラブルフラスコにシ
クロヘキサン11をとり、そこへ分散剤としてソルビタ
ンモノステアレート(HLB = 4.7 ) 4.2
 aを溶解し、窒素ガスを吹きこんで溶存酸素を追いだ
した。
Comparative Example 1 Cyclohexane 11 was placed in a 21 four-piece separable flask equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen gas inlet tube, and a dropping funnel, and sorbitan monostearate (HLB = 4) was added there as a dispersant. .7) 4.2
a was dissolved and nitrogen gas was blown into the solution to drive out the dissolved oxygen.

別のフラスコ中にアクリル酸ナトリウム84.6Q、ア
クリル酸21.6 CIおよびN、N’ −メヂレンビ
スアクリルアミド0.0741Jからなる単量体混合物
をイオン交換水197gに溶解した水溶液をとり、そこ
へ界面活性剤としてポリオキシエチレンノニルフェニル
エーテル<HLB=12.3)0、5 aおよび過硫酸
カリウム0.16111を加えて溶解させた後、窒素ガ
スを吹きこんで水溶液内に溶存する酸素を追いだした。
In another flask, take an aqueous solution of a monomer mixture consisting of 84.6 Q of sodium acrylate, 21.6 CI of acrylic acid, and 0.0741 J of N,N'-methylenebisacrylamide dissolved in 197 g of ion-exchanged water. After adding and dissolving polyoxyethylene nonylphenyl ether <HLB=12.3) 0,5a as a surfactant and potassium persulfate 0.16111, nitrogen gas was blown into the aqueous solution to eliminate the oxygen dissolved in the aqueous solution. chased out.

次いで、このフラスコ内の単母体水溶液を滴下ロートか
ら上記セパラブルフラスコに230rOIIlで撹拌下
に滴下することにより、単量体水溶液をシクロヘキサン
溶液に分散して水中油型懸濁液を経由することなく油中
水型懸濁液を得た。
Next, by dropping the monomer aqueous solution in this flask from the dropping funnel into the separable flask at 230 rOIIl with stirring, the monomer aqueous solution is dispersed in the cyclohexane solution without going through an oil-in-water suspension. A water-in-oil suspension was obtained.

単侍体水溶液の全量を滴下後、浴温を60℃に昇温して
重合反応を開始させ、2時間この湿度に保持して重合を
完了した。
After dropping the entire amount of the aqueous solution of Monoshuite, the bath temperature was raised to 60° C. to initiate the polymerization reaction, and this humidity was maintained for 2 hours to complete the polymerization.

重合終了後にシクロヘキサンとの共沸脱水により含水ゲ
ル中の水を留去した後、80℃で減圧乾燥し、平均粒子
径63μmで粒子径分布6〜150μmの比較用吸水性
樹脂粒子(1)を得た。なお、四つロフラスコ側壁に付
着物が認められた。
After the completion of polymerization, the water in the hydrous gel was distilled off by azeotropic dehydration with cyclohexane, and then dried under reduced pressure at 80°C to obtain comparative water-absorbing resin particles (1) with an average particle size of 63 μm and a particle size distribution of 6 to 150 μm. Obtained. In addition, deposits were observed on the side walls of the four-loaf flask.

比較例 2 比較例1において、分散剤のソルビタンモノステアレー
トをショ糖脂肪酸エステル(HLB=6.0)4.0(
]に代えた他は同様の操作を行ない、平均粒子径85μ
mで粒子径分布15〜200μmの比較用吸水性樹脂粒
子(2)を得た。なお、四つロフラスコ側壁に付着物が
少し認められた。
Comparative Example 2 In Comparative Example 1, the dispersant sorbitan monostearate was mixed with sucrose fatty acid ester (HLB=6.0) 4.0 (
], except that the average particle size was 85 μm.
Comparative water absorbent resin particles (2) having a particle size distribution of 15 to 200 μm were obtained. In addition, some deposits were observed on the side wall of the four-loaf flask.

比較例 3 比較例1において、単量体水溶液中にポリオキシエチレ
ンノニルフェニルエーテルを加えない他は同様の操作を
行ない、平均粒子径80μmで粒子径分布20〜150
μmの比較用吸水性樹脂粒子(3)を得た。なお、四つ
ロフラスコ側壁に付着物が認められた。
Comparative Example 3 The same operation as in Comparative Example 1 was performed except that polyoxyethylene nonylphenyl ether was not added to the monomer aqueous solution, and the average particle size was 80 μm and the particle size distribution was 20 to 150.
Comparative water absorbent resin particles (3) of μm were obtained. In addition, deposits were observed on the side walls of the four-loaf flask.

実施例 4 実施例1で用いたのと同じ四つロフラスコに2−スルホ
エチルメタクリレートのナトリウム塩129.6!J、
アクリル酸2.2(1,アクリル酸ナトリウム11.3
0およびポリエチレングリコールジアクリレート0.0
58gからなる単量体混合物をイオン交換水180gに
溶解した水溶液を仕込み、そこへ界面活性剤としてポリ
オキシエチレンソルビタンモノステアレート(HL B
 = 9.6 ) 0.9 gおよび重合開始剤として
2−2′−アゾビス−2−アミノジブロバン塩酸塩0.
22 aを加えて溶解させた後、・窒素ガスを吹きこん
で溶存酸素を追いだした。
Example 4 Into the same four-loaf flask as used in Example 1 was added 129.6 kg of the sodium salt of 2-sulfoethyl methacrylate. J.
Acrylic acid 2.2 (1, sodium acrylate 11.3
0 and polyethylene glycol diacrylate 0.0
An aqueous solution of 58 g of a monomer mixture dissolved in 180 g of ion-exchanged water was charged, and polyoxyethylene sorbitan monostearate (HL B) was added as a surfactant.
= 9.6) 0.9 g and 0.9 g of 2-2'-azobis-2-aminodibroban hydrochloride as a polymerization initiator.
After adding and dissolving 22a, nitrogen gas was blown in to drive out dissolved oxygen.

このようにして得られた単伍体水溶液と実施例1と同様
にして調製したシクロヘキサン溶液とを用いて、実施例
1と同様に転相、重合、共沸脱水および減圧乾燥の各操
作を行ない、平均粒子径3.1μmで粒子径分布1〜6
μmの吸水性樹脂微粒子(4)を得た。なお、四つロフ
ラスコ側壁への付着物は全く認められなかった。
Using the single solid aqueous solution thus obtained and the cyclohexane solution prepared in the same manner as in Example 1, the operations of phase inversion, polymerization, azeotropic dehydration, and vacuum drying were performed in the same manner as in Example 1. , average particle size 3.1 μm, particle size distribution 1-6
Water-absorbing resin fine particles (4) of μm in size were obtained. Note that no deposits were observed on the side walls of the four-loaf flask.

実施例 5 実施例4において、単量体水溶液中に界面活性剤のポリ
オキシエチレンソルビタンモノステアレートを加えない
他は実施例4と同様の操作を行ない、平均粒子径4.5
μmで粒子径分布が1〜10μmの吸水性樹脂微粒子(
5)を得た。なお、四つ目フラスコ側壁にわずかの付着
物が認められた。
Example 5 The same operation as in Example 4 was carried out except that the surfactant polyoxyethylene sorbitan monostearate was not added to the monomer aqueous solution, and the average particle size was 4.5.
Water-absorbing resin fine particles with a particle size distribution of 1 to 10 μm (μm)
5) was obtained. In addition, a slight amount of deposit was observed on the side wall of the fourth flask.

Claims (1)

【特許請求の範囲】 1 水溶性エチレン性不飽和単量体の水溶液中に、分散
剤を含む重合不活性な疎水性有機溶剤を撹拌下に添加し
て、水中油型懸濁液を形成したのち引き続いて水中油型
懸濁液を油中水型懸濁液に転相を行ない、懸濁状態下で
該単量体を重合させることを特徴とする吸水性樹脂微粒
子の製造方法。 2、分散剤がHLB2〜7の非イオン系界面活性剤であ
る請求項1記載の吸水性樹脂微粒子の製造方法。 3、非イオン系界面活性剤がソルビタン脂肪酸エステル
である請求項2記載の吸水性樹脂微粒子の製造方法。 4、水溶性エチレン性不飽和単量体の水溶液が界面活性
剤を含んでなる請求項1記載の吸水性樹脂微粒子の製造
方法。 5、界面活性剤がHLB8以上の非イオン系界面活性剤
又はアニオン系界面活性剤である請求項4記載の吸水性
樹脂微粒子の製造方法。 6、水溶性エチレン性不飽和単量体水溶液の単量体濃度
が30重量%〜飽和濃度の範囲である請求項1〜5のい
ずれかに記載の吸水性樹脂微粒子の製造方法。
[Claims] 1. A polymerization-inactive hydrophobic organic solvent containing a dispersant is added to an aqueous solution of a water-soluble ethylenically unsaturated monomer under stirring to form an oil-in-water suspension. A method for producing water-absorbing resin microparticles, which comprises subsequently performing phase inversion from an oil-in-water suspension to a water-in-oil suspension, and polymerizing the monomers in a suspended state. 2. The method for producing water-absorbing resin fine particles according to claim 1, wherein the dispersant is a nonionic surfactant with an HLB of 2 to 7. 3. The method for producing water-absorbing resin fine particles according to claim 2, wherein the nonionic surfactant is a sorbitan fatty acid ester. 4. The method for producing water-absorbing resin fine particles according to claim 1, wherein the aqueous solution of the water-soluble ethylenically unsaturated monomer contains a surfactant. 5. The method for producing water-absorbing resin fine particles according to claim 4, wherein the surfactant is a nonionic surfactant or anionic surfactant with an HLB of 8 or higher. 6. The method for producing water-absorbing resin fine particles according to any one of claims 1 to 5, wherein the monomer concentration of the water-soluble ethylenically unsaturated monomer aqueous solution is in the range of 30% by weight to saturated concentration.
JP1105987A 1989-04-27 1989-04-27 Method for producing water absorbent resin fine particles Expired - Fee Related JP2597402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105987A JP2597402B2 (en) 1989-04-27 1989-04-27 Method for producing water absorbent resin fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105987A JP2597402B2 (en) 1989-04-27 1989-04-27 Method for producing water absorbent resin fine particles

Publications (2)

Publication Number Publication Date
JPH02284902A true JPH02284902A (en) 1990-11-22
JP2597402B2 JP2597402B2 (en) 1997-04-09

Family

ID=14422083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105987A Expired - Fee Related JP2597402B2 (en) 1989-04-27 1989-04-27 Method for producing water absorbent resin fine particles

Country Status (1)

Country Link
JP (1) JP2597402B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346389A (en) * 1976-10-07 1978-04-25 Kao Corp Preparation of self-crosslinking polymer of acrylic alkali metal salt
JPS57167302A (en) * 1981-04-08 1982-10-15 Sumitomo Chem Co Ltd Production of highly water-absorbing polymeric material having improved water absorption rate
JPH02153906A (en) * 1988-07-04 1990-06-13 Idemitsu Petrochem Co Ltd Production of polyacrylic acid metallic salt
JPH02194010A (en) * 1989-01-23 1990-07-31 Idemitsu Petrochem Co Ltd Production of polymetal acrylate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346389A (en) * 1976-10-07 1978-04-25 Kao Corp Preparation of self-crosslinking polymer of acrylic alkali metal salt
JPS57167302A (en) * 1981-04-08 1982-10-15 Sumitomo Chem Co Ltd Production of highly water-absorbing polymeric material having improved water absorption rate
JPH02153906A (en) * 1988-07-04 1990-06-13 Idemitsu Petrochem Co Ltd Production of polyacrylic acid metallic salt
JPH02194010A (en) * 1989-01-23 1990-07-31 Idemitsu Petrochem Co Ltd Production of polymetal acrylate

Also Published As

Publication number Publication date
JP2597402B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
EP0317106B1 (en) Method of surface-treating water-absorbent resin
Moraes et al. Synthesis of silica–polymer core–shell nanoparticles by reversible addition–fragmentation chain transfer polymerization
JP4227650B2 (en) Spray polymerization method
JP3594629B2 (en) Cross-linked spherical copolymer beads and method for producing the same
Lacroix-Desmazes et al. Reactive surfactants in heterophase polymerization. 2. Maleate based poly (ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol− water media
TWI511984B (en) A method for producing a water-absorbent resin
EP3713664B1 (en) Thermally expandable microspheres prepared from bio-based monomers
JP3363000B2 (en) Method for producing water absorbent resin
JPWO2020067311A1 (en) Manufacturing method of water-absorbent resin and water-absorbent resin
JPH03195713A (en) Production of polymer having high water absorption
CN113372611B (en) Super-absorbent polymer capable of improving absorption speed and preparation method and application thereof
JPH07507350A (en) Surface treated absorbent polymer
JPH03195709A (en) Production of polymer having high water absorption
JPH05125109A (en) Preparation of powdery polymer of hydrolyzed n-vinylformamide and dehydrating agent, retaining agent and coagulator for paper making
JP4107775B2 (en) Manufacturing method of super absorbent resin
JPH02284902A (en) Production of moisture-absorbing resin fine particles
JPH0925382A (en) Carboxylated polymer composition
JP2678067B2 (en) Method for producing hydrophilic polymer
JPH02138306A (en) Preparation of water-absorbing resin
JP4515073B2 (en) Method for producing water absorbent resin
JP2002265504A (en) Method of preparing water-based dispersion
JP3149487B2 (en) Method for producing methacrylic resin particles
JPH04130113A (en) Production of macrobead-like water-absorptive resin
JPH0264106A (en) Production of water-absorbing resin
JP2559894B2 (en) Composite hollow particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees